Search results for: time series models
22189 The Colorectal Cancer in Patients of Eastern Algeria
Authors: S. Tebibel, C. Mechati, S. Messaoudi
Abstract:
Algeria is currently experiencing the same rate of cancer progression as that registered these last years in the western countries. Colorectal cancer, constituting increasingly a major public health problem, is the most common form of cancer after breast and Neck-womb cancer at the woman and prostate cancer at the man. Our work is based on a retrospective study to determine the cases of colorectal cancer through eastern Algeria. Our goal is to carry out an epidemiological, histological and immune- histochemical study to investigate different techniques for the diagnosis of colorectal cancer and their interests and specific in detecting the disease. The study includes 110 patients (aged between 20 to 87 years) with colorectal cancer where the inclusions and exclusions criteria were established. In our study, colorectal cancer, expresses a male predominance, with a sex ratio of 1, 99 and the most affected age group is between 50 and 59 years. We noted that the colon cancer rate is higher than rectal cancer rate, whose frequencies are respectively 60,91 % and 39,09 %. In the series of colon cancer, the ADK lieberkunien is histological the most represented type, or 85,07 % of all cases. In contrast, the proportion of ADK mucinous (colloid mucous) is only 1,49% only. Well-differentiated ADKS, are very significant in our series, they represent 83,58 % of cases. Adenocarcinoma moderately and poorly differentiated, whose proportions are respectively 2,99 % and 0.05 %. For histological varieties of rectal ADK, we see in our workforce that ADK lieberkunien represent the most common histological form, or 76,74%, while the mucosal colloid is 13,95 %. Research of the mutation on the gene encoding K-ras, a major step in the targeted therapy of colorectal cancers, is underway in our study. Colorectal cancer is the subject of much promising research concern: the evaluation of new therapies (antiangiogenic monoclonal antibodies), the search for predictors of sensitivity to chemotherapy and new prognostic markers using techniques of molecular biology and proteomics.Keywords: adenocarcinoma, age, colorectal cancer, epidemiology, histological section, sex
Procedia PDF Downloads 34422188 Application of Stochastic Models on the Portuguese Population and Distortion to Workers Compensation Pensioners Experience
Authors: Nkwenti Mbelli Njah
Abstract:
This research was motivated by a project requested by AXA on the topic of pensions payable under the workers compensation (WC) line of business. There are two types of pensions: the compulsorily recoverable and the not compulsorily recoverable. A pension is compulsorily recoverable for a victim when there is less than 30% of disability and the pension amount per year is less than six times the minimal national salary. The law defines that the mathematical provisions for compulsory recoverable pensions must be calculated by applying the following bases: mortality table TD88/90 and rate of interest 5.25% (maybe with rate of management). To manage pensions which are not compulsorily recoverable is a more complex task because technical bases are not defined by law and much more complex computations are required. In particular, companies have to predict the amount of payments discounted reflecting the mortality effect for all pensioners (this task is monitored monthly in AXA). The purpose of this research was thus to develop a stochastic model for the future mortality of the worker’s compensation pensioners of both the Portuguese market workers and AXA portfolio. Not only is past mortality modeled, also projections about future mortality are made for the general population of Portugal as well as for the two portfolios mentioned earlier. The global model was split in two parts: a stochastic model for population mortality which allows for forecasts, combined with a point estimate from a portfolio mortality model obtained through three different relational models (Cox Proportional, Brass Linear and Workgroup PLT). The one-year death probabilities for ages 0-110 for the period 2013-2113 are obtained for the general population and the portfolios. These probabilities are used to compute different life table functions as well as the not compulsorily recoverable reserves for each of the models required for the pensioners, their spouses and children under 21. The results obtained are compared with the not compulsory recoverable reserves computed using the static mortality table (TD 73/77) that is currently being used by AXA, to see the impact on this reserve if AXA adopted the dynamic tables.Keywords: compulsorily recoverable, life table functions, relational models, worker’s compensation pensioners
Procedia PDF Downloads 16422187 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 13022186 Determinants of Consultation Time at a Family Medicine Center
Authors: Ali Alshahrani, Adel Almaai, Saad Garni
Abstract:
Aim of the study: To explore duration and determinants of consultation time at a family medicine center. Methodology: This study was conducted at the Family Medicine Center in Ahad Rafidah City, at the southwestern part of Saudi Arabia. It was conducted on the working days of March 2013. Trained nurses helped in filling in the checklist. A total of 459 patients were included. A checklist was designed and used in this study. It included patient’s age, sex, diagnosis, type of visit, referral and its type, psychological problems and additional work-up. In addition, number of daily bookings, physician`s experience and consultation time. Results: More than half of patients (58.39%) had less than 10 minutes’ consultation (Mean+SD: 12.73+9.22 minutes). Patients treated by physicians with shortest experience (i.e., ≤5 years) had the longest consultation time while those who were treated with physicians with the longest experience (i.e., > 10 years) had the shortest consultation time (13.94±10.99 versus 10.79±7.28, p=0.011). Regarding patients’ diagnosis, those with chronic diseases had the longest consultation time (p<0.001). Patients who did not need referral had significantly shorter consultation time compared with those who had routine or urgent referral (11.91±8.42,14.60±9.03 and 22.42±14.81 minutes, respectively, p<0.001). Patients with associated psychological problems needed significantly longer consultation time than those without associated psychological problems (20.06±13.32 versus 12.45±8.93, p<0.001). Conclusions: The average length of consultation time at Ahad Rafidah Family Medicine Center is approximately 13 minutes. Less-experienced physicians tend to spend longer consultation times with patients. Referred patients, those with psychological problems, those with chronic diseases tend to have longer consultation time. Recommendations: Family physicians should be encouraged to keep their optimal consultation time. Booking an adequate number of patients per shift would allow the family physician to provide enough consultation time for each patient.Keywords: consultation, quality, medicine, clinics
Procedia PDF Downloads 28722185 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery
Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori
Abstract:
The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS
Procedia PDF Downloads 19122184 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 6522183 Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline
Authors: B. Y. Danjuma, A. Archibong-Eso, Aliyu M. Aliyu, H. Yeung
Abstract:
In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work.Keywords: gamma densitometer, flow pattern, pressure gradient, slug frequency
Procedia PDF Downloads 41222182 Universe at Zero Second and the Creation Process of the First Particle from the Absolute Void
Authors: Shivan Sirdy
Abstract:
In this study, we discuss the properties of absolute void space or the universe at zero seconds, and how these properties play a vital role in creating a mechanism in which the very first particle gets created simultaneously everywhere. We find the limit in which when the absolute void volume reaches will lead to the collapse that leads to the creation of the first particle. This discussion is made following the elementary dimensions theory study that was peer-reviewed at the end of 2020; everything in the universe is made from four elementary dimensions, these dimensions are the three spatial dimensions (X, Y, and Z) and the Void resistance as the factor of change among the four. Time itself was not considered as the fourth dimension. Rather time corresponds to a factor of change, and during the research, it was found out that the Void resistance is the factor of change in the absolute Void space, where time is a hypothetical concept that represents changes during certain events compared to a constant change rate event. Therefore, time does exist, but as a factor of change as the Void resistance: Time= factor of change= Void resistance.Keywords: elementary dimensions, absolute void, time alternative, early universe, universe at zero second, Void resistant, Hydrogen atom, Hadron field, Lepton field
Procedia PDF Downloads 20222181 Capacity Optimization in Cooperative Cognitive Radio Networks
Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis
Abstract:
Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.Keywords: cooperative networks, normalized capacity, sensing time
Procedia PDF Downloads 63422180 Influence Maximization in Dynamic Social Networks and Graphs
Authors: Gkolfo I. Smani, Vasileios Megalooikonomou
Abstract:
Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs
Procedia PDF Downloads 23922179 Antepartum and Postpartum Pulmonary Cryptococcosis: A Case Report and Systematic Review
Authors: Ghadeer M Alkusayer, Adelicia Yu, Pamela Orr
Abstract:
Study objective: To report a case of postpartum pulmonary cryptococcal infection (CCI) in an otherwise healthy 35-year-old woman. Additionally, the cases of pulmonary cryptococcal infections either in the antepartum or the postpartum period with pregnancy outcomes, were systematically reviwed. Methods: A systematic search of Cochrane Library, MEDLINE, and EMBASE was conducted for peer-reviewed studies without date restrictions, published in English and relating to CCI during pregnancy or postpartum period. Conference press, editorials, opinion pieces and letters were excluded. Two authors independently screened citations and full-text articles, extracted data and assessed study quality. Given the heterogeneity of study designs, a narrative synthesis was conducted. Results: The search identified 128 references, of which 22 case reports and series met the inclusion criteria. This is a total of 29 women (including the current case) . The mean age of the women was 28.3 ± 12.3 years. Nine (31.03%) presented and were diagnosed in the postpartum period. Two (6.90%) of the patients were reported as immunocompromised with HIV. Four maternal deaths (13.79%) were found in this case series with one (4.3%) patient with severe neurological deficits. Four (17.4%) infant deaths were reported. Women primary presentation varied with chest pain 13 (44.82%), headache 10 (35.70%), dyspnea 19 (65.51%), or fever 12 (41.38%). Three studies reported placental pathology positive for C. neoformans. Conclusion: This case of pulmonary cryptococcal infection in the postpartum period is an important addition to the literature of this rare infection in pregnancy. The patient is not immunocompromised. The patient was successfully treated with 4 months of Fluconazole 400 mg and continued to breastfeed the healthy baby.Keywords: pulmonary cryptococcus, pregnancy, cryptococci , postpartum
Procedia PDF Downloads 14122178 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis
Procedia PDF Downloads 48522177 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models
Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo
Abstract:
Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps
Procedia PDF Downloads 9822176 The Characteristics of Transformation of Institutional Changes and Georgia
Authors: Nazira Kakulia
Abstract:
The analysis of transformation of institutional changes outlines two important characteristics. These are: the speed of the changes and their sequence. Successful transformation must be carried out in three different stages; On the first stage, macroeconomic stabilization must be achieved with the help of fiscal and monetary tools. Two-tier banking system should be established and the active functions of central bank should be replaced by the passive ones (reserve requirements and refinancing rate), together with the involvement growth of private sector. Fiscal policy by itself here means the creation of tax system which must replace previously existing direct state revenues; the share of subsidies in the state expenses must be reduced also. The second stage begins after reaching the macroeconomic stabilization at a time of change of formal institutes which must stimulate the private business. Corporate legislation creates a competitive environment at the market and the privatization of state companies takes place. Bankruptcy and contract law is created. he third stage is the most extended one, which means the formation of all state structures that is necessary for the further proper functioning of a market economy. These three stages about the cycle period of political and social transformation and the hierarchy of changes can also be grouped by the different methodology: on the first and the most short-term stage the transfer of power takes place. On the second stage institutions corresponding to new goal are created. The last phase of transformation is extended in time and it includes the infrastructural, socio-cultural and socio-structural changes. The main goal of this research is to explore and identify the features of such kind of models.Keywords: competitive environment, fiscal policy, macroeconomic stabilization, tax system
Procedia PDF Downloads 26422175 Depolymerization of Lignin in Sugarcane Bagasse by Hydrothermal Liquefaction to Optimize Catechol Formation
Authors: Nirmala Deenadayalu, Kwanele B. Mazibuko, Lethiwe D. Mthembu
Abstract:
Sugarcane bagasse is the residue obtained after the extraction of sugar from the sugarcane. The main aim of this work was to produce catechol from sugarcane bagasse. The optimization of catechol production was investigated using a Box-Behnken design of experiments. The sugarcane bagasse was heated in a Parr reactor at a set temperature. The reactions were carried out at different temperatures (100-250) °C, catalyst loading (1% -10% KOH (m/v)) and reaction times (60 – 240 min) at 17 bar pressure. The solid and liquid fractions were then separated by vacuum filtration. The liquid fraction was analyzed for catechol using high-pressure liquid chromatography (HPLC) and characterized for the functional groups using Fourier transform infrared spectroscopy (FTIR). The optimized condition for catechol production was 175 oC, 240 min, and 10 % KOH with a catechol yield of 79.11 ppm. Since the maximum time was 240 min and 10 % KOH, a further series of experiments were conducted at 175 oC, 260 min, and 20 % KOH and yielded 2.46 ppm catechol, which was a large reduction in catechol produced. The HPLC peak for catechol was obtained at 2.5 min for the standards and the samples. The FTIR peak at 1750 cm⁻¹ was due to the C=C vibration band of the aromatic ring in the catechol present for both the standard and the samples. The peak at 3325 cm⁻¹ was due to the hydrogen-bonded phenolic OH vibration bands for the catechol. The ANOVA analysis was also performed on the set of experimental data to obtain the factors that most affected the amount of catechol produced.Keywords: catechol, sugarcane bagasse, lignin, hydrothermal liquefaction
Procedia PDF Downloads 10022174 Saltwater Intrusion Studies in the Cai River in the Khanh Hoa Province, Vietnam
Authors: B. Van Kessel, P. T. Kockelkorn, T. R. Speelman, T. C. Wierikx, C. Mai Van, T. A. Bogaard
Abstract:
Saltwater intrusion is a common problem in estuaries around the world, as it could hinder the freshwater supply of coastal zones. This problem is likely to grow due to climate change and sea-level rise. The influence of these factors on the saltwater intrusion was investigated for the Cai River in the Khanh Hoa province in Vietnam. In addition, the Cai River has high seasonal fluctuations in discharge, leading to increased saltwater intrusion during the dry season. Sea level rise, river discharge changes, river mouth widening and a proposed saltwater intrusion prevention dam can have influences on the saltwater intrusion but have not been quantified for the Cai River estuary. This research used both an analytical and numerical model to investigate the effect of the aforementioned factors. The analytical model was based on a model proposed by Savenije and was calibrated using limited in situ data. The numerical model was a 3D hydrodynamic model made using the Delft3D4 software. The analytical model and numerical model agreed with in situ data, mostly for tidally average data. Both models indicated a roughly similar dependence on discharge, also agreeing that this parameter had the most severe influence on the modeled saltwater intrusion. Especially for discharges below 10 m/s3, the saltwater was predicted to reach further than 10 km. In the models, both sea-level rise and river widening mainly resulted in salinity increments up to 3 kg/m3 in the middle part of the river. The predicted sea-level rise in 2070 was simulated to lead to an increase of 0.5 km in saltwater intrusion length. Furthermore, the effect of the saltwater intrusion dam seemed significant in the model used, but only for the highest position of the gate.Keywords: Cai River, hydraulic models, river discharge, saltwater intrusion, tidal barriers
Procedia PDF Downloads 11222173 Reliability Modeling on Drivers’ Decision during Yellow Phase
Authors: Sabyasachi Biswas, Indrajit Ghosh
Abstract:
The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.Keywords: decision-making decision, dilemma zone, surrogate model, Kriging
Procedia PDF Downloads 30922172 Inter Laboratory Comparison with Coordinate Measuring Machine and Uncertainty Analysis
Authors: Tugrul Torun, Ihsan A. Yuksel, Si̇nem On Aktan, Taha K. Vezi̇roglu
Abstract:
In the quality control processes in some industries, the usage of CMM has increased in recent years. Consequently, the CMMs play important roles in the acceptance or rejection of manufactured parts. For parts, it’s important to be able to make decisions by performing fast measurements. According to related technical drawing and its tolerances, measurement uncertainty should also be considered during assessment. Since uncertainty calculation is difficult and time-consuming, most companies ignore the uncertainty value in their routine inspection method. Although studies on measurement uncertainty have been carried out on CMM’s in recent years, there is still no applicable method for analyzing task-specific measurement uncertainty. There are some standard series for calculating measurement uncertainty (ISO-15530); it is not possible to use it in industrial measurement because it is not a practical method for standard measurement routine. In this study, the inter-laboratory comparison test has been carried out in the ROKETSAN A.Ş. with all dimensional inspection units. The reference part that we used is traceable to the national metrology institute TUBİTAK UME. Each unit has measured reference parts according to related technical drawings, and the task-specific measuring uncertainty has been calculated with related parameters. According to measurement results and uncertainty values, the En values have been calculated.Keywords: coordinate measurement, CMM, comparison, uncertainty
Procedia PDF Downloads 21122171 Delay-Dependent Passivity Analysis for Neural Networks with Time-Varying Delays
Authors: H. Y. Jung, Jing Wang, J. H. Park, Hao Shen
Abstract:
This brief addresses the passivity problem for neural networks with time-varying delays. The aim is focus on establishing the passivity condition of the considered neural networks.Keywords: neural networks, passivity analysis, time-varying delays, linear matrix inequality
Procedia PDF Downloads 57022170 Gender Effects in EEG-Based Functional Brain Networks
Authors: Mahdi Jalili
Abstract:
Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.Keywords: EEG, brain, functional networks, network science, graph theory
Procedia PDF Downloads 44322169 Seasonal Assessment of Snow Cover Dynamics Based on Aerospace Multispectral Data on Livingston Island, South Shetland Islands in Antarctica and on Svalbard in Arctic
Authors: Temenuzhka Spasova, Nadya Yanakieva
Abstract:
Snow modulates the hydrological cycle and influences the functioning of ecosystems and is a significant resource for many populations whose water is harvested from cold regions. Snow observations are important for validating climate models. The accumulation and rapid melt of snow are two of the most dynamical seasonal environmental changes on the Earth’s surface. The actuality of this research is related to the modern tendencies of the remote sensing application in the solution of problems of different nature in the ecological monitoring of the environment. The subject of the study is the dynamic during the different seasons on Livingstone Island, South Shetland Islands in Antarctica and on Svalbard in Arctic. The objects were analyzed and mapped according to the Еuropean Space Agency data (ESA), acquired by sensors Sentinel-1 SAR (Synthetic Aperture Radar), Sentinel 2 MSI and GIS. Results have been obtained for changes in snow coverage during the summer-winter transition and its dynamics in the two hemispheres. The data used is of high time-spatial resolution, which is an advantage when looking at the snow cover. The MSI images are with different spatial resolution at the Earth surface range. The changes of the environmental objects are shown with the SAR images and different processing approaches. The results clearly show that snow and snow melting can be best registered by using SAR data via hh- horizontal polarization. The effect of the researcher on aerospace data and technology enables us to obtain different digital models, structuring and analyzing results excluding the subjective factor. Because of the large extent of terrestrial snow coverage and the difficulties in obtaining ground measurements over cold regions, remote sensing and GIS represent an important tool for studying snow areas and properties from regional to global scales.Keywords: climate changes, GIS, remote sensing, SAR images, snow coverage
Procedia PDF Downloads 21922168 A Spatial Approach to Model Mortality Rates
Authors: Yin-Yee Leong, Jack C. Yue, Hsin-Chung Wang
Abstract:
Human longevity has been experiencing its largest increase since the end of World War II, and modeling the mortality rates is therefore often the focus of many studies. Among all mortality models, the Lee–Carter model is the most popular approach since it is fairly easy to use and has good accuracy in predicting mortality rates (e.g., for Japan and the USA). However, empirical studies from several countries have shown that the age parameters of the Lee–Carter model are not constant in time. Many modifications of the Lee–Carter model have been proposed to deal with this problem, including adding an extra cohort effect and adding another period effect. In this study, we propose a spatial modification and use clusters to explain why the age parameters of the Lee–Carter model are not constant. In spatial analysis, clusters are areas with unusually high or low mortality rates than their neighbors, where the “location” of mortality rates is measured by age and time, that is, a 2-dimensional coordinate. We use a popular cluster detection method—Spatial scan statistics, a local statistical test based on the likelihood ratio test to evaluate where there are locations with mortality rates that cannot be described well by the Lee–Carter model. We first use computer simulation to demonstrate that the cluster effect is a possible source causing the problem of the age parameters not being constant. Next, we show that adding the cluster effect can solve the non-constant problem. We also apply the proposed approach to mortality data from Japan, France, the USA, and Taiwan. The empirical results show that our approach has better-fitting results and smaller mean absolute percentage errors than the Lee–Carter model.Keywords: mortality improvement, Lee–Carter model, spatial statistics, cluster detection
Procedia PDF Downloads 17122167 Monte Carlo Simulation of X-Ray Spectra in Diagnostic Radiology and Mammography Using MCNP4C
Authors: Sahar Heidary, Ramin Ghasemi Shayan
Abstract:
The overall goal Monte Carlo N-atom radioactivity transference PC program (MCNP4C) was done for the regeneration of x-ray groups in diagnostic radiology and mammography. The electrons were transported till they slow down and stopover in the target. Both bremsstrahlung and characteristic x-ray creation were measured in this study. In this issue, the x-ray spectra forecast by several computational models recycled in the diagnostic radiology and mammography energy kind have been calculated by appraisal with dignified spectra and their outcome on the scheming of absorbed dose and effective dose (ED) told to the adult ORNL hermaphroditic phantom quantified. This comprises practical models (TASMIP and MASMIP), semi-practical models (X-rayb&m, X-raytbc, XCOMP, IPEM, Tucker et al., and Blough et al.), and Monte Carlo modeling (EGS4, ITS3.0, and MCNP4C). Images got consuming synchrotron radiation (SR) and both screen-film and the CR system were related with images of the similar trials attained with digital mammography equipment. In sight of the worthy feature of the effects gained, the CR system was used in two mammographic inspections with SR. For separately mammography unit, the capability acquiesced bilateral mediolateral oblique (MLO) and craniocaudal(CC) mammograms attained in a woman with fatty breasts and a woman with dense breasts. Referees planned the common groups and definite absences that managed to a choice to miscarry the part that formed the scientific imaginings.Keywords: mammography, monte carlo, effective dose, radiology
Procedia PDF Downloads 13122166 Centrifuge Modelling Approach on Sysmic Loading Analysis of Clay: A Geotechnical Study
Authors: Anthony Quansah, Tresor Ntaryamira, Shula Mushota
Abstract:
Models for geotechnical centrifuge testing are usually made from re-formed soil, allowing for comparisons with naturally occurring soil deposits. However, there is a fundamental omission in this process because the natural soil is deposited in layers creating a unique structure. Nonlinear dynamics of clay material deposit is an essential part of changing the attributes of ground movements when subjected to solid seismic loading, particularly when diverse intensification conduct of speeding up and relocation are considered. The paper portrays a review of axis shaking table tests and numerical recreations to explore the offshore clay deposits subjected to seismic loadings. These perceptions are accurately reenacted by DEEPSOIL with appropriate soil models and parameters reviewed from noteworthy centrifuge modeling researches. At that point, precise 1-D site reaction investigations are performed on both time and recurrence spaces. The outcomes uncover that for profound delicate clay is subjected to expansive quakes, noteworthy increasing speed lessening may happen close to the highest point of store because of soil nonlinearity and even neighborhood shear disappointment; nonetheless, huge enhancement of removal at low frequencies are normal in any case the forces of base movements, which proposes that for dislodging touchy seaward establishments and structures, such intensified low-recurrence relocation reaction will assume an essential part in seismic outline. This research shows centrifuge as a tool for creating a layered sample important for modelling true soil behaviour (such as permeability) which is not identical in all directions. Currently, there are limited methods for creating layered soil samples.Keywords: seismic analysis, layered modeling, terotechnology, finite element modeling
Procedia PDF Downloads 15622165 Visual Outcome After 360-Degree Retinectomy in Total Rhegmatogenous Retinal Detachment with Advanced Proliferative Vitreoretinopathy: A Case Series
Authors: Andriati Nadhilah Widyarini, Ezra Margareth
Abstract:
Introduction: Rhegmatogenous retinal detachment is a condition where there’s a break in the retina, which allows the vitreous to directly enter the subretinal space. Proliferative vitreoretinopathy (PVR) may develop due to this condition and can result in a new break, which could cause traction on the previously detached retina. Various methods of therapy can be done to treat this complication. Case: This case series involved 2 eyes of 2 patients who had total retinal detachment with advanced PVR. Pars plana vitrectomy was performed, and a 360-degree retinectomy procedure with perfluorocarbon liquid usage was done. This was followed by endo laser retinopexy to surround the border of retinectomy. 5000 cs silicone oil was used in 1 eye, whereas 12% of perfluoropropane gas was used in the other eye as a tamponade. These procedures were performed with meticulous attention to prevent any fluid from entering the subretinal space. Postoperative examination showed attachment of the retina and improvement of the patient’s visual acuity. Both eyes’ intraocular pressure was in the normal range. One eye developed retinal displacement, but no other complications occurred. Discussion: Rhegmatogenous retinal detachment with advanced PVR is a complex situation for vitreoretinal surgeons. PVR is characterized by the growth and migration of preretinal or subretinal membranes. PVR is the most common cause of retinal reattachment failure. A 360-degree retinectomy is an alternative surgical method to overcome this condition. Objectives of this procedure are releasing retinal traction caused by PVR, reducing the recurrence rate of PVR, and reattaching the retina to the pigment epithelial surface. Conclusion: 360-degree retinectomy provides satisfactory retinal reattachment and visual outcome improvement in rhegmatogenous retinal detachment with advanced PVR.Keywords: RRD, retinectomy, pars plana, advanced PVR
Procedia PDF Downloads 4722164 Synthesis of Polystyrene Grafted Filler Nanoparticles: Effect of Grafting on Mechanical Reinforcement
Authors: M. Khlifa, A. Youssef, A. F. Zaed, A. Kraft, V. Arrighi
Abstract:
A series of PS-nanoparticles were prepared by grafting PS from both aggregated silica and colloidally silica using atom-transfer radical polymerisation (ATRP). The mechanical behaviour of the nanocomposites have been examined by differential scanning calorimetry (DSC)and dynamic mechanical thermal analysis (DMTA).Keywords: ATRP, nanocomposites, polystyrene, reinforcement
Procedia PDF Downloads 62622163 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage
Authors: L. Ramirez, E. Guillén, J. Sánchez
Abstract:
Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.Keywords: analytics, telemedicine, internet of things, cloud computing
Procedia PDF Downloads 32522162 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent
Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar
Abstract:
Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics
Procedia PDF Downloads 38922161 High Performance Computing Enhancement of Agent-Based Economic Models
Authors: Amit Gill, Lalith Wijerathne, Sebastian Poledna
Abstract:
This research presents the details of the implementation of high performance computing (HPC) extension of agent-based economic models (ABEMs) to simulate hundreds of millions of heterogeneous agents. ABEMs offer an alternative approach to study the economy as a dynamic system of interacting heterogeneous agents, and are gaining popularity as an alternative to standard economic models. Over the last decade, ABEMs have been increasingly applied to study various problems related to monetary policy, bank regulations, etc. When it comes to predicting the effects of local economic disruptions, like major disasters, changes in policies, exogenous shocks, etc., on the economy of the country or the region, it is pertinent to study how the disruptions cascade through every single economic entity affecting its decisions and interactions, and eventually affect the economic macro parameters. However, such simulations with hundreds of millions of agents are hindered by the lack of HPC enhanced ABEMs. In order to address this, a scalable Distributed Memory Parallel (DMP) implementation of ABEMs has been developed using message passing interface (MPI). A balanced distribution of computational load among MPI-processes (i.e. CPU cores) of computer clusters while taking all the interactions among agents into account is a major challenge for scalable DMP implementations. Economic agents interact on several random graphs, some of which are centralized (e.g. credit networks, etc.) whereas others are dense with random links (e.g. consumption markets, etc.). The agents are partitioned into mutually-exclusive subsets based on a representative employer-employee interaction graph, while the remaining graphs are made available at a minimum communication cost. To minimize the number of communications among MPI processes, real-life solutions like the introduction of recruitment agencies, sales outlets, local banks, and local branches of government in each MPI-process, are adopted. Efficient communication among MPI-processes is achieved by combining MPI derived data types with the new features of the latest MPI functions. Most of the communications are overlapped with computations, thereby significantly reducing the communication overhead. The current implementation is capable of simulating a small open economy. As an example, a single time step of a 1:1 scale model of Austria (i.e. about 9 million inhabitants and 600,000 businesses) can be simulated in 15 seconds. The implementation is further being enhanced to simulate 1:1 model of Euro-zone (i.e. 322 million agents).Keywords: agent-based economic model, high performance computing, MPI-communication, MPI-process
Procedia PDF Downloads 12822160 A Method to Enhance the Accuracy of Digital Forensic in the Absence of Sufficient Evidence in Saudi Arabia
Authors: Fahad Alanazi, Andrew Jones
Abstract:
Digital forensics seeks to achieve the successful investigation of digital crimes through obtaining acceptable evidence from digital devices that can be presented in a court of law. Thus, the digital forensics investigation is normally performed through a number of phases in order to achieve the required level of accuracy in the investigation processes. Since 1984 there have been a number of models and frameworks developed to support the digital investigation processes. In this paper, we review a number of the investigation processes that have been produced throughout the years and introduce a proposed digital forensic model which is based on the scope of the Saudi Arabia investigation process. The proposed model has been integrated with existing models for the investigation processes and produced a new phase to deal with a situation where there is initially insufficient evidence.Keywords: digital forensics, process, metadata, Traceback, Sauid Arabia
Procedia PDF Downloads 359