Search results for: network hierarchy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5141

Search results for: network hierarchy

2711 Soil Salinity Mapping using Electromagnetic Induction Measurements

Authors: Fethi Bouksila, Nessrine Zemni, Fairouz Slama, Magnus Persson, Ronny Berndasson, Akissa Bahri

Abstract:

Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinization

Keywords: soil salinity map, electromagnetic induction, EM38, oasis, shallow watertable

Procedia PDF Downloads 187
2710 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 391
2709 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends

Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe

Abstract:

Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.

Keywords: port, Miami, network, cargo, cruise

Procedia PDF Downloads 79
2708 Social Enterprise Concept in Sustaining Agro-Industry Development in Indonesia: Case Study of Yourgood Social Business

Authors: Koko Iwan Agus Kurniawan, Dwi Purnomo, Anas Bunyamin, Arif Rahman Jaya

Abstract:

Fruters model is a concept of technopreneurship-based on empowerment, in which technology research results were designed to create high value-added products and implemented as a locomotive of collaborative empowerment; thereby, the impact was widely spread. This model still needs to be inventoried and validated concerning the influenced variables in the business growth process. Model validation accompanied by mapping was required to be applicable to Small Medium Enterprises (SMEs) agro-industry based on sustainable social business and existing real cases. This research explained the empowerment model of Yourgood, an SME, which emphasized on empowering the farmers/ breeders in farmers in rural areas, Cipageran, Cimahi, to housewives in urban areas, Bandung, West Java, Indonesia. This research reviewed some works of literature discussing the agro-industrial development associated with the empowerment and social business process and gained a unique business model picture with the social business platform as well. Through the mapped business model, there were several advantages such as technology acquisition, independence, capital generation, good investment growth, strengthening of collaboration, and improvement of social impacts that can be replicated on other businesses. This research used analytical-descriptive research method consisting of qualitative analysis with design thinking approach and that of quantitative with the AHP (Analytical Hierarchy Process). Based on the results, the development of the enterprise’s process was highly affected by supplying farmers with the score of 0.248 out of 1, being the most valuable for the existence of the enterprise. It was followed by university (0.178), supplying farmers (0.153), business actors (0.128), government (0.100), distributor (0.092), techno-preneurship laboratory (0.069), banking (0.033), and Non-Government Organization (NGO) (0.031).

Keywords: agro-industry, small medium enterprises, empowerment, design thinking, AHP, business model canvas, social business

Procedia PDF Downloads 169
2707 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management

Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li

Abstract:

Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.

Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification

Procedia PDF Downloads 251
2706 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers

Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash

Abstract:

Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.

Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system

Procedia PDF Downloads 419
2705 Lexical-Semantic Deficits in Sinhala Speaking Persons with Post Stroke Aphasia: Evidence from Single Word Auditory Comprehension Task

Authors: D. W. M. S. Samarathunga, Isuru Dharmarathne

Abstract:

In aphasia, various levels of symbolic language processing (semantics) are affected. It is shown that Persons with Aphasia (PWA) often experience more problems comprehending some categories of words than others. The study aimed to determine lexical semantic deficits seen in Auditory Comprehension (AC) and to describe lexical-semantic deficits across six selected word categories. Thirteen (n =13) persons diagnosed with post-stroke aphasia (PSA) were recruited to perform an AC task. Foods, objects, clothes, vehicles, body parts and animals were selected as the six categories. As the test stimuli, black and white line drawings were adapted from a picture set developed for semantic studies by Snodgrass and Vanderwart. A pilot study was conducted with five (n=5) healthy nonbrain damaged Sinhala speaking adults to decide familiarity and applicability of the test material. In the main study, participants were scored based on the accuracy and number of errors shown. The results indicate similar trends of lexical semantic deficits identified in the literature confirming ‘animals’ to be the easiest category to comprehend. Mann-Whitney U test was performed to determine the association between the selected variables and the participants’ performance on AC task. No statistical significance was found between the errors and the type of aphasia reflecting similar patterns described in aphasia literature in other languages. The current study indicates the presence of selectivity of lexical semantic deficits in AC and a hierarchy was developed based on the complexity of the categories to comprehend by Sinhala speaking PWA, which might be clinically beneficial when improving language skills of Sinhala speaking persons with post-stroke aphasia. However, further studies on aphasia should be conducted with larger samples for a longer period to study deficits in Sinhala and other Sri Lankan languages (Tamil and Malay).

Keywords: aphasia, auditory comprehension, selective lexical-semantic deficits, semantic categories

Procedia PDF Downloads 253
2704 Roadmap to a Bottom-Up Approach Creating Meaningful Contributions to Surgery in Low-Income Settings

Authors: Eva Degraeuwe, Margo Vandenheede, Nicholas Rennie, Jolien Braem, Miryam Serry, Frederik Berrevoet, Piet Pattyn, Wouter Willaert, InciSioN Belgium Consortium

Abstract:

Background: Worldwide, five billion people lack access to safe and affordable surgical care. An added 1.27 million surgeons, anesthesiologists, and obstetricians (SAO) are needed by 2030 to meet the target of 20 per 100,000 population and to reach the goal of the Lancet Commission on Global Surgery. A well-informed future generation exposed early on to the current challenges in global surgery (GS) is necessary to ensure a sustainable future. Methods: InciSioN, the International Student Surgical Network, is a non-profit organization by and for students, residents, and fellows in over 80 countries. InciSioN Belgium, one of the prominent national working groups, has made a vast progression and collaborated with other networks to fill the educational gap, stimulate advocacy efforts and increase interactions with the international network. This report describes a roadmap to achieve sustainable development and education within GS, with the example of InciSioN Belgium. Results: Since the establishment of the organization’s branch in 2019, it has hosted an educational workshop for first-year residents in surgery, engaging over 2500 participants, and established a recurring directing board of 15 members. In the year 2020-2021, InciSioN Ghent has organized three workshops combining educational and interactive sessions for future prime advocates and surgical candidates. InciSioN Belgium has set up a strong formal coalition with the Belgian Medical Students’ Association (BeMSA), with its own standing committee, reaching over 3000+ medical students annually. In 2021-2022, InciSioN Belgium broadened to a multidisciplinary approach, including dentistry and nursing students and graduates within workshops and research projects, leading to a member and exposure increase of 450%. This roadmap sets strategic goals and mechanisms for the GS community to achieve nationwide sustained improvements in the research and education of GS focused on future SAOs, in order to achieve the GS sustainable development goals. In the coming year, expansion is directed to a formal integration of GS into the medical curriculum and increased international advocacy whilst inspiring SAOs to integrate into GS in Belgium. Conclusion: The development and implementation of durable change for GS are necessary. The student organization InciSioN Belgium is growing and hopes to close the colossal gap in GS and inspire the growth of other branches while sharing the know-how of a student organization.

Keywords: advocacy, education, global surgery, InciSioN, student network

Procedia PDF Downloads 174
2703 Influence of Organizational Culture on Frequency of Disputes in Commercial Projects in Egypt: A Contractor’s Perspective

Authors: Omneya N. Mekhaimer, Elkhayam M. Dorra, A. Samer Ezeldin

Abstract:

Over the recent decades, studies on organizational culture have gained global attention in the business management literature, where it has been established that the cultural factors embedded in the organization have an implicit yet significant influence on the organization’s success. Unlike other industries, the construction industry is widely known to be operating in a dynamic and adversarial nature; considering the unique characteristics it denotes, thereby the level of disputes has propagated in the construction industry throughout the years. In the late 1990s, the International Council for Research and Innovation in Building and Construction (CIB) created a Task Group (TG-23), which later evolved in 2006 into a Working Commission W112, with a strategic objective to promote research in investigating the role and impact of culture in the construction industry worldwide. To that end, this paper aims to study the influence of organizational culture in the contractor’s organization on the frequency of disputes caused between the owner and the contractor that occur in commercial projects based in Egypt. This objective is achieved by using a quantitative approach through a survey questionnaire to explore the dominant cultural attributes that exist in the contractor’s organization based on the Competing Value Framework (CVF) theory, which classifies organizational culture into four main cultural types: (1) clan, (2) adhocracy, (3) market, and (4) hierarchy. Accordingly, the collected data are statistically analyzed using Statistical Package for Social Sciences (SPSS 28) software, whereby a correlation analysis using Pearson Correlation is carried out to assess the relationship between these variables and their statistical significance using the p-value. The results show that there is an influence of organizational culture attributes on the frequency of disputes whereby market culture is identified to be the most dominant organizational culture that is currently practiced in contractor’s organization, which consequently contributes to increasing the frequency of disputes in commercial projects. These findings suggest that alternative management practices should be adopted rather than the existing ones with an aim to minimize dispute occurrence.

Keywords: construction projects, correlation analysis, disputes, Egypt, organizational culture

Procedia PDF Downloads 107
2702 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: gendered grammar, misogynistic language, natural language processing, neural networks

Procedia PDF Downloads 120
2701 Introduction of Mass Rapid Transit System and Its Impact on Para-Transit

Authors: Khalil Ahmad Kakar

Abstract:

In developing countries increasing the automobile and low capacity public transport (para-transit) which are creating congestion, pollution, noise, and traffic accident are the most critical quandary. These issues are under the analysis of assessors to break down the puzzle and propose sustainable urban public transport system. Kabul city is one of those urban areas that the inhabitants are suffering from lack of tolerable and friendly public transport system. The city is the most-populous and overcrowded with around 4.5 million population. The para-transit is the only dominant public transit system with a very poor level of services and low capacity vehicles (6-20 passengers). Therefore, this study after detailed investigations suggests bus rapid transit (BRT) system in Kabul City. It is aimed to mitigate the role of informal transport and decreases congestion. The research covers three parts. In the first part, aggregated travel demand modelling (four-step) is applied to determine the number of users for para-transit and assesses BRT network based on higher passenger demand for public transport mode. In the second part, state preference (SP) survey and binary logit model are exerted to figure out the utility of existing para-transit mode and planned BRT system. Finally, the impact of predicted BRT system on para-transit is evaluated. The extracted outcome based on high travel demand suggests 10 km network for the proposed BRT system, which is originated from the district tenth and it is ended at Kabul International Airport. As well as, the result from the disaggregate travel mode-choice model, based on SP and logit model indicates that the predicted mass rapid transit system has higher utility with the significant impact regarding the reduction of para-transit.

Keywords: BRT, para-transit, travel demand modelling, Kabul City, logit model

Procedia PDF Downloads 183
2700 In silico Analysis towards Identification of Host-Microbe Interactions for Inflammatory Bowel Disease Linked to Reactive Arthritis

Authors: Anukriti Verma, Bhawna Rathi, Shivani Sharda

Abstract:

Reactive Arthritis (ReA) is a disorder that causes inflammation in joints due to certain infections at distant sites in the body. ReA begins with stiffness, pain, and inflammation in these areas especially the ankles, knees, and hips. It gradually causes several complications such as conjunctivitis in the eyes, skin lesions in hand, feet and nails and ulcers in the mouth. Nowadays the diagnosis of ReA is based upon a differential diagnosis pattern. The parameters for differentiating ReA from other similar disorders include physical examination, history of the patient and a high index of suspicion. There are no standard lab tests or markers available for ReA hence the early diagnosis of ReA becomes difficult and the chronicity of disease increases with time. It is reported that enteric disorders such as Inflammatory Bowel Disease (IBD) that is inflammation in gastrointestinal tract namely Crohn’s Disease (CD) and Ulcerative Colitis (UC) are reported to be linked with ReA. Several microorganisms are found such as Campylobacter, Salmonella, Shigella and Yersinia causing IBD leading to ReA. The aim of our study was to perform the in-silico analysis in order to find interactions between microorganisms and human host causing IBD leading to ReA. A systems biology approach for metabolic network reconstruction and simulation was used to find the essential genes of the reported microorganisms. Interactomics study was used to find the interactions between the pathogen genes and human host. Genes such as nhaA (pathogen), dpyD (human), nagK (human) and kynU (human) were obtained that were analysed further using the functional, pathway and network analysis. These genes can be used as putative drug targets and biomarkers in future for early diagnosis, prevention, and treatment of IBD leading to ReA.

Keywords: drug targets, inflammatory bowel disease, reactive arthritis, systems biology

Procedia PDF Downloads 275
2699 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
2698 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability

Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi

Abstract:

The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.

Keywords: almost strictly positive real (ASPR), doubly-fed induction generator (DIFG), simple adaptive control (SAC), subsynchronous oscillations, wind turbine

Procedia PDF Downloads 377
2697 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 727
2696 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain

Authors: M. Pushparani, A. Sagaya

Abstract:

Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.

Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems

Procedia PDF Downloads 285
2695 An Integrated HCV Testing Model as a Method to Improve Identification and Linkage to Care in a Network of Community Health Centers in Philadelphia, PA

Authors: Catelyn Coyle, Helena Kwakwa

Abstract:

Objective: As novel and better tolerated therapies become available, effective HCV testing and care models become increasingly necessary to not only identify individuals with active infection but also link them to HCV providers for medical evaluation and treatment. Our aim is to describe an effective HCV testing and linkage to care model piloted in a network of five community health centers located in Philadelphia, PA. Methods: In October 2012, National Nursing Centers Consortium piloted a routine opt-out HCV testing model in a network of community health centers, one of which treats HCV, HIV, and co-infected patients. Key aspects of the model were medical assistant initiated testing, the use of laboratory-based reflex test technology, and electronic medical record modifications to prompt, track, report and facilitate payment of test costs. Universal testing on all adult patients was implemented at health centers serving patients at high-risk for HCV. The other sites integrated high-risk based testing, where patients meeting one or more of the CDC testing recommendation risk factors or had a history of homelessness were eligible for HCV testing. Mid-course adjustments included the integration of dual HIV testing, development of a linkage to care coordinator position to facilitate the transition of HIV and/or HCV-positive patients from primary to specialist care, and the transition to universal HCV testing across all testing sites. Results: From October 2012 to June 2015, the health centers performed 7,730 HCV tests and identified 886 (11.5%) patients with a positive HCV-antibody test. Of those with positive HCV-antibody tests, 838 (94.6%) had an HCV-RNA confirmatory test and 590 (70.4%) progressed to current HCV infection (overall prevalence=7.6%); 524 (88.8%) received their RNA-positive test result; 429 (72.7%) were referred to an HCV care specialist and 271 (45.9%) were seen by the HCV care specialist. The best linkage to care results were seen at the test and treat the site, where of the 333 patients were current HCV infection, 175 (52.6%) were seen by an HCV care specialist. Of the patients with active HCV infection, 349 (59.2%) were unaware of their HCV-positive status at the time of diagnosis. Since the integration of dual HCV/HIV testing in September 2013, 9,506 HIV tests were performed, 85 (0.9%) patients had positive HIV tests, 81 (95.3%) received their confirmed HIV test result and 77 (90.6%) were linked to HIV care. Dual HCV/HIV testing increased the number of HCV tests performed by 362 between the 9 months preceding dual testing and first 9 months after dual testing integration, representing a 23.7% increment. Conclusion: Our HCV testing model shows that integrated routine testing and linkage to care is feasible and improved detection and linkage to care in a primary care setting. We found that prevalence of current HCV infection was higher than that seen in locally in Philadelphia and nationwide. Intensive linkage services can increase the number of patients who successfully navigate the HCV treatment cascade. The linkage to care coordinator position is an important position that acts as a trusted intermediary for patients being linked to care.

Keywords: HCV, routine testing, linkage to care, community health centers

Procedia PDF Downloads 357
2694 Survey of Communication Technologies for IoT Deployments in Developing Regions

Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen

Abstract:

The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them. A detailed review of each of the list of papers selected for the study is included in section III of this document. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs), as summarized in Table 1, are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The prevailing challenges of the different architectures are discussed and summarized in Table 3 of the IV section, where the main problem is the obstruction of communication paths by buildings, trees, hills, etc.

Keywords: communication technologies, environmental monitoring, Internet of Things, IoT deployment challenges

Procedia PDF Downloads 85
2693 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite

Authors: Nadir Atayev, Mehman Hasanov

Abstract:

Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.

Keywords: cubesat, free space optics, nano satellite, optical laser communication.

Procedia PDF Downloads 89
2692 Some Results on Cluster Synchronization

Authors: Shahed Vahedi, Mohd Salmi Md Noorani

Abstract:

This paper investigates cluster synchronization phenomena between community networks. We focus on the situation where a variety of dynamics occur in the clusters. In particular, we show that different synchronization states simultaneously occur between the networks. The controller is designed having an adaptive control gain, and theoretical results are derived via Lyapunov stability. Simulations on well-known dynamical systems are provided to elucidate our results.

Keywords: cluster synchronization, adaptive control, community network, simulation

Procedia PDF Downloads 476
2691 Identification of Suitable Rainwater Harvesting Sites Using Geospatial Techniques with AHP in Chacha Watershed, Jemma Sub-Basin Upper Blue Nile, Ethiopia

Authors: Abrha Ybeyn Gebremedhn, Yitea Seneshaw Getahun, Alebachew Shumye Moges, Fikrey Tesfay

Abstract:

Rainfed agriculture in Ethiopia has failed to produce enough food, to achieve the increasing demand for food. Pinpointing the appropriate site for rainwater harvesting (RWH) have a substantial contribution to increasing the available water and enhancing agricultural productivity. The current study related to the identification of the potential RWH sites was conducted at the Chacha watershed central highlands of Ethiopia which is endowed with rugged topography. The Geographic Information System with Analytical Hierarchy Process was used to generate the different maps for identifying appropriate sites for RWH. In this study, 11 factors that determine the RWH locations including slope, soil texture, runoff depth, land cover type, annual average rainfall, drainage density, lineament intensity, hydrologic soil group, antecedent moisture content, and distance to the roads were considered. The overall analyzed result shows that 10.50%, 71.10%, 17.90%, and 0.50% of the areas were found under highly, moderately, marginally suitable, and unsuitable areas for RWH, respectively. The RWH site selection was found highly dependent on a slope, soil texture, and runoff depth; moderately dependent on drainage density, annual average rainfall, and land use land cover; but less dependent on the other factors. The highly suitable areas for rainwater harvesting expansion are lands having a flat topography with a soil textural class of high-water holding capacity that can produce high runoff depth. The application of this study could be a baseline for planners and decision-makers and support any strategy adoption for appropriate RWH site selection.

Keywords: runoff depth, antecedent moisture condition, AHP, weighted overlay, water resource

Procedia PDF Downloads 53
2690 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 88
2689 Combining in vitro Protein Expression with AlphaLISA Technology to Study Protein-Protein Interaction

Authors: Shayli Varasteh Moradi, Wayne A. Johnston, Dejan Gagoski, Kirill Alexandrov

Abstract:

The demand for a rapid and more efficient technique to identify protein-protein interaction particularly in the areas of therapeutics and diagnostics development is growing. The method described here is a rapid in vitro protein-protein interaction analysis approach based on AlphaLISA technology combined with Leishmania tarentolae cell-free protein production (LTE) system. Cell-free protein synthesis allows the rapid production of recombinant proteins in a multiplexed format. Among available in vitro expression systems, LTE offers several advantages over other eukaryotic cell-free systems. It is based on a fast growing fermentable organism that is inexpensive in cultivation and lysate production. High integrity of proteins produced in this system and the ability to co-express multiple proteins makes it a desirable method for screening protein interactions. Following the translation of protein pairs in LTE system, the physical interaction between proteins of interests is analysed by AlphaLISA assay. The assay is performed using unpurified in vitro translation reaction and therefore can be readily multiplexed. This approach can be used in various research applications such as epitope mapping, antigen-antibody analysis and protein interaction network mapping. The intra-viral protein interaction network of Zika virus was studied using the developed technique. The viral proteins were co-expressed pair-wise in LTE and all possible interactions among viral proteins were tested using AlphaLISA. The assay resulted to the identification of 54 intra-viral protein-protein interactions from which 19 binary interactions were found to be novel. The presented technique provides a powerful tool for rapid analysis of protein-protein interaction with high sensitivity and throughput.

Keywords: AlphaLISA technology, cell-free protein expression, epitope mapping, Leishmania tarentolae, protein-protein interaction

Procedia PDF Downloads 237
2688 Community Development and Empowerment

Authors: Shahin Marjan Nanaje

Abstract:

The present century is the time that social worker faced complicated issues in the area of their work. All the focus are on bringing change in the life of those that they live in margin or live in poverty became the cause that we have forgotten to look at ourselves and start to bring change in the way we address issues. It seems that there is new area of needs that social worker should response to that. In need of dialogue and collaboration, to address the issues and needs of community both individually and as a group we need to have new method of dialogue as tools to reach to collaboration. The social worker as link between community, organization and government play multiple roles. They need to focus in the area of communication with new ability, to transfer all the narration of the community to those organization and government and vice versa. It is not relate only in language but it is about changing dialogue. Migration for survival by job seeker to the big cities created its own issues and difficulty and therefore created new need. Collaboration is not only requiring between government sector and non-government sectors but also it could be in new way between government, non-government and communities. To reach to this collaboration we need healthy, productive and meaningful dialogue. In this new collaboration there will not be any hierarchy between members. The methodology that selected by researcher were focusing on observation at the first place, and used questionnaire in the second place. Duration of the research was three months and included home visits, group discussion and using communal narrations which helped to bring enough evidence to understand real need of community. The sample selected randomly was included 70 immigrant families which work as sweepers in the slum community in Bangalore, Karnataka. The result reveals that there is a gap between what a community is and what organizations, government and members of society apart from this community think about them. Consequently, it is learnt that to supply any service or bring any change to slum community, we need to apply new skill to have dialogue and understand each other before providing any services. Also to bring change in the life of those marginal groups at large we need to have collaboration as their challenges are collective and need to address by different group and collaboration will be necessary. The outcome of research helped researcher to see the area of need for new method of dialogue and collaboration as well as a framework for collaboration and dialogue that were main focus of the paper. The researcher used observation experience out of ten NGO’s and their activities to create framework for dialogue and collaboration.

Keywords: collaboration, dialogue, community development, empowerment

Procedia PDF Downloads 588
2687 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics

Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez

Abstract:

In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.

Keywords: data analysis, emotional domotics, performance improvement, neural network

Procedia PDF Downloads 140
2686 Managing Risks of Civil War: Accounting Practices in Egyptian Households

Authors: Sumohon Matilal, Neveen Abdelrehim

Abstract:

The purpose of this study is to examine the way households manage the risks of civil war, using the calculative practices of accounting as a lens. As is the case with other social phenomena, accounting serves as a conduit for attributing values and rationales to crisis and in the process makes it visible and calculable. Our focus, in particular, is on the dialogue facilitated by the numerical logic of accounting between the householder and a crisis scenario, such as civil war. In other words, we seek to study how the risk of war is rationalized through household budgets, income and expenditure statements etc. and how such accounting constructs in turn shape attitudes toward earnings and spending in a wartime economy. The existing literature on war and accounting demonstrates how an accounting logic can have potentially destabilising consequences and how it is used to legitimise war. However, very few scholars have looked at the way accounting constructs are used to internalise the effects of war in an average household and the behavioural consequences that arise from such accounting. Relatedly, scholars studying household accounting have mostly focussed on the links between gender and hierarchy in relation to managing the financial affairs. Few have focused on the role of household accounts in a crisis scenario. This study intends to fill this gap. We draw upon Egypt, a country in the middle of civil war since 2011 for our purpose. We intend to carry out 15-20 semi-structured interviews with middle income households in Cairo that maintain some form of accounts to study the following issues: 1. How do people internalise the risks of civil war? What kind of accounting constructs do they use (this may take the form of simple budgets, income-expenditure notes/statements on a periodic basis, spreadsheets etc.) 2. How has civil war affected household expenditure? Are people spending more/less than before? 3. How has civil war affected household income? Are people finding it difficult/easy to survive on the pre-war income? 4. How is such accounting affecting household behaviour towards earnings and expenditure? Are families prioritising expenditure on necessities alone? Are they refraining from indulging in luxuries? Are family members doing two or three jobs to cope with difficult times? Are families increasingly turning toward borrowing? Is credit available? From whom?

Keywords: risk, accounting, war, crisis

Procedia PDF Downloads 201
2685 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 82
2684 Everyday Interactions among Imprisoned Sex Offenders: A Qualitative Study within the 'Due Palazzi' Prison in Padua

Authors: Matteo Mazzucato, Elena Faccio, Antonio Iudici

Abstract:

Prison is a social reality constructed by everyday interactions between an inmate, other social actors (cellmates, prison officers, educationalists and psychologists or other detainees) and the external world which participates in this complex construction through the social discourses on prison reality and its problems. Being a detainee means performing a self dealing with processes of stereotypization, attribution of a social role and prejudices assigned by various interlocutors and depending on what kind of crime one has been convicted of. Among all inmates, sex offenders are the ones who risk more to be socially condemned beyond a legal sentence since they have committed one of the most hated and disapproved crime. Regarding this, prison has to be considered as a critical context in which all community expectations and beliefs are converged: for common sense, rapists and child molesters are dangerous people who have to be stigmatized, punished and isolated. Furthermore, other detainees share a code of conduct by which the ‘sex offender’ is collocated at the lowest level of the social hierarchy of the prison. The penitentiary administration too defines this kind of detainee as a ‘vulnerable person to protect’ while prison staff considers him as a particular inmate who has to be treated and definitely changed. Considering all the complexities connected with being imprisoned as a sex offender, our research aimed at exploring how people convicted of sex crimes are called upon to manage all these hetero-narrations about their selves. Set this goal, textual data retrieved from this qualitative research show that sex offenders tend to not face the stigma assigned to them. They are rather used to minimize the story telling about their selves and costruct alternative biographies to be shared with other inmates. Managing narrations about their selves in this way permits to distance them from all the threats perceived living together with other detainees but it blocks sex offenders’ ri-signification of their offences during prison treatment. Given these results, prison administration should develop activities in order to create fields of interaction between detainees where experiencing new versions of their selves spendable even in external social situations. Regarding this it’s important to re-consider prison as part of the community and the sex offenders as a member of it.

Keywords: interactions, qualitative research, prison reality, sex offender

Procedia PDF Downloads 220
2683 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 260
2682 Detection of Resistive Faults in Medium Voltage Overhead Feeders

Authors: Mubarak Suliman, Mohamed Hassan

Abstract:

Detection of downed conductors occurring with high fault resistance (reaching kilo-ohms) has always been a challenge, especially in countries like Saudi Arabia, on which earth resistivity is very high in general (reaching more than 1000 Ω-meter). The new approaches for the detection of resistive and high impedance faults are based on the analysis of the fault current waveform. These methods are still under research and development, and they are currently lacking security and dependability. The other approach is communication-based solutions which depends on voltage measurement at the end of overhead line branches and communicate the measured signals to substation feeder relay or a central control center. However, such a detection method is costly and depends on the availability of communication medium and infrastructure. The main objective of this research is to utilize the available standard protection schemes to increase the probability of detection of downed conductors occurring with a low magnitude of fault currents and at the same time avoiding unwanted tripping in healthy conditions and feeders. By specifying the operating region of the faulty feeder, use of tripping curve for discrimination between faulty and healthy feeders, and with proper selection of core balance current transformer (CBCT) and voltage transformers with fewer measurement errors, it is possible to set the pick-up of sensitive earth fault current to minimum values of few amps (i.e., Pick-up Settings = 3 A or 4 A, …) for the detection of earth faults with fault resistance more than (1 - 2 kΩ) for 13.8kV overhead network and more than (3-4) kΩ fault resistance in 33kV overhead network. By implementation of the outcomes of this study, the probability of detection of downed conductors is increased by the utilization of existing schemes (i.e., Directional Sensitive Earth Fault Protection).

Keywords: sensitive earth fault, zero sequence current, grounded system, resistive fault detection, healthy feeder

Procedia PDF Downloads 115