Search results for: electronic intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3275

Search results for: electronic intelligence

845 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 32
844 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok

Authors: Noriyuki Suyama

Abstract:

The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.

Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior

Procedia PDF Downloads 89
843 Imaging 255nm Tungsten Thin Film Adhesion with Picosecond Ultrasonics

Authors: A. Abbas, X. Tridon, J. Michelon

Abstract:

In the electronic or in the photovoltaic industries, components are made from wafers which are stacks of thin film layers of a few nanometers to serval micrometers thickness. Early evaluation of the bounding quality between different layers of a wafer is one of the challenges of these industries to avoid dysfunction of their final products. Traditional pump-probe experiments, which have been developed in the 70’s, give a partial solution to this problematic but with a non-negligible drawback. In fact, on one hand, these setups can generate and detect ultra-high ultrasounds frequencies which can be used to evaluate the adhesion quality of wafer layers. But, on the other hand, because of the quiet long acquisition time they need to perform one measurement, these setups remain shut in punctual measurement to evaluate global sample quality. This last point can lead to bad interpretation of the sample quality parameters, especially in the case of inhomogeneous samples. Asynchronous Optical Sampling (ASOPS) systems can perform sample characterization with picosecond acoustics up to 106 times faster than traditional pump-probe setups. This last point allows picosecond ultrasonic to unlock the acoustic imaging field at the nanometric scale to detect inhomogeneities regarding sample mechanical properties. This fact will be illustrated by presenting an image of the measured acoustical reflection coefficients obtained by mapping, with an ASOPS setup, a 255nm thin-film tungsten layer deposited on a silicone substrate. Interpretation of the coefficient reflection in terms of bounding quality adhesion will also be exposed. Origin of zones which exhibit good and bad quality bounding will be discussed.

Keywords: adhesion, picosecond ultrasonics, pump-probe, thin film

Procedia PDF Downloads 159
842 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 278
841 Patient Tracking Challenges During Disasters and Emergencies

Authors: Mohammad H. Yarmohammadian, Reza Safdari, Mahmoud Keyvanara, Nahid Tavakoli

Abstract:

One of the greatest challenges in disaster and emergencies is patient tracking. The concept of tracking has different denotations. One of the meanings refers to tracking patients’ physical locations and the other meaning refers to tracking patients ‘medical needs during emergency services. The main goal of patient tracking is to provide patient safety during disaster and emergencies and manage the flow of patient and information in different locations. In most of cases, there are not sufficient and accurate data regarding the number of injuries, medical conditions and their accommodation and transference. The objective of the present study is to survey on patient tracking issue in natural disaster and emergencies. Methods: This was a narrative study in which the population was E-Journals and the electronic database such as PubMed, Proquest, Science direct, Elsevier, etc. Data was gathered by Extraction Form. All data were analyzed via content analysis. Results: In many countries there is no appropriate and rapid method for tracking patients and transferring victims after the occurrence of incidents. The absence of reliable data of patients’ transference and accommodation, even in the initial hours and days after the occurrence of disasters, and coordination for appropriate resource allocation, have faced challenges for evaluating needs and services challenges. Currently, most of emergency services are based on paper systems, while these systems do not act appropriately in great disasters and incidents and this issue causes information loss. Conclusion: Patient tracking system should update the location of patients or evacuees and information related to their states. Patients’ information should be accessible for authorized users to continue their treatment, accommodation and transference. Also it should include timely information of patients’ location as soon as they arrive somewhere and leave therein such a way that health care professionals can be able to provide patients’ proper medical treatment.

Keywords: patient tracking, challenges, disaster, emergency

Procedia PDF Downloads 304
840 The Impact of a Lower Health Literacy in the Self-Management of Patients with a Multiple Sclerosis: A Literature Review

Authors: Helga Martins, Idália Matias

Abstract:

Background:Multiple sclerosis is a chronic inflammatory autoimmune demyelinating disease that affects young adults. Multiple sclerosis is a chronic disease in which the patient needs to self-manage the disease and the therapeutic regimen. Consequently, the promotion of health literacy assumes a relevant role for the accessibility, understanding, and use of information in order to promote and maintain the health of patients with multiple sclerosis. Aim: To determine the impact of lower health literacy in the self-management of patients with a multiple sclerosis. Methods: Literature review based on a search on the following electronic databases: CINAHLand MEDLINE; comprising all results published between September 2016 and September 2021. The search strategy was: (“Self-management [MeSH]” AND “Multiple sclerosis[MeSH]”AND “Health literacy[MeSH]”). The inclusion criteria were: original papers reporting about multiple sclerosis patients; participants with age above 18 years old, written in English, Spanish, French, or Portuguese. Two independent reviewers have done the screening and analysis of the results. 38 citations were identified, and after duplicates removal, a total of 25 results were screened; 14 were included after the application of the inclusion criteria. Results: The lower health literacy in the self-management of patients with a multiple sclerosis is related toless healthy choices, riskier health behavior, poor health outcomes, decreased of adhering to the therapeutic regimen after discharge, less self-management of chronic illness, and increased the time of hospitalization. Conclusion: Inadequate levels of health literacy contribute to poor health outcomes, unsuccessful self-management of chronic illness, and inadequate adherence to the therapeutic regimen. Therefore, health literacy is important for health policy and the healthcare services, as it can be understood as a mediator of self-management of multiple sclerosis disease.

Keywords: health literacy, multiple sclerosis, review, self-management

Procedia PDF Downloads 153
839 Sol-Gel Coated Fabric for Controlled Release of Mosquito Repellent

Authors: Bhaskar M. Murai, Neeraj Banchor, Ishveen Chabbra, Madhusudhan Nadgir, S. Vidhya

Abstract:

Sol-gel technology combined with electronics and biochemistry helps to overcome the problems caused by mosquitoes by developing a portable, low-cost device which enables controlled release of trapped compound inside it. It is a wet-chemical technique which is used primarily for fabrication of silicate gel which is usually allowed to dry as per requirement. The outcome is solid rock hard material which is porous and has lots of applications in different fields. Taking porosity as a key factor, allethrin a naturally occurring synthetic compound with molecular mass 302.40 was entrapped inside the sol-gel matrix as a dopant. Allethrin is commonly used as an insecticide and is a key ingredient in commercially available mosquitoes repellent in Asian and subtropical countries. It has low toxicity for humans and birds, and are used in many household insecticides such as RAID as well as mosquito coils. They are however highly toxic to fish and bees. Insects subject to its exposure become paralyzed (nervous system effect) before dying. They are also used as an ultra-low volume spray for outdoor mosquito control. Therefore, there is a need for controlled release of allethrin in the environment. For controlled release of allethrin from sol-gel matrix, its (allethrin) we utilized temperature based controlled evaporation through porous sol-gel. Different types of fabric like cotton, Terri-cotton, polyester, surgical cap, knee-cap etc are studied and the best with maximum absorption capacity is selected to hold the sol-gel matrix with maximum quantity. For sol-gel coating 2 x 2cm cloth pieces are dipped in sol-gel solution for 10 minutes and by calculating the weight difference we concluded that Terri cotton is best suitable for our project. An electronic circuit with heating plate is developed in to test the controlled release of compound. An oscillatory circuit is used to produce the required heat.

Keywords: sol-gel, allethrin, TEOS, biochemistry

Procedia PDF Downloads 375
838 Efficient Chess Board Representation: A Space-Efficient Protocol

Authors: Raghava Dhanya, Shashank S.

Abstract:

This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.

Keywords: chess, optimisation, encoding, bit manipulation

Procedia PDF Downloads 50
837 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality

Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya

Abstract:

Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.

Keywords: augmented reality, data analytics, catch room, marketing and sales

Procedia PDF Downloads 237
836 Synthesis of Fullerene Nanorods for Detection of Ethylparaben an Endocrine Disruptor in Cosmetics

Authors: Jahangir Ahmad Rather, Emad A. Khudaish, Ahsanulhaq Qurashi, Palanisamy Kannan

Abstract:

Chemical modification and assembling of fullerenes are fundamentally important for the application of fullerenes as functional molecules and in molecular devices and organic electronic devices. We have synthesized fullerene nanorods C60NRs conjugate via liquid-liquid interface and the synthesized C60NRs was characterized by FTIR spectroscopy, field emission electron microscopy (FESEM) and X-ray diffraction techniques. The C60NRs were immobilized on glassy carbon electrode via surface bound diazonium salts as an impact strategy. This method involves electrografting of p–nitrophenyl to give GCE–Ph–NO2 and then the terminal nitro-group was chemically reduced to GCE–Ph–NH2 in a presence of sodium borohydride/gold–polyaniline nanocomposite (NaBH4/Au–PANI). The Au–PANI composite was synthesized and characterized by FTIR, UV-vis, SEM and EDX techniques. The C60NRs were immobilized on GCE–Ph–NH2 via amination reaction which involves N-H addition across a π-bond on [60] fullerene. The immobilized C60NRs/GCE was subjected to electrochemical reduction in 1.0 M KOH to yield ERC60NRs/GCE sensor. The developed sensor shows high electrocatalytic activity for the detection of ethylparaben (EP) over a concentration range from 0.01 to 0.52 µM with a detection limit (LOD) 3.8 nM. The amount of EP present in the nourishing repair cream (OlAY®) was determined by standard addition method at the developed ERC60NRs/GCE sensor. The total concentration of EP was found to be 0.011 µM (0.1%) and is within the permissible limit of 0.19 % EP in cosmetics according to the European scientific committee (SCCS) on consumer safety on 22 March 2011 (SCCS/1348/11).

Keywords: diazonium salt reduction, ethylparaben (EP), endocrine disruptor, fullerene nanorods (C60NRs), gold–polyaniline nanocomposite (Au–PANI)

Procedia PDF Downloads 233
835 The Associations between Ankle and Brachial Systolic Blood Pressures with Obesity Parameters

Authors: Matei Tudor Berceanu, Hema Viswambharan, Kirti Kain, Chew Weng Cheng

Abstract:

Background - Obesity parameters, particularly visceral obesity as measured by the waist-to-height ratio (WHtR), correlate with insulin resistance. The metabolic microvascular changes associated with insulin resistance causes increased peripheral arteriolar resistance primarily to the lower limb vessels. We hypothesize that ankle systolic blood pressures (SBPs) are more significantly associated with visceral obesity than brachial SBPs. Methods - 1098 adults enriched in south Asians or Europeans with diabetes (T2DM) were recruited from a primary care practice in West Yorkshire. Their medical histories, including T2DM and cardiovascular disease (CVD) status, were gathered from an electronic database. The brachial, dorsalis pedis, and posterior tibial SBPs were measured using a Doppler machine. Their body mass index (BMI) and WHtR were calculated after measuring their weight, height, and waist circumference. Linear regressions were performed between the 6 SBPs and both obesity parameters, after adjusting for covariates. Results - Generally, the left posterior tibial SBP (P=4.559*10⁻¹⁵) and right posterior tibial SBP (P=1.114* 10⁻¹³ ) are the pressures most significantly associated with the BMI, as well as in south Asians (P < 0.001) and Europeans (P < 0.001) specifically. In South Asians, although the left (P=0.032) and right brachial SBP (P=0.045) were associated to the WHtR, the left posterior tibial SBP (P=0.023) showed the strongest association. Conclusion - Regardless of ethnicity, ankle SBPs are more significantly associated with generalized obesity than brachial SBPs, suggesting their screening potential for screening for early detection of T2DM and CVD. A combination of ankle SBPs with WHtR is proposed in south Asians.

Keywords: ankle blood pressures, body mass index, insulin resistance, waist-to-height-ratio

Procedia PDF Downloads 139
834 Double Gaussian Distribution of Nonhomogeneous Barrier Height in Metal/n-type GaN Schottky Contacts

Authors: M. Mamor

Abstract:

GaN-based compounds have attracted much interest in the fabrication of high-power, high speed and high-frequency electronic devices. Other examples of GaN-based applications are blue and ultraviolet (UV) light-emitting diodes (LEDs). All these devices require high-quality ohmic and Schottky contacts. Gaining an understanding of the electrical characteristics of metal/GaN contacts is of fundamental and technological importance for developing GaN-based devices. In this work, the barrier characteristics of Pt and Pd Schottky contacts on n-type GaN were studied using temperature-dependent forward current-voltage (I-V) measurements over a wide temperature range 80–400 K. Our results show that the barrier height and ideality factor, extracted from the forward I-V characteristics based on thermionic emission (TE) model, exhibit an abnormal dependence with temperature; i.e., by increasing temperature, the barrier height increases whereas the ideality factor decreases. This abnormal behavior has been explained based on the TE model by considering the presence of double Gaussian distribution (GD) of nonhomogeneous barrier height at the metal/GaN interface. However, in the high-temperature range (160-400 K), the extracted value for the effective Richardson constant A* based on the barrier inhomogeneity (BHi) model is found in fair agreement with the theoretically predicted value of about 26.9 A.cm-2 K-2 for n-type GaN. This result indicates that in this temperature range, the conduction current transport is dominated by the thermionic emission mode. On the other hand, in the lower temperature range (80-160 K), the corresponding effective Richardson constant value according to the BHi model is lower than the theoretical value, suggesting the presence of other current transport, such as tunneling-assisted mode at lower temperatures.

Keywords: Schottky diodes, inhomogeneous barrier height, GaN semiconductors, Schottky barrier heights

Procedia PDF Downloads 55
833 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms

Authors: Bliss Singhal

Abstract:

Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.

Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression

Procedia PDF Downloads 81
832 Numerical Study of Fluid Flow and Heat Transfer in Microchannel with Thin Obstacles

Authors: Malorzata Kmiotek, Anna Kucaba-Pietal, Robert Smusz

Abstract:

Due to the miniaturisation process, in many technical devices, microchannels are used in cooling systems. Because of the small size of microchannels, the flow inside is laminar, which caused a slow heat exchange. In order to intensify the heat exchange, the flow must be disturbed, for example, by introducing obstacles. We present results on the influence of a thin obstacle, placed on microchannel wall, on the fluid and heat flow in the aspect of their use by constructors of heat exchangers. The obstacle is called 'thin' when its geometrical parameter (o=w/h, w- width, h - height of the obstacle) satisfies inequality: o < 0.5. In this work, we report numerical results on heat and mass transfer in the microchannels of 400 micrometer height (H - height of the microchannel), where thin obstacles are immersed on the walls, to disturb the flow. The Reynolds number of the flow in microchannel varies between 20 and 200 and is typical for the flow in micro heat exchangers. The equations describing the fluid and heat flows in microchannels were solved numerically by using the finite element method with an application of CFD&FSI package of ADINA R&D, Inc. 9.4 solver. In the case of flows in the microchannels with sequences of thin rectangular obstacles placed on the bottom and the top wall of a microchannel, the influence of distances s (s is the distance between two thin obstacles) and heights of obstacles on the fluid and heat transfer was investigated. Thermal and flow conditions of the application area of microchannels in electronic cooling systems, i.e., wall temperature of 60 °C, the fluid temperature of 20°C were used to solve equations. Additionally, the distance s between the thin obstacles in microchannels as a multiple of the amount of the channel height was determined. Results show that placing thin obstacles on microchannel walls increase the length of recirculation zones of the flow and improves the heat transfer.

Keywords: Finite Element Method, heat transfer, mechanical engineering, microchannel

Procedia PDF Downloads 134
831 Forensic Applications of Quantum Dots

Authors: Samaneh Nabavi, Hadi Shirzad, Somayeh Khanjani, Shirin Jalili

Abstract:

Quantum dots (QDs) are semiconductor nanocrystals that exhibit intrinsic optical and electrical properties that are size dependent due to the quantum confinement effect. Quantum confinement is brought about by the fact that in bulk semiconductor material the electronic structure consists of continuous bands, and that as the size of the semiconductor material decreases its radius becomes less than the Bohr exciton radius (the distance between the electron and electron-hole) and discrete energy levels result. As a result QDs have a broad absorption range and a narrow emission which correlates to the band gap energy (E), and hence QD size. QDs can thus be tuned to give the desired wavelength of fluorescence emission.Due to their unique properties, QDs have attracted considerable attention in different scientific areas. Also, they have been considered for forensic applications in recent years. The ability of QDs to fluoresce up to 20 times brighter than available fluorescent dyes makes them an attractive nanomaterial for enhancing the visualization of latent fingermarks, or poorly developed fingermarks. Furthermore, the potential applications of QDs in the detection of nitroaromatic explosives, such as TNT, based on directive fluorescence quenching of QDs, electron transfer quenching process or fluorescence resonance energy transfer have been paid to attention. DNA analysis is associated tightly with forensic applications in molecular diagnostics. The amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. Accordingly, highly sensitive detection of human genomic DNA is an essential issue for forensic study. QDs have also a variety of advantages as an emission probe in forensic DNA quantification.

Keywords: forensic science, quantum dots, DNA typing, explosive sensor, fingermark analysis

Procedia PDF Downloads 854
830 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 137
829 The Next Generation’s Learning Ability, Memory, as Well as Cognitive Skills Is under the Influence of Paternal Physical Activity (An Intergenerational and Trans-Generational Effect): A Systematic Review and Meta-Analysis

Authors: Parvin Goli, Amirhosein Kefayat, Rezvan Goli

Abstract:

Background: It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on the brain in the offspring have not been explored in detail. Objective: This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the off-spring's hippocampus. Study design: In this systematic review and meta-analysis, an electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with the assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. Results: The systematic review revealed the important role of environmental enrichment in the behavioral development of the next generation. Also, offspring of exercised fathers displayed higher levels of memory ability and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. Conclusion: These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined.

Keywords: hippocampal plasticity, learning ability, memory, parental exercise

Procedia PDF Downloads 209
828 Challenges to Reaching Higher Education in Developing Countries

Authors: Suhail Shersad

Abstract:

Introduction In developing countries, the access to higher education for the lower socioeconomic strata is very poor at less than 0.05%. The challenges faced by prospective students in these circumstances to pursue higher education have been explored through direct interaction with them and their families in urban slums of New Delhi. This study included evaluation of the demographics, social indices, expectations and perceptions of selected communities. Results The results show that the poor life expectancy, low exposure to technology, lack of social infrastructure and poor sanitary conditions have reduced their drive for academic achievements. This is despite a good level of intelligence and critical thinking skills among these students. The perception of the community including parents shows that despite their desire to excel, there are too may roadblocks to achieving a fruitful professional life for the next generation. Discussion The prerequisites of higher education may have to be revisited to be more inclusive of socially handicapped students. The knowledge, skills and attributes required for higher education system should form the baseline for creating a roadmap for higher secondary education suited for local needs. Conventional parameters like marks and grading have to be re-looked so that life skills and vocational training form part of the core curriculum. Essential skills should be incorporated at an earlier age, providing an alternative pathway for such students to join higher education. Conclusion: There is a need to bridge the disconnect that exists between higher education planning, the needs of the concerned cohorts and the existing higher secondary education. The variables that contribute to making such a decision have to be examined further. Keywords: prerequisites of higher education, social mobility, society expectations, access to higher education

Keywords: access to higher education, prerequisites of higher education, society expectations, social mobility

Procedia PDF Downloads 386
827 Antecedents of Regret and Satisfaction in Electronic Commerce

Authors: Chechen Liao, Pui-Lai To, Chuang-Chun Liu

Abstract:

Online shopping has become very popular recently. In today’s highly competitive online retail environment, retaining existing customers is a necessity for online retailers. This study focuses on the antecedents and consequences of Internet buyer regret and satisfaction in the online consumer purchasing process. This study examines the roles that online consumer’s purchasing process evaluations (i.e., search experience difficulty, service-attribute evaluations, product-attribute evaluations and post-purchase price perceptions) and alternative evaluation (i.e., alternative attractiveness) play in determining buyer regret and satisfaction in e-commerce. The study also examines the consequences of regret, satisfaction and habit in regard to repurchase intention. In addition, this study attempts to investigate the moderating role of habit in attaining a better understanding of the relationship between repurchase intention and its antecedents. Survey data collected from 431 online customers are analyzed using structural equation modeling (SEM) with partial least squares (PLS) and support provided for the hypothesized links. These results indicate that online consumer’s purchasing process evaluations (i.e., search experience difficulty, service-attribute evaluations, product-attribute evaluations and post-purchase price perceptions) have significant influences on regret and satisfaction, which in turn influences repurchase intention. In addition, alternative evaluation (i.e., alternative attractiveness) has a significant positive influence on regret. The research model can provide a richer understanding of online customers’ repurchase behavior and contribute to both research and practice.

Keywords: online shopping, purchase evaluation, regret, satisfaction

Procedia PDF Downloads 283
826 Evaluating the Management of Febrile Infants (Less than 90 Days) Presenting to Tallaght Ed- Completed Audit Cycle

Authors: Amel Osman, Stewart McKenna

Abstract:

Aim: Fever may present as the sole sign of a serious underlying infection in young infants. Febrile Infants aged less than 90 days are at an elevated susceptibility to invasive bacterial infections, thus presenting a challenge in ensuring the appropriate management of these cases. This study aims to ensure strict adherence to NICE guidelines for the management of fever in infants between 0 and 90 days presenting to Tallaght Hospital ED. A comprehensive audit, followed by a re-audit, was conducted to enhance the quality of care delivered to these patients. In accordance with NICE guidelines, all febrile infants should undergo blood tests. Additionally, LP should be performed in all neonates under 28 days, infants displaying signs of illness, and those with WCC below 5 or above 15. Method: A retrospective case review was performed, encompassing all patients aged between 0 to 90 days who presented with fever at Tallaght ED. Data retrieval was conducted from electronic records on two separate occasions, six months apart. The evaluation encompassed the assessment of body temperature as well as both partial and full septic workups. Results: Over the study period, 150 infants presented to the ED with fever in the initial audit, and 120 in the re-audit. In the first study, 81 patients warranted a full septic workup as per NICE, but only 48 received it. Conversely, 40 patients met criteria for a partial septic workup, with 12 undergoing blood tests. In the second study, 73 patients qualified for a full septic workup, of which 52 were completed. Additionally, 27 patients were indicated for a partial workup, with 20 undergoing blood tests. Conclusion: Managing febrile infants under three months of age presenting to Tallaght ED remains a persistent challenge, underscoring the need for continuous educational initiatives to guarantee that these patients receive the requisite assessments and treatments.

Keywords: infants, fever, septic workup, tallaght

Procedia PDF Downloads 52
825 A Systematic Review of Prevalence, Gender and Age Differences in Cyberbullying Studies in Croatia

Authors: Stjepka Popović, Lucija Vejmelka

Abstract:

Background: Cyberbullying has become a prevalent issue worldwide, including in Croatia. However, a comprehensive understanding of the extent and nature of cyberbullying in the Croatian context is lacking. Objective: The objective of this systematic review is to evaluate the quality of current research conducted in Croatia on the subject of cyberbullying, identify any gaps in the research, and provide suggestions for future investigations. It examines the prevalence gender and age differences of cyberbullying in Croatia. Participants and Setting: Research is done on secondary data resources (published studies) of cyberbullying in Croatia. The participants in these studies that were included in systematic review are children and youth of all ages residing in Croatia who have been involved in cyberbullying incidents. The setting includes various environments where cyberbullying may occur, such as social media platforms and educational institutions. Methods: To identify pertinent studies on cyberbullying in Croatia, a comprehensive exploration of both international and domestic electronic databases was systematically undertaken. Relevant studies were chosen according to predefined criteria that determined inclusion and exclusion. Key findings from the selected studies were extracted and synthesized, enabling the identification of patterns in the data. Results: A total of 43 studies that fulfilled the inclusion criteria were identified in the review. The prevalence of cyberbullying victimization in Croatia ranged from 7% - 55.3%, with adolescents being the most affected group. The prevalence of cyberbullying perpetration was ranging from 3.2% - 30.3%. The most prevalent form of cyberbullying included gossiping and mocking others. Gender and age differences are highlighted. Conclusions: The outcomes of this systematic review highlight the pressing need for targeted interventions and preventative measures to address cyberbullying in Croatia. Additionally, it is crucial to conduct further research to investigate the long-term impacts and potential factors that can help mitigate cyberbullying in the context of Croatia.

Keywords: cyberbullying, online risky behavior, Croatia, systematic review

Procedia PDF Downloads 85
824 Design and Thermal Analysis of Power Harvesting System of a Hexagonal Shaped Small Spacecraft

Authors: Mansa Radhakrishnan, Anwar Ali, Muhammad Rizwan Mughal

Abstract:

Many universities around the world are working on modular and low budget architecture of small spacecraft to reduce the development cost of the overall system. This paper focuses on the design of a modular solar power harvesting system for a hexagonal-shaped small satellite. The designed solar power harvesting systems are composed of solar panels and power converter subsystems. The solar panel is composed of solar cells mounted on the external face of the printed circuit board (PCB), while the electronic components of power conversion are mounted on the interior side of the same PCB. The solar panel with dimensions 16.5cm × 99cm is composed of 36 solar cells (each solar cell is 4cm × 7cm) divided into four parallel banks where each bank consists of 9 solar cells. The output voltage of a single solar cell is 2.14V, and the combined output voltage of 9 series connected solar cells is around 19.3V. The output voltage of the solar panel is boosted to the satellite power distribution bus voltage level (28V) by a boost converter working on a constant voltage maximum power point tracking (MPPT) technique. The solar panel module is an eight-layer PCB having embedded coil in 4 internal layers. This coil is used to control the attitude of the spacecraft, which consumes power to generate a magnetic field and rotate the spacecraft. As power converter and distribution subsystem components are mounted on the PCB internal layer, therefore it is mandatory to do thermal analysis in order to ensure that the overall module temperature is within thermal safety limits. The main focus of the overall design is on compactness, miniaturization, and efficiency enhancement.

Keywords: small satellites, power subsystem, efficiency, MPPT

Procedia PDF Downloads 74
823 Mammotome Vacuum-Assisted Breast Biopsy versus Conventional Open Surgery: A Meta-Analysis

Authors: Dylan Shiting Lu, Samson Okello, Anita Chunyan Wei, Daniel Xiao Li

Abstract:

Mammotome vacuum-assisted breast biopsy (MVB) introduced in 1995 can be used for the removal of benign breast lesions. Whether or not MVB is a better option compared to conventional open surgery is inconclusive. We aim to compare the clinical and patient-related outcomes between MVB and open surgery to remove benign breast tumors less than 5 cm in women. We searched English and Chinese electronic databases with the keywords of Mammotome, clinical trial (CT), vacuum-assisted breast biopsy for studies comparing MVB and open surgery until May 2021. We performed a systematic review and random-effects meta-analysis to compare incision size, operation time, intraoperative blood loss, healing time, scar length, patient satisfaction, postoperative hematoma rate, wound infection rate, postoperative ecchymosis, and postoperative sunken skin among those who have Mammotome and those who have surgery. Our analysis included nine randomized CTs with 1155 total patients (575 Mammotome, 580 surgery) and mean age 40.32 years (standard deviation 3.69). We found statistically significant favorable outcomes for Mammotome including blood loss (ml) [standardized mean difference SMD -5.03, 95%CI (-7.30, -2.76)], incision size (cm) [SMD -12.22, 95%CI (-17.40, -7.04)], operation time (min) [SMD -6.66, 95%CI (-9.01, -4.31)], scar length (cm) [SMD -7.06, 95%CI (-10.76, -3.36)], healing time (days) [SMD -6.57, 95%CI (-10.18, -2.95)], and patient satisfaction [relative risk RR 0.38, 95%CI (0.13, 1.08)]. In conclusion, Mammotome vacuum-assisted breast biopsy compared to open surgery shows better clinical and patient-related outcomes. Further studies should be done on whether or not MVB is a better option for benign breast tumors excision.

Keywords: clinical and patient outcomes, open surgery, Mammotome vacuum-assisted breast biopsy, meta-analysis

Procedia PDF Downloads 217
822 Information Extraction for Short-Answer Question for the University of the Cordilleras

Authors: Thelma Palaoag, Melanie Basa, Jezreel Mark Panilo

Abstract:

Checking short-answer questions and essays, whether it may be paper or electronic in form, is a tiring and tedious task for teachers. Evaluating a student’s output require wide array of domains. Scoring the work is often a critical task. Several attempts in the past few years to create an automated writing assessment software but only have received negative results from teachers and students alike due to unreliability in scoring, does not provide feedback and others. The study aims to create an application that will be able to check short-answer questions which incorporate information extraction. Information extraction is a subfield of Natural Language Processing (NLP) where a chunk of text (technically known as unstructured text) is being broken down to gather necessary bits of data and/or keywords (structured text) to be further analyzed or rather be utilized by query tools. The proposed system shall be able to extract keywords or phrases from the individual’s answers to match it into a corpora of words (as defined by the instructor), which shall be the basis of evaluation of the individual’s answer. The proposed system shall also enable the teacher to provide feedback and re-evaluate the output of the student for some writing elements in which the computer cannot fully evaluate such as creativity and logic. Teachers can formulate, design, and check short answer questions efficiently by defining keywords or phrases as parameters by assigning weights for checking answers. With the proposed system, teacher’s time in checking and evaluating students output shall be lessened, thus, making the teacher more productive and easier.

Keywords: information extraction, short-answer question, natural language processing, application

Procedia PDF Downloads 428
821 Clustering for Detection of the Population at Risk of Anticholinergic Medication

Authors: A. Shirazibeheshti, T. Radwan, A. Ettefaghian, G. Wilson, C. Luca, Farbod Khanizadeh

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature, which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on over 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. To further evaluate the performance of the model, any association between the average risk score within each group and other factors such as socioeconomic status (i.e., Index of Multiple Deprivation) and an index of health and disability were investigated. The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings also show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, indicating that females are more at risk from this kind of multiple medications. The risk may be monitored and controlled in well artificial intelligence-equipped healthcare management systems.

Keywords: anticholinergic medicines, clustering, deprivation, socioeconomic status

Procedia PDF Downloads 211
820 Demand Forecasting to Reduce Dead Stock and Loss Sales: A Case Study of the Wholesale Electric Equipment and Part Company

Authors: Korpapa Srisamai, Pawee Siriruk

Abstract:

The purpose of this study is to forecast product demands and develop appropriate and adequate procurement plans to meet customer needs and reduce costs. When the product exceeds customer demands or does not move, it requires the company to support insufficient storage spaces. Moreover, some items, when stored for a long period of time, cause deterioration to dead stock. A case study of the wholesale company of electronic equipment and components, which has uncertain customer demands, is considered. The actual purchasing orders of customers are not equal to the forecast provided by the customers. In some cases, customers have higher product demands, resulting in the product being insufficient to meet the customer's needs. However, some customers have lower demands for products than estimates, causing insufficient storage spaces and dead stock. This study aims to reduce the loss of sales opportunities and the number of remaining goods in the warehouse, citing 30 product samples of the company's most popular products. The data were collected during the duration of the study from January to October 2022. The methods used to forecast are simple moving averages, weighted moving average, and exponential smoothing methods. The economic ordering quantity and reorder point are used to calculate to meet customer needs and track results. The research results are very beneficial to the company. The company can reduce the loss of sales opportunities by 20% so that the company has enough products to meet customer needs and can reduce unused products by up to 10% dead stock. This enables the company to order products more accurately, increasing profits and storage space.

Keywords: demand forecast, reorder point, lost sale, dead stock

Procedia PDF Downloads 121
819 Lexical Features and Motivations of Product Reviews on Selected Philippine Online Shops

Authors: Jimmylen Tonio, Ali Anudin, Rochelle Irene G. Lucas

Abstract:

Alongside the progress of electronic-business websites, consumers have become more comfortable with online shopping. It has become customary for consumers that prior to purchasing a product or availing services, they consult online reviews info as bases in evaluating and deciding whether or not they should push thru with their procurement of the product or service. Subsequently, after purchasing, consumers tend to post their own comments of the product in the same e-business websites. Because of this, product reviews (PRS) have become an indispensable feature in online businesses equally beneficial for both business owners and consumers. This study explored the linguistic features and motivations of online product reviews on selected Philippine online shops, LAZADA and SHOPEE. Specifically, it looked into the lexical features of the PRs, the factors that motivated consumers to write the product reviews, and the difference of lexical preferences between male and female when they write the reviews. The findings revealed the following: 1. Formality of words in online product reviews primarily involves non-standard spelling, followed by abbreviated word forms, colloquial contractions and use of coined/novel words; 2. Paralinguistic features in online product reviews are dominated by the use of emoticons, capital letters and punctuations followed by the use of pictures/photos and lastly, by paralinguistic expressions; 3. The factors that motivate consumers to write product reviews varied. Online product reviewers are predominantly driven by venting negative feelings motivation, followed by helping the company, helping other consumers, positive self-enhancement, advice seeking and lastly, by social benefits; and 4. Gender affects the word frequencies of product online reviews, while negation words, personal pronouns, the formality of words, and paralinguistic features utilized by both male and female online product reviewers are not different.

Keywords: lexical choices, motivation, online shop, product reviews

Procedia PDF Downloads 151
818 From Parchment to Pixels: Digital Preservation for the Future

Authors: Abida Khatoon

Abstract:

This study provides an overview of ancient manuscripts, including their historical significance, current digital preservation methods, and the challenges we face in safeguarding these invaluable resources. India has a long-standing tradition of manuscript preservation, with texts that span a wide range of subjects, from religious scriptures to scientific treatises. These manuscripts were written on various materials, including palm leaves, parchment, metal, bark, wood, animal skin, and paper. These manuscripts offer a deep insight into India's cultural and intellectual history. Ancient manuscripts are crucial historical records, providing valuable insights into past civilizations and knowledge systems. As these physical documents become increasingly fragile, digital preservation methods have become essential to ensure their continued accessibility. Digital preservation involves several key techniques. Scanning and digitization create high-resolution digital images of manuscripts, while reprography produces copies to reduce wear on originals. Digital archiving ensures proper storage and management of these digital files, and preservation of electronic data addresses modern formats like web pages and emails. Despite its benefits, digital preservation faces several challenges. Technological obsolescence, data integrity issues, and the resource-intensive nature of the process are significant hurdles. Securing adequate funding is particularly challenging due to high initial costs and ongoing expenses. Looking ahead, the future of digital preservation is promising. Advancements in technology, increased collaboration among institutions, and the development of sustainable funding models will enhance the preservation and accessibility of these important historical documents.

Keywords: preservation strategies, Indian manuscript, cultural heritage, archiving

Procedia PDF Downloads 18
817 Decision-Making Strategies on Smart Dairy Farms: A Review

Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh

Abstract:

Farm management and operations will drastically change due to access to real-time data, real-time forecasting, and tracking of physical items in combination with Internet of Things developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm-based management and decision-making does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyse on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue, and environmental impact. Evolutionary computing can be very effective in finding the optimal combination of sets of some objects and, finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and evolutionary computing in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management, and its uptake has become a continuing trend.

Keywords: big data, evolutionary computing, cloud, precision technologies

Procedia PDF Downloads 189
816 An Anode Based on Modified Silicon Nanostructured for Lithium – Ion Battery Application

Authors: C. Yaddaden, M. Berouaken, L. Talbi, K. Ayouz, M. Ayat, A. Cheriet, F. Boudeffar, A. Manseri, N. Gabouze

Abstract:

Lithium-ion batteries (LIBs) are widely used in various electronic devices due to their high energy density. However, the performance of the anode material in LIBs is crucial for enhancing the battery's overall efficiency. This research focuses on developing a new anode material by modifying silicon nanostructures, specifically porous silicon nanowires (PSiNWs) and porous silicon nanoparticles (NPSiP), with silver nanoparticles (Ag) to improve the performance of LIBs. The aim of this research is to investigate the potential application of PSiNWs/Ag and NPSiP/Ag as anodes in LIBs and evaluate their performance in terms of specific capacity and Coulombic efficiency. The research methodology involves the preparation of PSiNWs and NPSiP using metal-assisted chemical etching and electrochemical etching techniques, respectively. The Ag nanoparticles are introduced onto the nanostructures through electrodissolution of the porous film and ultrasonic treatment. Galvanostatic charge/discharge measurements are conducted between 1 and 0.01 V to evaluate the specific capacity and Coulombic efficiency of both PSiNWs/Ag and NPSiP/Ag electrodes. The specific capacity of the PSiNWs/Ag electrode is approximately 1800 mA h g-1, with a Coulombic efficiency of 98.8% at the first charge/discharge cycle. On the other hand, the NPSiP/Ag electrode exhibits a specific capacity of 2600 mAh g-1. Both electrodes show a slight increase in capacity retention after 80 cycles, attributed to the high porosity and surface area of the nanostructures and the stabilization of the solid electrolyte interphase (SEI). This research highlights the potential of using modified silicon nanostructures as anodes for LIBs, which can pave the way for the development of more efficient lithium-ion batteries.

Keywords: porous silicon nanowires, silicon nanoparticles, lithium-ion batteries, galvanostatic charge/discharge

Procedia PDF Downloads 63