Search results for: cost-reflective network pricing method
20285 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 11820284 Monitoring System for Electronic Procurement Systems
Authors: Abdulah Fajar
Abstract:
Electronic Procurement System has been implemented at government institution in Indonesia. This system has been developed centrally at Institution of National Procurement Policy (LKPP) and implemented autonomously at either local or national government institution. The lack of competency at many institution on Information Technology Management arise several major problems. The main concern of LKPP to local administrator is assured that the system is running normally and always be able to serve the needs of its users. Monitoring system has been identified as the one of solution to prevent the problems appeared. Monitoring system is developed using Simple Network Management Protocol (SNMP) and implemented at LKPP. There are two modules; Main Dashboard and Local Agent. Main Dashboard is intended for LKPP and Local Agent is intended to implement at local autonomous e-procurement system (LPSE). There are several resources that must be monitored such as computation, memory and network traffic. Agile paradigm is applied to this project to assure user and system requirement is met. The length of project is the one of reason why agile paradigm has been chosen. The system has been successfully delivered to LKPP.Keywords: procurement system, SNMP, LKPP, LPSE
Procedia PDF Downloads 42720283 ISME: Integrated Style Motion Editor for 3D Humanoid Character
Authors: Ismahafezi Ismail, Mohd Shahrizal Sunar
Abstract:
The motion of a realistic 3D humanoid character is very important especially for the industries developing computer animations and games. However, this type of motion is seen with a very complex dimensional data as well as body position, orientation, and joint rotation. Integrated Style Motion Editor (ISME), on the other hand, is a method used to alter the 3D humanoid motion capture data utilised in computer animation and games development. Therefore, this study was carried out with the purpose of demonstrating a method that is able to manipulate and deform different motion styles by integrating Key Pose Deformation Technique and Trajectory Control Technique. This motion editing method allows the user to generate new motions from the original motion capture data using a simple interface control. Unlike the previous method, our method produces a realistic humanoid motion style in real time.Keywords: computer animation, humanoid motion, motion capture, motion editing
Procedia PDF Downloads 38220282 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.Keywords: JPSO, operation, optimization, water distribution system
Procedia PDF Downloads 24520281 Analytical Solution of Blassius Equation Using the Kourosh Method
Authors: Mohammad Reza Shahnazari, Reza Kazemi, Ali Saberi
Abstract:
Most of the engineering problems are in nonlinear forms. Nonlinear boundary layer problems defined in infinite intervals contain specific complexities, especially in boundary layer condition conformance. As an example of these nonlinear complex problems, the well-known Blasius equation can be mentioned, which itself is one of the classic boundary layer problems. No analytical solution has been proposed yet for the Blasius equation due to its complexity. In this paper, an analytical method, namely the Kourosh method, based on the singularity perturbation method and the Liao homotopy analysis is utilized to solve the Blasius problem. In this method, an inner solution is developed in the [0,1] interval to expedite the solution convergence. The magnitude of the f ˝(0), as an essential quantity for determining the physical parameters, is directly calculated from the solution of the boundary condition problem. The advantages of this solution are that it does not need any numerical solution, it has a closed form and that its validation is shown in the entire [0,∞] interval. Furthermore, all of the desirable parameters could be extracted through a series of simple analytical operations from the final solution. This solution also satisfies the continuity conditions, which is one of the main contributions of this paper in comparison with most of the other proposed analytical solutions available in the literature. Comparison with numerical solutions reveals that the proposed method is highly accurate and convenient for application.Keywords: Blasius equation, boundary layer, Kourosh method, analytical solution
Procedia PDF Downloads 39120280 Social Network Roles in Organizations: Influencers, Bridges, and Soloists
Authors: Sofia Dokuka, Liz Lockhart, Alex Furman
Abstract:
Organizational hierarchy, traditionally composed of individual contributors, middle management, and executives, is enhanced by the understanding of informal social roles. These roles, identified with organizational network analysis (ONA), might have an important effect on organizational functioning. In this paper, we identify three social roles – influencers, bridges, and soloists, and provide empirical analysis based on real-world organizational networks. Influencers are employees with broad networks and whose contacts also have rich networks. Influence is calculated using PageRank, initially proposed for measuring website importance, but now applied in various network settings, including social networks. Influencers, having high PageRank, become key players in shaping opinions and behaviors within an organization. Bridges serve as links between loosely connected groups within the organization. Bridges are identified using betweenness and Burt’s constraint. Betweenness quantifies a node's control over information flows by evaluating its role in the control over the shortest paths within the network. Burt's constraint measures the extent of interconnection among an individual's contacts. A high constraint value suggests fewer structural holes and lesser control over information flows, whereas a low value suggests the contrary. Soloists are individuals with fewer than 5 stable social contacts, potentially facing challenges due to reduced social interaction and hypothetical lack of feedback and communication. We considered social roles in the analysis of real-world organizations (N=1,060). Based on data from digital traces (Slack, corporate email and calendar) we reconstructed an organizational communication network and identified influencers, bridges and soloists. We also collected employee engagement data through an online survey. Among the top-5% of influencers, 10% are members of the Executive Team. 56% of the Executive Team members are part of the top influencers group. The same proportion of top influencers (10%) is individual contributors, accounting for just 0.6% of all individual contributors in the company. The majority of influencers (80%) are at the middle management level. Out of all middle managers, 19% hold the role of influencers. However, individual contributors represent a small proportion of influencers, and having information about these individuals who hold influential roles can be crucial for management in identifying high-potential talents. Among the bridges, 4% are members of the Executive Team, 16% are individual contributors, and 80% are middle management. Predominantly middle management acts as a bridge. Bridge positions of some members of the executive team might indicate potential micromanagement on the leader's part. Recognizing the individuals serving as bridges in an organization uncovers potential communication problems. The majority of soloists are individual contributors (96%), and 4% of soloists are from middle management. These managers might face communication difficulties. We found an association between being an influencer and attitude toward a company's direction. There is a statistically significant 20% higher perception that the company is headed in the right direction among influencers compared to non-influencers (p < 0.05, Mann-Whitney test). Taken together, we demonstrate that considering social roles in the company might indicate both positive and negative aspects of organizational functioning that should be considered in data-driven decision-making.Keywords: organizational network analysis, social roles, influencer, bridge, soloist
Procedia PDF Downloads 10520279 A Numerical Study for Mixing Depth and Applicability of Partial Cement Mixing Method Utilizing Geogrid and Fixing Unit
Authors: Woo-seok Choi, Eun-sup Kim, Nam-Seo Park
Abstract:
The demand for new technique in soft ground improvement continuously increases as general soft ground methods like PBD and DCM have a application problem in soft grounds with deep depth and wide distribution in Southern coast of Korea and Southeast. In this study, partial cement mixing method utilizing geogrid and fixing unit(CMG) is suggested and Finite element analysis is performed for analyzing the depth of surface soil and deep soil stabilization and comparing with DCM method. In the result of the experiment, the displacement in DCM method were lower than the displacement in CMG, it's because the upper load is transferred to deep part soil not treated by cement in CMG method case. The differential settlement in DCM method was higher than the differential settlement in CMG, because of the effect load transfer effect by surface part soil treated by cement and geogrid. In conclusion, CMG method has the advantage of economics and constructability in embankment road, railway, etc in which differential settlement is the important consideration.Keywords: soft ground, geogrid, fixing unit, partial cement mixing, finite element analysis
Procedia PDF Downloads 37820278 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks
Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir
Abstract:
Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.
Procedia PDF Downloads 8920277 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 5720276 Highway Capacity and Level of Service
Authors: Kidist Mesfin Nguse
Abstract:
Ethiopia is the second most densely populated nation in Africa, and about 121 million people as the 2022 Ethiopia population live report recorded. In recent years, the Ethiopian government (GOE) has been gradually growing its road network. With 138,127 kilometers (85,825 miles) of all-weather roads as of the end of 2018–19, Ethiopia possessed just 39% of the nation's necessary road network and lacked a well-organized system. The Ethiopian urban population report recorded that about 21% of the population lives in urban areas, and the high population, coupled with growth in various infrastructures, has led to the migration of the workforce from rural areas to cities across the country. In main roads, the heterogeneous traffic flow with various operational features makes it more unfavorable, causing frequent congestion in the stretch of road. The Level of Service (LOS), a qualitative measure of traffic, is categorized based on the operating conditions in the traffic stream. Determining the capacity and LOS for this city is very crucial as this affects the planning and design of traffic systems and their operation, and the allocation of route selection for infrastructure building projects to provide for a considerably good level of service.Keywords: capacity, level of service, traffic volume, free flow speed
Procedia PDF Downloads 5120275 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels
Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra
Abstract:
In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.Keywords: alternative energy, solar tracker, energy efficiency, photovoltaic panels
Procedia PDF Downloads 14720274 Bandwidth Efficient Cluster Based Collision Avoidance Multicasting Protocol in VANETs
Authors: Navneet Kaur, Amarpreet Singh
Abstract:
In Vehicular Adhoc Networks, Data Dissemination is a challenging task. There are number of techniques, types and protocols available for disseminating the data but in order to preserve limited bandwidth and to disseminate maximum data over networks makes it more challenging. There are broadcasting, multicasting and geocasting based protocols. Multicasting based protocols are found to be best for conserving the bandwidth. One such protocol named BEAM exists that improves the performance of Vehicular Adhoc Networks by reducing the number of in-network message transactions and thereby efficiently utilizing the bandwidth during an emergency situation. But this protocol may result in multicar chain collision as there was no V2V communication. So, this paper proposes a new protocol named Enhanced Bandwidth Efficient Cluster Based Multicasting Protocol (EBECM) that will overcome the limitations of existing BEAM protocol. And Simulation results will show the improved performance of EBECM in terms of Routing overhead, throughput and PDR when compared with BEAM protocol.Keywords: BEAM, data dissemination, emergency situation, vehicular adhoc network
Procedia PDF Downloads 34820273 Distribution System Planning with Distributed Generation and Capacitor Placements
Authors: Nattachote Rugthaicharoencheep
Abstract:
This paper presents a feeder reconfiguration problem in distribution systems. The objective is to minimize the system power loss and to improve bus voltage profile. The optimization problem is subjected to system constraints consisting of load-point voltage limits, radial configuration format, no load-point interruption, and feeder capability limits. A method based on genetic algorithm, a search algorithm based on the mechanics of natural selection and natural genetics, is proposed to determine the optimal pattern of configuration. The developed methodology is demonstrated by a 33-bus radial distribution system with distributed generations and feeder capacitors. The study results show that the optimal on/off patterns of the switches can be identified to give the minimum power loss while respecting all the constraints.Keywords: network reconfiguration, distributed generation capacitor placement, loss reduction, genetic algorithm
Procedia PDF Downloads 17720272 Feasibility of Simulating External Vehicle Aerodynamics Using Spalart-Allmaras Turbulence Model with Adjoint Method in OpenFOAM and Fluent
Authors: Arpit Panwar, Arvind Deshpande
Abstract:
The study of external vehicle aerodynamics using Spalart-Allmaras turbulence model with adjoint method was conducted. The accessibility and ease of working with the Fluent module of ANSYS and OpenFOAM were considered. The objective of the study was to understand and analyze the possibility of bringing high-level aerodynamic simulation to the average consumer vehicle. A form-factor of BMW M6 vehicle was designed in Solidworks, which was analyzed in OpenFOAM and Fluent. The turbulence model being a single equation provides much faster convergence rate when clubbed with the adjoint method. Fluent being commercial software still does not allow us to solve Spalart-Allmaras turbulence model using the adjoint method. Hence, the turbulence model was solved using the SIMPLE method in Fluent. OpenFOAM being an open source provide flexibility in simulation but is not user-friendly. It supports solving the defined turbulence model with the adjoint method. The result generated from the simulation gives us acceptable values of drag, when validated with the result of percentage error in drag values for a notch-back vehicle model on an extensive simulation produced at 6th ANSA and μETA conference, Greece. The success of this approach will allow us to bring more aerodynamic vehicle body design to all segments of the automobile and not limiting it to just the high-end sports cars.Keywords: Spalart-Allmaras turbulence model, OpenFOAM, adjoint method, SIMPLE method, vehicle aerodynamic design
Procedia PDF Downloads 20020271 Spectrophotometric Determination of 5-Aminosalicylic Acid in Pharmaceutical Samples
Authors: Chand Pasha
Abstract:
A Simple, accurate and precise spectrophotometric method for the quantitative analysis of determination of 5-aminosalicylic acid is described. This method is based on the reaction of 5-aminosalicylic acid with nitrite in acid medium to form diazonium ion, which is coupled with acetylacetone in basic medium to form azo dyes, which shows absorption maxima at 470 nm. The method obeys Beer’s law in the concentration range of 0.5-11.2 gml-1 of 5-aminosalicylic acid with acetylacetone. The molar absorptivity and Sandell’s sensitivity of 5-aminosalicylic acid -acetylacetone azo dye is 2.672 ×104 lmol-1cm-1, 5.731 × 10-3 gcm-2 respectively. The dye formed is stable for 10 hrs. The optimum reaction conditions and other analytical parameters are evaluated. Interference due to foreign organic compounds have been investigated. The method has been successfully applied to the determination of 5-aminosalicylic acid in pharmaceutical samples.Keywords: spectrophotometry, diazotization, mesalazine, nitrite, acetylacetone
Procedia PDF Downloads 18920270 Efficiency of Wood Vinegar Mixed with Some Plants Extract against the Housefly (Musca domestica L.)
Authors: U. Pangnakorn, S. Kanlaya
Abstract:
The efficiency of wood vinegar mixed with each individual of three plants extract such as: citronella grass (Cymbopogon nardus), neem seed (Azadirachta indica A. Juss), and yam bean seed (Pachyrhizus erosus Urb.) were tested against the second instar larvae of housefly (Musca domestica L.). Steam distillation was used for extraction of the citronella grass while neem and yam bean were simple extracted by fermentation with ethyl alcohol. Toxicity test was evaluated in laboratory based on two methods of larvicidal bioassay: topical application method (contact poison) and feeding method (stomach poison). Larval mortality was observed daily and larval survivability was recorded until the survived larvae developed to pupae and adults. The study resulted that treatment of wood vinegar mixed with citronella grass showed the highest larval mortality by topical application method (50.0%) and by feeding method (80.0%). However, treatment of mixed wood vinegar and neem seed showed the longest pupal duration to 25 day and 32 days for topical application method and feeding method respectively. Additional, larval duration on treated M. domestica larvae was extended to 13 days for topical application method and 11 days for feeding method. Thus, the feeding method gave higher efficiency compared with the topical application method.Keywords: housefly (Musca domestica L.), neem seed (Azadirachta indica), citronella grass (Cymbopogon nardus), yam bean seed (Pachyrhizus erosus), mortality
Procedia PDF Downloads 34220269 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data
Authors: LuoJiaoyang, Yu Hongyang
Abstract:
In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.Keywords: multimodal, three modalities, RGB-D, identity verification
Procedia PDF Downloads 7020268 Airline Choice Model for Domestic Flights: The Role of Airline Flexibility
Authors: Camila Amin-Puello, Lina Vasco-Diaz, Juan Ramirez-Arias, Claudia Munoz, Carlos Gonzalez-Calderon
Abstract:
Operational flexibility is a fundamental aspect in the field of airlines because although demand is constantly changing, it is the duty of companies to provide a service to users that satisfies their needs in an efficient manner without sacrificing factors such as comfort, safety and other perception variables. The objective of this research is to understand the factors that describe and explain operational flexibility by implementing advanced analytical methods such as exploratory factor analysis and structural equation modeling, examining multiple levels of operational flexibility and understanding how these variable influences users' decision-making when choosing an airline and in turn how it affects the airlines themselves. The use of a hybrid model and latent variables improves the efficiency and accuracy of airline performance prediction in the unpredictable Colombian market. This pioneering study delves into traveler motivations and their impact on domestic flight demand, offering valuable insights to optimize resources and improve the overall traveler experience. Applying the methods, it was identified that low-cost airlines are not useful for flexibility, while users, especially women, found airlines with greater flexibility in terms of ticket costs and flight schedules to be more useful. All of this allows airlines to anticipate and adapt to their customers' needs efficiently: to plan flight capacity appropriately, adjust pricing strategies and improve the overall passenger experience.Keywords: hybrid choice model, airline, business travelers, domestic flights
Procedia PDF Downloads 1320267 A Family of Second Derivative Methods for Numerical Integration of Stiff Initial Value Problems in Ordinary Differential Equations
Authors: Luke Ukpebor, C. E. Abhulimen
Abstract:
Stiff initial value problems in ordinary differential equations are problems for which a typical solution is rapidly decaying exponentially, and their numerical investigations are very tedious. Conventional numerical integration solvers cannot cope effectively with stiff problems as they lack adequate stability characteristics. In this article, we developed a new family of four-step second derivative exponentially fitted method of order six for the numerical integration of stiff initial value problem of general first order differential equations. In deriving our method, we employed the idea of breaking down the general multi-derivative multistep method into predator and corrector schemes which possess free parameters that allow for automatic fitting into exponential functions. The stability analysis of the method was discussed and the method was implemented with numerical examples. The result shows that the method is A-stable and competes favorably with existing methods in terms of efficiency and accuracy.Keywords: A-stable, exponentially fitted, four step, predator-corrector, second derivative, stiff initial value problems
Procedia PDF Downloads 25820266 Determination of Starting Design Parameters for Reactive-Dividing Wall Distillation Column Simulation Using a Modified Shortcut Design Method
Authors: Anthony P. Anies, Jose C. Muñoz
Abstract:
A new shortcut method for the design of reactive-dividing wall columns (RDWC) is proposed in this work. The RDWC is decomposed into its thermodynamically equivalent configuration naming the Petlyuk column, which consists of a reactive prefractionator and an unreactive main fractionator. The modified FUGK(Fenske-Underwood-Gilliland-Kirkbride) shortcut distillation method, which incorporates the effect of reaction on the Underwood equations and the Gilliland correlation, is used to design the reactive prefractionator. On the other hand, the conventional FUGK shortcut method is used to design the unreactive main fractionator. The shortcut method is applied to the synthesis of dimethyl ether (DME) through the liquid phase dehydration of methanol, and the results were used as the starting design inputs for rigorous simulation in Aspen Plus V8.8. A mole purity of 99 DME in the distillate stream, 99% methanol in the side draw stream, and 99% water in the bottoms stream were obtained in the simulation, thereby making the proposed shortcut method applicable for the preliminary design of RDWC.Keywords: aspen plus, dimethyl ether, petlyuk column, reactive-dividing wall column, shortcut method, FUGK
Procedia PDF Downloads 19420265 Parameter Estimation for the Mixture of Generalized Gamma Model
Authors: Wikanda Phaphan
Abstract:
Mixture generalized gamma distribution is a combination of two distributions: generalized gamma distribution and length biased generalized gamma distribution. These two distributions were presented by Suksaengrakcharoen and Bodhisuwan in 2014. The findings showed that probability density function (pdf) had fairly complexities, so it made problems in estimating parameters. The problem occurred in parameter estimation was that we were unable to calculate estimators in the form of critical expression. Thus, we will use numerical estimation to find the estimators. In this study, we presented a new method of the parameter estimation by using the expectation – maximization algorithm (EM), the conjugate gradient method, and the quasi-Newton method. The data was generated by acceptance-rejection method which is used for estimating α, β, λ and p. λ is the scale parameter, p is the weight parameter, α and β are the shape parameters. We will use Monte Carlo technique to find the estimator's performance. Determining the size of sample equals 10, 30, 100; the simulations were repeated 20 times in each case. We evaluated the effectiveness of the estimators which was introduced by considering values of the mean squared errors and the bias. The findings revealed that the EM-algorithm had proximity to the actual values determined. Also, the maximum likelihood estimators via the conjugate gradient and the quasi-Newton method are less precision than the maximum likelihood estimators via the EM-algorithm.Keywords: conjugate gradient method, quasi-Newton method, EM-algorithm, generalized gamma distribution, length biased generalized gamma distribution, maximum likelihood method
Procedia PDF Downloads 21920264 Calycosin Ameliorates Osteoarthritis by Regulating the Imbalance Between Chondrocyte Synthesis and Catabolism
Authors: Hong Su, Qiuju Yan, Wei Du, En Hu, Zhaoyu Yang, Wei Zhang, Yusheng Li, Tao Tang, Wang yang, Shushan Zhao
Abstract:
Osteoarthritis (OA) is a severe chronic inflammatory disease. As the main active component of Astragalus mongholicus Bunge, a classic traditional ethnic herb, calycosin exhibits anti-inflammatory action and its mechanism of exact targets for OA have yet to be determined. In this study, we established an anterior cruciate ligament transection (ACLT) mouse model. Mice were randomized to sham, OA, and calycosin groups. Cartilage synthesis markers type II collagen (Col-2) and SRY-Box Transcription Factor 9 (Sox-9) increased significantly after calycosin gavage. While cartilage matrix degradation index cyclooxygenase-2 (COX-2), phosphor-epidermal growth factor receptor (p-EGFR), and matrix metalloproteinase-9 (MMP9) expression were decreased. With the help of network pharmacology and molecular docking, these results were confirmed in chondrocyte ATDC5 cells. Our results indicated that the calycosin treatment significantly improved cartilage damage, this was probably attributed to reversing the imbalance between chondrocyte synthesis and catabolism.Keywords: calycosin, osteoarthritis, network pharmacology, molecular docking, inflammatory, cyclooxygenase 2
Procedia PDF Downloads 10620263 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)
Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat
Abstract:
The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring
Procedia PDF Downloads 39620262 Application of Optical Method Based on Laser Devise as Non-Destructive Testing for Calculus of Mechanical Deformation
Authors: R. Daïra, V. Chalvidan
Abstract:
We present the speckle interferometry method to determine the deformation of a piece. This method of holographic imaging using a CCD camera for simultaneous digital recording of two states object and reference. The reconstruction is obtained numerically. This latest method has the advantage of being simpler than the methods currently available, and it does not suffer the holographic configuration faults online. Furthermore, it is entirely digital and avoids heavy analysis after recording the hologram. This work was carried out in the laboratory HOLO 3 (optical metrology laboratory in Saint Louis, France) and it consists in controlling qualitatively and quantitatively the deformation of object by using a camera CCD connected to a computer equipped with software of Fringe Analysis.Keywords: speckle, nondestructive testing, interferometry, image processing
Procedia PDF Downloads 49720261 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 33220260 Tumor Detection of Cerebral MRI by Multifractal Analysis
Authors: S. Oudjemia, F. Alim, S. Seddiki
Abstract:
This paper shows the application of multifractal analysis for additional help in cancer diagnosis. The medical image processing is a very important discipline in which many existing methods are in search of solutions to real problems of medicine. In this work, we present results of multifractal analysis of brain MRI images. The purpose of this analysis was to separate between healthy and cancerous tissue of the brain. A nonlinear method based on multifractal detrending moving average (MFDMA) which is a generalization of the detrending fluctuations analysis (DFA) is used for the detection of abnormalities in these images. The proposed method could make separation of the two types of brain tissue with success. It is very important to note that the choice of this non-linear method is due to the complexity and irregularity of tumor tissue that linear and classical nonlinear methods seem difficult to characterize completely. In order to show the performance of this method, we compared its results with those of the conventional method box-counting.Keywords: irregularity, nonlinearity, MRI brain images, multifractal analysis, brain tumor
Procedia PDF Downloads 44320259 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 19620258 Rheological Properties of Thermoresponsive Poly(N-Vinylcaprolactam)-g-Collagen Hydrogel
Authors: Serap Durkut, A. Eser Elcin, Y. Murat Elcin
Abstract:
Stimuli-sensitive polymeric hydrogels have received extensive attention in the biomedical field due to their sensitivity to physical and chemical stimuli (temperature, pH, ionic strength, light, etc.). This study describes the rheological properties of a novel thermoresponsive poly(N-vinylcaprolactam)-g-collagen hydrogel. In the study, we first synthesized a facile and novel synthetic carboxyl group-terminated thermo-responsive poly(N-vinylcaprolactam)-COOH (PNVCL-COOH) via free radical polymerization. Further, this compound was effectively grafted with native collagen, by utilizing the covalent bond between the carboxylic acid groups at the end of the chains and amine groups of the collagen using cross-linking agent (EDC/NHS), forming PNVCL-g-Col. Newly-formed hybrid hydrogel displayed novel properties, such as increased mechanical strength and thermoresponsive characteristics. PNVCL-g-Col showed low critical solution temperature (LCST) at 38ºC, which is very close to the body temperature. Rheological studies determine structural–mechanical properties of the materials and serve as a valuable tool for characterizing. The rheological properties of hydrogels are described in terms of two dynamic mechanical properties: the elastic modulus G′ (also known as dynamic rigidity) representing the reversible stored energy of the system, and the viscous modulus G″, representing the irreversible energy loss. In order to characterize the PNVCL-g-Col, the rheological properties were measured in terms of the function of temperature and time during phase transition. Below the LCST, favorable interactions allowed the dissolution of the polymer in water via hydrogen bonding. At temperatures above the LCST, PNVCL molecules within PNVCL-g-Col aggregated due to dehydration, causing the hydrogel structure to become dense. When the temperature reached ~36ºC, both the G′ and G″ values crossed over. This indicates that PNVCL-g-Col underwent a sol-gel transition, forming an elastic network. Following temperature plateau at 38ºC, near human body temperature the sample displayed stable elastic network characteristics. The G′ and G″ values of the PNVCL-g-Col solutions sharply increased at 6-9 minute interval, due to rapid transformation into gel-like state and formation of elastic networks. Copolymerization with collagen leads to an increase in G′, as collagen structure contains a flexible polymer chain, which bestows its elastic properties. Elasticity of the proposed structure correlates with the number of intermolecular cross-links in the hydrogel network, increasing viscosity. However, at 8 minutes, G′ and G″ values sharply decreased for pure collagen solutions due to the decomposition of the elastic and viscose network. Complex viscosity is related to the mechanical performance and resistance opposing deformation of the hydrogel. Complex viscosity of PNVCL-g-Col hydrogel was drastically changed with temperature and the mechanical performance of PNVCL-g-Col hydrogel network increased, exhibiting lesser deformation. Rheological assessment of the novel thermo-responsive PNVCL-g-Col hydrogel, exhibited that the network has stronger mechanical properties due to both permanent stable covalent bonds and physical interactions, such as hydrogen- and hydrophobic bonds depending on temperature.Keywords: poly(N-vinylcaprolactam)-g-collagen, thermoresponsive polymer, rheology, elastic modulus, stimuli-sensitive
Procedia PDF Downloads 24320257 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System
Authors: J. K. Adedeji, M. O. Oyekanmi
Abstract:
This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.Keywords: biometric characters, facial recognition, neural network, OpenCV
Procedia PDF Downloads 25620256 The Environmental Benefits of the Adoption of Emission Control for Locomotives in Brazil
Authors: Rui de Abrantes, André Luiz Silva Forcetto
Abstract:
Air pollution is a big problem in many cities around the world. Brazilian big cities also have this problem, where millions of people are exposed daily to pollutants levels above the recommended by WHO. Brazil has taken several actions to reduce air pollution, among others, controlling the atmospheric emissions from vehicles, non-road mobile machinery, and motorcycles, but on the other side, there are no emissions controls for locomotives, which are exposing the population to tons of pollutants annually. The rail network is not homogeneously distributed in the national territory; it is denser near the big cities, and this way, the population is more exposed to pollutants; apart from that, the government intends to increase the rail network as one of the strategies for greenhouse gas mitigation, complying with the international agreements against the climate changes. This paper initially presents the estimated emissions from locomotive fleets with no emission control and with emission control equivalent to US Tier 3 from 2028 and for the next 20 years. However, we realized that a program equivalent to phase Tier 3 would not be effective, so we proposed a program in two steps that will avoid the release of more than 2.4 million tons of CO and 531,000 tons of hydrocarbons, 3.7 million tons of nitrogen oxides, and 102,000 tons of particulate matter in 20 years.Keywords: locomotives, emission control, air pollution, pollutants emission
Procedia PDF Downloads 49