Search results for: computer assisted classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5083

Search results for: computer assisted classification

2653 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 469
2652 Potential of Lead Tolerant and Mobilizing Fungus for Plant Growth Promotion through Plant Growth Promoting Activity; A Promising Approach for Enhance Phytoremediation

Authors: Maria Manzoor, Iram Gul, Muhammad Arshad, Jean Kallerhoff

Abstract:

The potential of fungal isolates to be used in phytoremediation of widespread lead contaminated soil has been evaluated in this study. Five different fungal isolates (Trichoderma harzianum, Penicillium simplicissimum, Aspergillus flavus, Aspergillus niger and Mucor spp.) were obtained and tested for their tolerance to increasing concentration of lead (Pb) i.e. 100, 200, 300, 400 and 500 mgL-1 on PDA and PDB culture experiment. All strains were tolerant up to 500 mgL-1 following sequence; A. flavus > A. niger > Mucor spp. > P. simplicissimum > T. harzianum. Further the isolates were then monitored for possible effect on Pb solubility/mobility through soil incubation experiments and characterized for essays including pathogenicity, germination and root elongation and plant growth promoting activities including IAA (indole acetic acid), phosphorus solubilization and gibberellic acid (GA3) production. Results revealed that fungal isolates have positive effect on Pb mobility in soil and plant biomass production. Pb solubility was significantly (P> 0.05) increased in soil upon application of Mucor spp. P. simplicissimum and T. harzianum. when compared to control. Among different strains three isolates (Mucor spp., P. simplicissimum and T. harzianum) were nonpathogenic because no inhibitory effect of fungus was observed to plant growth when exposed to these strains in root shoot elongation essay. Particularly T. harzianum and P. simplicissimum showed great ability to increase root length by 1.1 and 1.3 folds and shoot length by 1.47 and 1.5 folds respectively under Pb stress (500 mgL-1). Significantly high production of IAA was observed in A. niger (26.7 μg/ml), Phosphorus solubilization was observed in T. harzianum (9.15 μg/ml) and GA3 production was observed in P. simplicissimum (11.02 μg/ml). From results it is concluded that Mucor spp., P. simplicissimum and T. harzianum have potential to increase Pb mobility and improving plant growth under highy Pb contamination, therefore can be used in microbially assisted phytoremediation of Pb contaminated soil.

Keywords: Pb tolerant fungus, Pb mobility, plant growth promoting activities, indole acetic acid (IAA)

Procedia PDF Downloads 269
2651 Psychosocial Consequences of Discovering Misattributed Paternity in Adulthood: Insider Action Research

Authors: Alyona Cerfontyne, Levita D'Souza, Lefteris Patlamazoglou

Abstract:

Unlike adoption and donor-assisted reproduction, misattributed paternity occurring within the context of spontaneous conception and outside of formally recognised practices of having a child remains largely an understudied phenomenon. In adulthood, to discover misattributed paternity, i.e., that the man you call your father is not related to you genetically, can have profound implications for everyone affected. Until the advent of direct-to-consumer DNA testing 20 years ago, such discoveries were relatively rare. Despite the growing number of individuals uncovering their biogenetic paternity through genetic testing, there is very limited research on misattributed paternity from the perspective of adult children affected by it. No research exists on how to support these individuals through counselling post-discovery. Framed as insider action research, this study aimed to explore the perceived psychosocial consequences of misattributed paternity discoveries and coping strategies used by individuals who discover their misattributed paternity status in adulthood. In total, 12 individuals with misattributed paternity participated in semi-structured interviews in July-August 2022. The collected data was analysed using reflexive thematic analysis. The study’s results indicate that discovering misattributed paternity in adulthood can be likened to a watershed moment forever changing the trajectory of one’s life. Psychological experiences consistent with trauma, as well as grief and loss, re-evaluation of close family relationships, reestablishment of one’s identity, as well as experiencing a profound need to belong are the key themes emerging from the analysis of psychosocial experiences. Post-discovery, individuals with misattributed paternity employ a wide range of emotional and problem-focused coping strategies, amongst which seeking connection with those who understand, searching for information on the new biogenetic family and finding new meanings to life are most prominent. The study contributes both to the academic and practical knowledge of experiences of misattributed paternity and highlights the importance of further research on the topic.

Keywords: discovery of misattributed paternity, misattributed paternity, paternal discrepancy, psychosocial consequences, coping

Procedia PDF Downloads 89
2650 Hate Speech Detection in Tunisian Dialect

Authors: Helmi Baazaoui, Mounir Zrigui

Abstract:

This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.

Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation

Procedia PDF Downloads 11
2649 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 129
2648 To Determine the Effects of Regulatory Food Safety Inspections on the Grades of Different Categories of Retail Food Establishments across the Dubai Region

Authors: Shugufta Mohammad Zubair

Abstract:

This study explores the Effect of the new food System Inspection system also called the new inspection color card scheme on reduction of critical & major food safety violations in Dubai. Data was collected from all retail food service establishments located in two zones in the city. Each establishment was visited twice, once before the launch of the new system and one after the launch of the system. In each visit, the Inspection checklist was used as the evaluation tool for observation of the critical and major violations. The old format of the inspection checklist was concerned with scores based on the violations; but the new format of the checklist for the new inspection color card scheme is divided into administrative, general major and critical which gives a better classification for the inspectors to identify the critical and major violations of concerned. The study found that there has been a better and clear marking of violations after the launch of new inspection system wherein the inspectors are able to mark and categories the violations effectively. There had been a 10% decrease in the number of food establishment that was previously given A grade. The B & C grading were also considerably dropped by 5%.

Keywords: food inspection, risk assessment, color card scheme, violations

Procedia PDF Downloads 324
2647 Global Differences in Job Satisfaction of Healthcare Professionals

Authors: Jonathan H. Westover, Ruthann Cunningham, Jaron Harvey

Abstract:

Purpose: Job satisfaction is one of the most critical attitudes among employees. Understanding whether employees are satisfied with their jobs and what is driving that satisfaction is important for any employer, but particularly for healthcare organizations. This study looks at the question of job satisfaction and drivers of job satisfaction among healthcare professionals at a global scale, looking for trends that generalize across 37 countries. Study: This study analyzed job satisfaction responses to the 2015 Work Orientations IV wave of the International Social Survey Programme (ISSP) to understand differences in antecedents for and levels of job satisfaction among healthcare professionals. A total of 18,716 respondents from 37 countries participated in the annual survey. Findings: Respondents self-identified their occupational category based on corresponding International Standard Classification of Occupations (ISCO-08) codes. Results suggest that mean overall job satisfaction was highest among health service managers and generalist medical practitioners and lowest among environmental hygiene professionals and nursing professionals. Originality: Many studies have addressed the issue of job satisfaction in healthcare, examining small samples of specific healthcare workers. In this study, using a large international dataset, we are able to examine questions of job satisfaction across large groups of healthcare workers in different occupations within the healthcare field.

Keywords: job satisfaction, healthcare industry, global comparisons, workplace

Procedia PDF Downloads 145
2646 Review and Classification of the Indicators and Trends Used in Bridge Performance Modeling

Authors: S. Rezaei, Z. Mirzaei, M. Khalighi, J. Bahrami

Abstract:

Bridges, as an essential part of road infrastructures, are affected by various deterioration mechanisms over time due to the changes in their performance. As changes in performance can have many negative impacts on society, it is essential to be able to evaluate and measure the performance of bridges throughout their life. This evaluation includes the development or the choice of the appropriate performance indicators, which, in turn, are measured based on the selection of appropriate models for the existing deterioration mechanism. The purpose of this article is a statistical study of indicators and deterioration mechanisms of bridges in order to discover further research capacities in bridges performance assessment. For this purpose, some of the most common indicators of bridge performance, including reliability, risk, vulnerability, robustness, and resilience, were selected. The researches performed on each index based on the desired deterioration mechanisms and hazards were comprehensively reviewed. In addition, the formulation of the indicators and their relationship with each other were studied. The research conducted on the mentioned indicators were classified from the point of view of deterministic or probabilistic method, the level of study (element level, object level, etc.), and the type of hazard and the deterioration mechanism of interest. For each of the indicators, a number of challenges and recommendations were presented according to the review of previous studies.

Keywords: bridge, deterioration mechanism, lifecycle, performance indicator

Procedia PDF Downloads 105
2645 Evaluate the Effect of Teaching Small Scale Bussiness and Entrepreneurship on Graduates Unemployment in Nigeria: A Case Study of Anambra and Enugu State, South East Nigeria

Authors: Erinma Chibuzo Nwandu

Abstract:

Graduates unemployment has risen astronomically in spite of the emphasis on teaching of small scale business and Entrepreneurship in schools. This study sets out to evaluate the effect of teaching small scale business and Entrepreneurship on graduates’ unemployment in Nigeria. This study adopted the survey research design. Thus the nature of data for this study is primary, sourced by the use of a questionnaire administered to a sample of two thousand and sixty-five (2065) respondents drawn from groups of graduates who are employed, unemployed and self-employed in South East Nigeria. Simple percentages, Chi-square and regression analysis were used to derive useful and meaningful information and test the hypotheses respectively. Findings from the study suggest that Nigeria graduates are ill prepared to embark on small-scale business and entrepreneurship after graduation, and that teaching of small scale business and entrepreneurship in Nigeria tertiary institutions is ineffective on graduate unemployment reduction. Findings also suggest that while a lot of graduates agreed that they have taken a class(s) on small scale or entrepreneurship, they received more theoretical teachings than practical, more so while teachings on small scale business or entrepreneurship motivated graduates to think of self-employment, most of them cannot do a good business plan and hence could not benefit from some kind of Government assisted program for small-scale business and bank loan for the sake of small scale business. Thus, so many graduates are not interested in small scale business or entrepreneurship development as a result of lack of startup capital. The study thus recommends that course content and teaching method of entrepreneurship education needs to be reviewed and re-structured to constitute more practical teachings than theoretical teachings. Also, graduates should be exposed to seminar /workshop for self-employment at least once every semester. There should be practical teaching and practice of developing a business plan that will be viable to attract government or private sponsorship as well for it to be viable to attract financing from financing institutions. Government should provide a fund such as venture capital financing arrangement to empower business startups in Nigeria by graduates’.

Keywords: entrepreneurship, small scale business, startup capital, unemployment

Procedia PDF Downloads 280
2644 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
2643 Nano-Plasmonic Diagnostic Sensor Using Ultraflat Single-Crystalline Au Nanoplate and Cysteine-Tagged Protein G

Authors: Hwang Ahreum, Kang Taejoon, Kim Bongsoo

Abstract:

Nanosensors for high sensitive detection of diseases have been widely studied to improve the quality of life. Here, we suggest robust nano-plasmonic diagnostic sensor using cysteine tagged protein G (Cys3-protein G) and ultraflat, ultraclean and single-crystalline Au nanoplates. Protein G formed on an ultraflat Au surface provides ideal background for dense and uniform immobilization of antibodies. The Au is highly stable in diverse biochemical environment and can immobilize antibodies easily through Au-S bonding, having been widely used for various biosensing applications. Especially, atomically smooth single-crystalline Au nanomaterials synthesized using chemical vapor transport (CVT) method are very suitable to fabricate reproducible sensitive sensors. As the C-reactive protein (CRP) is a nonspecific biomarker of inflammation and infection, it can be used as a predictive or prognostic marker for various cardiovascular diseases. Cys3-protein G immobilized uniformly on the Au nanoplate enable CRP antibody (anti-CRP) to be ordered in a correct orientation, making their binding capacity be maximized for CRP detection. Immobilization condition for the Cys3-protein G and anti-CRP on the Au nanoplate is optimized visually by AFM analysis. Au nanoparticle - Au nanoplate (NPs-on-Au nanoplate) assembly fabricated from sandwich immunoassay for CRP can reduce zero-signal extremely caused by nonspecific bindings, providing a distinct surface-enhanced Raman scattering (SERS) enhancement still in 10-18 M of CRP concentration. Moreover, the NP-on-Au nanoplate sensor shows an excellent selectivity against non-target proteins with high concentration. In addition, comparing with control experiments employing a Au film fabricated by e-beam assisted deposition and linker molecule, we validate clearly contribution of the Au nanoplate for the attomolar sensitive detection of CRP. We expect that the devised platform employing the complex of single-crystalline Au nanoplates and Cys3-protein G can be applied for detection of many other cancer biomarkers.

Keywords: Au nanoplate, biomarker, diagnostic sensor, protein G, SERS

Procedia PDF Downloads 258
2642 Decision Tree Analysis of Risk Factors for Intravenous Infiltration among Hospitalized Children: A Retrospective Study

Authors: Soon-Mi Park, Ihn Sook Jeong

Abstract:

This retrospective study was aimed to identify risk factors of intravenous (IV) infiltration for hospitalized children. The participants were 1,174 children for test and 424 children for validation, who admitted to a general hospital, received peripheral intravenous injection therapy at least once and had complete records. Data were analyzed with frequency and percentage or mean and standard deviation were calculated, and decision tree analysis was used to screen for the most important risk factors for IV infiltration for hospitalized children. The decision tree analysis showed that the most important traditional risk factors for IV infiltration were the use of ampicillin/sulbactam, IV insertion site (lower extremities), and medical department (internal medicine) both in the test sample and validation sample. The correct classification was 92.2% in the test sample and 90.1% in the validation sample. More careful attention should be made to patients who are administered ampicillin/sulbactam, have IV site in lower extremities and have internal medical problems to prevent or detect infiltration occurrence.

Keywords: decision tree analysis, intravenous infiltration, child, validation

Procedia PDF Downloads 176
2641 You Only Get One Brain: An Exploratory Retrospective Study On Life After Adolescent TBI

Authors: Mulligan T., Barker-Collo S., Gobson K., Jones K.

Abstract:

There is a relatively scarce body of literature regarding adolescent experiences of traumatic brain injury (TBI). This qualitative study explored how sustaining a TBI at this unique stage of development might impact a young person as they navigate the challenges of adolescence and transition to adulthood, and what might support recovery. Thirteen young adults who sustained a mild-moderate TBI as an adolescent (aged 13 – 17 years), approximately 7.7 years (range = 6.7 – 8.0 years) prior, participated in the research. Semi-structured individual interviews were conducted to explore participants’ experiences surrounding and following their TBIs. Thematic analysis of interview data produced five key categories of findings: (1) Following their TBIs, many participants experienced problems with cognitive (e.g., forgetfulness, concentration difficulties), physical (e.g., migraines, fatigue) and emotional (e.g., depression, anxiety) functioning, which were often endured into adulthood. (2) TBI-related problems often adversely affected important areas of life for the participant, including school, work and friendships. (3) Changes following TBI commonly impacted identity formation. (4) Recovery processes evolved over time as the participants coped initially by just ‘getting on with it’, before learning to accept new limitations and, ultimately, growing from their TBI experiences. (5) While the presence of friends and family assisted recovery, struggles were often exacerbated by a lack of emotional support from others, in addition to the absence of any assistance or information-provision from professionals regarding what to expect following TBI. The findings suggest that even mild TBI sustained during adolescence can have consequences for an individual’s functioning, engagement in life and identity development, whilst also giving rise to post-traumatic growth. Recovery following adolescent TBI might be maximised by facilitating greater understanding of the injury and acknowledging its impacts on important areas of life, as well as the provision of emotional support and facilitating self-reflection and meaning-making.

Keywords: adolescent, brain Injury, qualitative, post-traumatic growth

Procedia PDF Downloads 55
2640 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison

Authors: Saugata Bose, Ritambhra Korpal

Abstract:

The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.

Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram

Procedia PDF Downloads 358
2639 Mineralogy and Classification of Altered Host Rocks in the Zaghia Iron Oxide Deposit, East of Bafq, Central Iran

Authors: Azat Eslamizadeh, Neda Akbarian

Abstract:

The Zaghia Iron ore, in 15 km east of a town named Bafq, is located in Precambrian formation of Central Iran in form of a small local deposit. The Volcano-sedimentary rocks of Precambrian-Cambrian age, belonging to Rizu series have spread through the region. Substantial portion of the deposit is covered by alluvial deposits. The rocks hosting the Zaghia iron ore have a main combination of rhyolitic tuffs along with clastic sediments, carbonate include sandstone, limestone, dolomite, conglomerate and is somewhat metamorphed causing them to have appeared as slate and phyllite. Moreover, carbonate rocks are in existence as skarn compound of marble bearing tremolite with mineralization of magnetite-hematite. The basic igneous rocks have dramatically altered into green rocks consist of actinolite-tremolite and chlorite along with amount of iron (magnetite + Martite). The youngest units of ore-bearing rocks in the area are found as dolerite - diabase dikes. The dikes are cutting the rhyolitic tuffs and carbonate rocks.

Keywords: Zaghia, iron ore deposite, mineralogy, petrography Bafq, Iran

Procedia PDF Downloads 524
2638 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis

Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu

Abstract:

Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.

Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding

Procedia PDF Downloads 167
2637 Recovery of Dredged Sediments With Lime or Cement as Platform Materials for Use in a Roadway

Authors: Abriak Yassine, Zri Abdeljalil, Benzerzour Mahfoud., Hadj Sadok Rachid, Abriak Nor-Edine

Abstract:

In this study, firstly, the study of the capacity reuse of dredged sediments and treated sediments with lime or cement were used in an establishment layer and the base layer of the roadway. Also, the analysis of mineral changes caused by the addition of lime or cement on the way as described in the mechanical results of stabilised sediments. After determining the quantity of lime and cement required to stabilise the sediment, the compaction characteristics were studied using the modified Proctor method. Then the evolution of the three parameters, that is, ideal water content and maximum dry density had been determined. Mechanical exhibitions can be assessed across the resistance to compression, flexibility modulus and the resistance under traction. The resistance of the formulation treated with cement addition (ROLAC®645) increase with the quantity of ROLAC®645. Traction resistances and the elastic modulus were utilized to assess the potential of the formulation as road construction materials utilizing classification diagram. The results show the various formulations with ROLAC® 645may be employed in subgrades and foundation layers for roads.

Keywords: cement, dredged, sediment, foundation layer, resistance

Procedia PDF Downloads 100
2636 Decomposition of Funds Transfer Pricing Components in Islamic Bank: The Exposure Effect of Shariah Non-Compliant Event Rectification Process

Authors: Azrul Azlan Iskandar Mirza

Abstract:

The purpose of Funds Transfer Pricing (FTP) for Islamic Bank is to promote prudent liquidity risk-taking behavior of business units. The acquirer of stable deposits will be rewarded whilst a business unit that generates long-term assets will be charged for added liquidity funding risks. In the end, it promotes risk-adjusted pricing by incorporating profit rate risk and liquidity risk component in the product pricing. However, in the event of Shariah non-compliant (SNCE), FTP components will be examined in the rectification plan especially when Islamic banks need to purify the non-compliance income. The finding shows that the determination between actual and provision cost will defer the decision among Shariah committee in Islamic banks. This paper will review each of FTP components to ensure the classification of actual and provision costs reflect the decision on rectification process on SNCE. This will benefit future decision and its consistency of Islamic banks.

Keywords: fund transfer pricing, Islamic banking, Islamic finance, shariah non-compliant event

Procedia PDF Downloads 195
2635 The Analyzer: Clustering Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human Computer Interaction

Authors: Dona Shaini Abhilasha Nanayakkara, Kurugamage Jude Pravinda Gregory Perera

Abstract:

E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. The Analyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling The Analyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.

Keywords: data clustering, data standardization, dimensionality reduction, human computer interaction, user profiling

Procedia PDF Downloads 74
2634 Second-Order Complex Systems: Case Studies of Autonomy and Free Will

Authors: Eric Sanchis

Abstract:

Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain.

Keywords: autonomy, free will, synthetic property, vaporous complex systems

Procedia PDF Downloads 205
2633 Facies, Diagenetic Analysis and Sequence Stratigraphy of Habib Rahi Formation Dwelling in the Vicinity of Jacobabad Khairpur High, Southern Indus Basin, Pakistan

Authors: Muhammad Haris, Syed Kamran Ali, Mubeen Islam, Tariq Mehmood, Faisal Shah

Abstract:

Jacobabad Khairpur High, part of a Sukkur rift zone, is the separating boundary between Central and Southern Indus Basin, formed as a result of Post-Jurassic uplift after the deposition of Middle Jurassic Chiltan Formation. Habib Rahi Formation of Middle to Late Eocene outcrops in the vicinity of Jacobabad Khairpur High, a section at Rohri near Sukkur is measured in detail for lithofacies, microfacies, diagenetic analysis and sequence stratigraphy. Habib Rahi Formation is richly fossiliferous and consists of mostly limestone with subordinate clays and marl. The total thickness of the formation in this section is 28.8m. The bottom of the formation is not exposed, while the upper contact with the Sirki Shale of the Middle Eocene age is unconformable in some places. A section is measured using Jacob’s Staff method, and traverses were made perpendicular to the strike. Four different lithofacies were identified based on outcrop geology which includes coarse-grained limestone facies (HR-1 to HR-5), massive bedded limestone facies (HR-6 HR-7), and micritic limestone facies (HR-8 to HR-13) and algal dolomitic limestone facie (HR-14). Total 14 rock samples were collected from outcrop for detailed petrographic studies, and thin sections of respective samples were prepared and analyzed under the microscope. On the basis of Dunham’s (1962) classification systems after studying textures, grain size, and fossil content and using Folk’s (1959) classification system after reviewing Allochems type, four microfacies were identified. These microfacies include HR-MF 1: Benthonic Foraminiferal Wackstone/Biomicrite Microfacies, HR-MF 2: Foramineral Nummulites Wackstone-Packstone/Biomicrite Microfacies HR-MF 3: Benthonic Foraminiferal Packstone/Biomicrite Microfacies, HR-MF 4: Bioclasts Carbonate Mudstone/Micrite Microfacies. The abundance of larger benthic Foraminifera’s (LBF), including Assilina sp., A. spiral abrade, A. granulosa, A. dandotica, A. laminosa, Nummulite sp., N. fabiani, N. stratus, N. globulus, Textularia, Bioclasts, and Red algae indicates shallow marine (Tidal Flat) environment of deposition. Based on variations in rock types, grain size, and marina fauna Habib Rahi Formation shows progradational stacking patterns, which indicates coarsening upward cycles. The second order of sea-level rise is identified (spanning from Y-Persian to Bartonian age) that represents the Transgressive System Tract (TST) and a third-order Regressive System Tract (RST) (spanning from Bartonian to Priabonian age). Diagenetic processes include fossils replacement by mud, dolomitization, pressure dissolution associated stylolites features and filling with dark organic matter. The presence of the microfossils includes Nummulite. striatus, N. fabiani, and Assilina. dandotica, signify Bartonian to Priabonian age of Habib Rahi Formation.

Keywords: Jacobabad Khairpur High, Habib Rahi Formation, lithofacies, microfacies, sequence stratigraphy, diagenetic history

Procedia PDF Downloads 473
2632 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
2631 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System

Authors: Kaoutar Ben Azzou, Hanaa Talei

Abstract:

Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.

Keywords: automated recruitment, candidate screening, machine learning, human resources management

Procedia PDF Downloads 56
2630 Performance Measurement of Logistics Systems for Thailand's Wholesales and Retails Industries by Data Envelopment Analysis

Authors: Pornpimol Chaiwuttisak

Abstract:

The study aims to compare the performance of the logistics for Thailand’s wholesale and retail trade industries (except motor vehicles, motorcycle, and stalls) by using data (data envelopment analysis). Thailand Standard Industrial Classification in 2009 (TSIC - 2009) categories that industries into sub-group no. 45: wholesale and retail trade (except for the repair of motor vehicles and motorcycles), sub-group no. 46: wholesale trade (except motor vehicles and motorcycles), and sub-group no. 47: retail trade (except motor vehicles and motorcycles. Data used in the study is collected by the National Statistical Office, Thailand. The study consisted of four input factors include the number of companies, the number of personnel in logistics, the training cost in logistics, and outsourcing logistics management. Output factor includes the percentage of enterprises having inventory management. The results showed that the average relative efficiency of small-sized enterprises equals to 27.87 percent and 49.68 percent for the medium-sized enterprises.

Keywords: DEA, wholesales and retails, logistics, Thailand

Procedia PDF Downloads 416
2629 The Impact of Artificial Intelligence on Medicine Production

Authors: Yasser Ahmed Mahmoud Ali Helal

Abstract:

The use of CAD (Computer Aided Design) technology is ubiquitous in the architecture, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of architecture schools in Nigeria as an important part of the training module. This article examines the ethical issues involved in implementing CAD (Computer Aided Design) content into the architectural education curriculum. Using existing literature, this study begins with the benefits of integrating CAD into architectural education and the responsibilities of different stakeholders in the implementation process. It also examines issues related to the negative use of information technology and the perceived negative impact of CAD use on design creativity. Using a survey method, data from the architecture department of University was collected to serve as a case study on how the issues raised were being addressed. The article draws conclusions on what ensures successful ethical implementation. Millions of people around the world suffer from hepatitis C, one of the world's deadliest diseases. Interferon (IFN) is treatment options for patients with hepatitis C, but these treatments have their side effects. Our research focused on developing an oral small molecule drug that targets hepatitis C virus (HCV) proteins and has fewer side effects. Our current study aims to develop a drug based on a small molecule antiviral drug specific for the hepatitis C virus (HCV). Drug development using laboratory experiments is not only expensive, but also time-consuming to conduct these experiments. Instead, in this in silicon study, we used computational techniques to propose a specific antiviral drug for the protein domains of found in the hepatitis C virus. This study used homology modeling and abs initio modeling to generate the 3D structure of the proteins, then identifying pockets in the proteins. Acceptable lagans for pocket drugs have been developed using the de novo drug design method. Pocket geometry is taken into account when designing ligands. Among the various lagans generated, a new specific for each of the HCV protein domains has been proposed.

Keywords: drug design, anti-viral drug, in-silicon drug design, hepatitis C virus (HCV) CAD (Computer Aided Design), CAD education, education improvement, small-size contractor automatic pharmacy, PLC, control system, management system, communication

Procedia PDF Downloads 84
2628 Image Segmentation: New Methods

Authors: Flaurence Benjamain, Michel Casperance

Abstract:

We present in this paper, first, a comparative study of three mathematical theories to achieve the fusion of information sources. This study aims to identify the characteristics inherent in theories of possibilities, belief functions (DST) and plausible and paradoxical reasoning to establish a strategy of choice that allows us to adopt the most appropriate theory to solve a problem of fusion in order, taking into account the acquired information and imperfections that accompany them. Using the new theory of plausible and paradoxical reasoning, also called Dezert-Smarandache Theory (DSmT), to fuse information multi-sources needs, at first step, the generation of the composites events witch is, in general, difficult. Thus, we present in this paper a new approach to construct pertinent paradoxical classes based on gray levels histograms, which also allows to reduce the cardinality of the hyper-powerset. Secondly, we developed a new technique for order and coding generalized focal elements. This method is exploited, in particular, to calculate the cardinality of Dezert and Smarandache. Then, we give an experimentation of classification of a remote sensing image that illustrates the given methods and we compared the result obtained by the DSmT with that resulting from the use of the DST and theory of possibilities.

Keywords: segmentation, image, approach, vision computing

Procedia PDF Downloads 276
2627 EDTA Assisted Phytoremediation of Cadmium by Enhancing Growth and Antioxidant Defense System in Brassica napus L.

Authors: Mujahid Farid, Shafaqat Ali, Muhammad Bilal Shakoor

Abstract:

Heavy metals pollution of soil is a prevalent global problem and oilseed rape (Brassica napus L.) are considered useful for the restoration of metal contaminated soils. Phytoextraction is an in-situ environment-friendly technique for the clean-up of contaminated soils. Response to cadmium (Cd) toxicity in combination with a chelator, Ethylenediamminetetraacetic acid (EDTA) was studied in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cd decreased plant growth, biomass and chlorophyll concentrations while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Significant decrease in photosynthetic parameters was found by the Cd alone. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) and a significant reduction was observed in the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase under Cd stress plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. Oilseed rape (Brassica napus L.) actively accumulated Cd in roots, stems and leaves and the addition of EDTA boosted the uptake and accumulation of Cd in oil seed rape by dissociating Cd in culture media. The present results suggest that under 8 weeks Cd-induced stress, application of EDTA significantly improve plant growth, chlorophyll content, photosynthetic, gas exchange capacity, improving enzymes activities and increased the metal uptake in roots, stems and leaves of oilseed rape (Brassica napus L.) respectively.

Keywords: antioxidant enzymes, cadmium, chelator, EDTA, growth, oilseed rape

Procedia PDF Downloads 392
2626 A Documentary Review of Theoretical and Practical Elements for a Genre Analysis of Thailand Travel Listicles

Authors: Pinyada Santisarun, Yaowaret Tharawoot, Songyut Akkakoson

Abstract:

This paper reports on a literature review sub-study of a larger research project which has been designed to identify the rhetorical organization of a travel writing genre, together with the use of lexical choices, syntactical structures, and graphological features, based on a randomly-selected corpus of Thailand travel listicles. Conducted as a library-based overview, this study aims to specify theoretical and practical elements for the said larger study. The materials for the review have been retrieved from various Internet sources, covering both public search engines and library databases. Generally, the article focuses on answering questions about the ‘what’ and the ‘how’ of such background elements widely discussed in the literature as the meaning of listicles, how the travel listicles’ patterns and regularities can be categorized to form a new genre, the effect of computer-mediated communication on the travel world, the travel language, and the current situation concerning the importance of travel listicles. The theoretical and practical data derived from this study provide valuable insights into the way in which the genre analysis and lexico-syntactical examination of Thailand travel listicles in the present authors’ larger research project can be properly conducted. The data gained can be added to the expanding body of knowledge in the field of the ESP genre.

Keywords: computer-mediated communication, digital writing, genre-based analysis, online travel writing, tourism language

Procedia PDF Downloads 145
2625 Electronic Mentoring: How Can It Be Used with Teachers?

Authors: Roberta Gentry

Abstract:

Electronic mentoring is defined as a relationship between a mentor and a mentee using computer mediated communication (CMC) that is intended to develop and improve mentee’s skills, confidence, and cultural understanding. This session will increase knowledge about electronic mentoring, its uses, and outcomes. The research behind electronic mentoring and descriptions of existing programs will also be shared.

Keywords: electronic mentoring, mentoring, beginning special educators, education

Procedia PDF Downloads 253
2624 Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier

Authors: Amit Verma, Simranjeet Kaur, Sandeep Kaur

Abstract:

Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases.

Keywords: test case prioritization, classification, artificial neural networks, TF-IDF

Procedia PDF Downloads 397