Search results for: shrinkage coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2426

Search results for: shrinkage coefficient

26 Concepts of Technologies Based on Smart Materials to Improve Aircraft Aerodynamic Performance

Authors: Krzysztof Skiba, Zbigniew Czyz, Ksenia Siadkowska, Piotr Borowiec

Abstract:

The article presents selected concepts of technologies that use intelligent materials in aircraft in order to improve their performance. Most of the research focuses on solutions that improve the performance of fixed wing aircraft due to related to their previously dominant market share. Recently, the development of the rotorcraft has been intensive, so there are not only helicopters but also gyroplanes and unmanned aerial vehicles using rotors and vertical take-off and landing. There are many different technologies to change a shape of the aircraft or its elements. Piezoelectric, deformable actuator systems can be applied in the system of an active control of vibration dampening in the aircraft tail structure. Wires made of shape memory alloys (SMA) could be used instead of hydraulic cylinders in the rear part of the aircraft flap. The aircraft made of intelligent materials (piezoelectrics and SMA) is one of the NASA projects which provide the possibility of changing a wing shape coefficient by 200%, a wing surface by 50%, and wing deflections by 20 degrees. Active surfaces made of shape memory alloys could be used to control swirls in the flowing stream. An intelligent control system for helicopter blades is a method for the active adaptation of blades to flight conditions and the reduction of vibrations caused by the rotor. Shape memory alloys are capable of recovering their pre-programmed shapes. They are divided into three groups: nickel-titanium-based, copper-based, and ferromagnetic. Due to the strongest shape memory effect and the best vibration damping ability, a Ni-Ti alloy is the most commercially important. The subject of this work was to prepare a conceptual design of a rotor blade with SMA actuators. The scope of work included 3D design of the supporting rotor blade, 3D design of beams enabling to change the geometry by changing the angle of rotation and FEM (Finite Element Method) analysis. The FEM analysis was performed using NX 12 software in the Pre/Post module, which includes extended finite element modeling tools and visualizations of the obtained results. Calculations are presented for two versions of the blade girders. For FEM analysis, three types of materials were used for comparison purposes (ABS, aluminium alloy 7057, steel C45). The analysis of internal stresses and extreme displacements of crossbars edges was carried out. The internal stresses in all materials were close to the yield point in the solution of girder no. 1. For girder no. 2 solution, the value of stresses decreased by about 45%. As a result of the displacement analysis, it was found that the best solution was the ABS girder no. 1. The displacement of about 0.5 mm was obtained, which resulted in turning the crossbars (upper and lower) by an angle equal to 3.59 degrees. This is the largest deviation of all the tests. The smallest deviation was obtained for beam no. 2 made of steel. The displacement value of the second girder solution was approximately 30% lower than the first solution. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.

Keywords: aircraft, helicopters, shape memory alloy, SMA, smart material, unmanned aerial vehicle, UAV

Procedia PDF Downloads 138
25 Pre-Cancerigene Injuries Related to Human Papillomavirus: Importance of Cervicography as a Complementary Diagnosis Method

Authors: Denise De Fátima Fernandes Barbosa, Tyane Mayara Ferreira Oliveira, Diego Jorge Maia Lima, Paula Renata Amorim Lessa, Ana Karina Bezerra Pinheiro, Cintia Gondim Pereira Calou, Glauberto Da Silva Quirino, Hellen Lívia Oliveira Catunda, Tatiana Gomes Guedes, Nicolau Da Costa

Abstract:

The aim of this study is to evaluate the use of Digital Cervicography (DC) in the diagnosis of precancerous lesions related to Human Papillomavirus (HPV). Cross-sectional study with a quantitative approach, of evaluative type, held in a health unit linked to the Pro Dean of Extension of the Federal University of Ceará, in the period of July to August 2015 with a sample of 33 women. Data collecting was conducted through interviews with enforcement tool. Franco (2005) standardized the technique used for DC. Polymerase Chain Reaction (PCR) was performed to identify high-risk HPV genotypes. DC were evaluated and classified by 3 judges. The results of DC and PCR were classified as positive, negative or inconclusive. The data of the collecting instruments were compiled and analyzed by the software Statistical Package for Social Sciences (SPSS) with descriptive statistics and cross-references. Sociodemographic, sexual and reproductive variables were analyzed through absolute frequencies (N) and their respective percentage (%). Kappa coefficient (κ) was applied to determine the existence of agreement between the DC of reports among evaluators with PCR and also among the judges about the DC results. The Pearson's chi-square test was used for analysis of sociodemographic, sexual and reproductive variables with the PCR reports. It was considered statistically significant (p<0.05). Ethical aspects of research involving human beings were respected, according to 466/2012 Resolution. Regarding the socio-demographic profile, the most prevalent ages and equally were those belonging to the groups 21-30 and 41-50 years old (24.2%). The brown color was reported in excess (84.8%) and 96.9% out of them had completed primary and secondary school or studying. 51.5% were married, 72.7% Catholic, 54.5% employed and 48.5% with income between one and two minimum wages. As for the sexual and reproductive characteristics, prevailed heterosexual (93.9%) who did not use condoms during sexual intercourse (72.7%). 51.5% had a previous history of Sexually Transmitted Infection (STI), and HPV the most prevalent STI (76.5%). 57.6% did not use contraception, 78.8% underwent examination Cancer Prevention Uterus (PCCU) with shorter time interval or equal to one year, 72.7% had no cases of Cervical Cancer in the family, 63.6% were multiparous and 97% were not vaccinated against HPV. DC identified good level of agreement between raters (κ=0.542), had a specificity of 77.8% and sensitivity of 25% when compared their results with PCR. Only the variable race showed a statistically significant association with CRP (p=0.042). DC had 100% acceptance amongst women in the sample, revealing the possibility of other experiments in using this method so that it proves as a viable technique. The DC positivity criteria were developed by nurses and these professionals also perform PCCU in Brazil, which means that DC can be an important complementary diagnostic method for the appreciation of these professional’s quality of examinations.

Keywords: gynecological examination, human papillomavirus, nursing, papillomavirus infections, uterine lasmsneop

Procedia PDF Downloads 300
24 From Modelled Design to Reality through Material and Machinery Lab and Field Tests: Porous Concrete Carparks at the Wanda Metropolitano Stadium in Madrid

Authors: Manuel de Pazos-Liano, Manuel Cifuentes-Antonio, Juan Fisac-Gozalo, Sara Perales-Momparler, Carlos Martinez-Montero

Abstract:

The first-ever game in the Wanda Metropolitano Stadium, the new home of the Club Atletico de Madrid, was played on September 16, 2017, thanks to the work of a multidisciplinary team that made it possible to combine urban development with sustainability goals. The new football ground sits on a 1.2 km² land owned by the city of Madrid. Its construction has dramatically increased the sealed area of the site (transforming the runoff coefficient from 0.35 to 0.9), and the surrounding sewer network has no capacity for that extra flow. As an alternative to enlarge the existing 2.5 m diameter pipes, it was decided to detain runoff on site by means of an integrated and durable infrastructure that would not blow up the construction cost nor represent a burden on the municipality’s maintenance tasks. Instead of the more conventional option of building a large concrete detention tank, the decision was taken on the use of pervious pavement on the 3013 car parking spaces for sub-surface water storage, a solution aligned with the city water ordinance and the Madrid + Natural project. Making the idea a reality, in only five months and during the summer season (which forced to pour the porous concrete only overnight), was a challenge never faced before in Spain, that required of innovation both at the material as well as the machinery side. The process consisted on: a) defining the characteristics required for the porous concrete (compressive strength of 15 N/mm2 and 20% voids); b) testing of different porous concrete dosages at the construction company laboratory; c) stablishing the cross section in order to provide structural strength and sufficient water detention capacity (20 cm porous concrete over a 5 cm 5/10 gravel, that sits on a 50 cm coarse 40/50 aggregate sub-base separated by a virgin fiber polypropylene geotextile fabric); d) hydraulic computer modelling (using the Full Hydrograph Method based on the Wallingford Procedure) to estimate design peak flows decrease (an average of 69% at the three car parking lots); e) use of a variety of machinery for the application of the porous concrete to achieve both structural strength and permeable surface (including an inverse rotating rolling imported from USA, and the so-called CMI, a sliding concrete paver used in the construction of motorways with rigid pavements); f) full-scale pilots and final construction testing by an accredited laboratory (pavement compressive strength average value of 15 N/mm2 and 0,0032 m/s permeability). The continuous testing and innovating construction process explained in detail within this article, allowed for a growing performance with time, finally proving the use of the CMI valid also for large porous car park applications. All this process resulted in a successful story that converts the Wanda Metropolitano Stadium into a great demonstration site that will help the application of the Spanish Royal Decree 638/2016 (it also counts with rainwater harvesting for grass irrigation).

Keywords: construction machinery, permeable carpark, porous concrete, SUDS, sustainable develpoment

Procedia PDF Downloads 144
23 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 231
22 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars

Authors: Ankit Khurana

Abstract:

The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.

Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum

Procedia PDF Downloads 408
21 EGF Serum Level in Diagnosis and Prediction of Mood Disorder in Adolescents and Young Adults

Authors: Monika Dmitrzak-Weglarz, Aleksandra Rajewska-Rager, Maria Skibinska, Natalia Lepczynska, Piotr Sibilski, Joanna Pawlak, Pawel Kapelski, Joanna Hauser

Abstract:

Epidermal growth factor (EGF) is a well-known neurotrophic factor that involves in neuronal growth and synaptic plasticity. The proteomic research provided in order to identify novel candidate biological markers for mood disorders focused on elevated EGF serum level in patients during depression episode. However, the EGF association with mood disorder spectrum among adolescents and young adults has not been studied extensively. In this study, we aim to investigate the serum levels of EGF in adolescents and young adults during hypo/manic, depressive episodes and in remission compared to healthy control group. In our study, we involved 80 patients aged 12-24 years in 2-year follow-up study with a primary diagnosis of mood disorder spectrum, and 35 healthy volunteers matched by age and gender. Diagnoses were established according to DSM-IV-TR criteria using structured clinical interviews: K-SADS for child and adolescents, and SCID for young adults. Clinical and biological evaluations were made at baseline and euthymic mood (at 3th or 6th month of treatment and after 1 and 2 years). The Young Mania Rating Scale and Hamilton Rating Scale for Depression were used for assessment. The study protocols were approved by the relevant ethics committee. Serum protein concentration was determined by Enzyme-Linked Immunosorbent Assays (ELISA) method. Human EGF (cat. no DY 236) DuoSet ELISA kit was used (R&D Systems). Serum EGF levels were analysed with following variables: age, age under 18 and above 18 years old, sex, family history of affective disorders, drug-free vs. medicated. Shapiro-Wilk test was used to test the normality of the data. The homogeneity of variance was calculated with Levene’s test. EGF levels showed non-normal distribution and the homogeneity of variance was violated. Non-parametric tests: Mann-Whitney U test, Kruskall-Wallis ANOVA, Friedman’s ANOVA, Wilcoxon signed rank test, Spearman correlation coefficient was applied in the analyses The statistical significance level was set at p<0.05. Elevated EGF level at baseline (p=0.001) and at month 24 (p=0.02) was detected in study subjects compared with controls. Increased EGF level in women at month 12 (p=0.02) compared to men in study group have been observed. Using Wilcoxon signed rank test differences in EGF levels were detected: decrease from baseline to month 3 (p=0.014) and increase comparing: month 3 vs. 24 (p=0.013); month 6 vs. 12 (p=0.021) and vs. 24 (p=0.008). EGF level at baseline was negatively correlated with depression and mania occurrence at 24 months. EGF level at 24 months was positively correlated with depression and mania occurrence at 12 months. No other correlations of EGF levels with clinical and demographical variables have been detected. The findings of the present study indicate that EGF serum level is significantly elevated in the study group of patients compared to the controls. We also observed fluctuations in EGF levels during two years of disease observation. EGF seems to be useful as an early marker for prediction of diagnosis, course of illness and treatment response in young patients during first episode od mood disorders, which requires further investigation. Grant was founded by National Science Center in Poland no 2011/03/D/NZ5/06146.

Keywords: biological marker, epidermal growth factor, mood disorders, prediction

Procedia PDF Downloads 189
20 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 116
19 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials

Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte

Abstract:

Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.

Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance

Procedia PDF Downloads 80
18 Xen45 Gel Implant in Open Angle Glaucoma: Efficacy, Safety and Predictors of Outcome

Authors: Fossarello Maurizio, Mattana Giorgio, Tatti Filippo.

Abstract:

The most widely performed surgical procedure in Open-Angle Glaucoma (OAG) is trabeculectomy. Although this filtering procedure is extremely effective, surgical failure and postoperative complications are reported. Due to the its invasive nature and possible complications, trabeculectomy is usually reserved, in practice, for patients who are refractory to medical and laser therapy. Recently, a number of micro-invasive surgical techniques (MIGS: Micro-Invasive Glaucoma Surgery), have been introduced in clinical practice. They meet the criteria of micro-incisional approach, minimal tissue damage, short surgical time, reliable IOP reduction, extremely high safety profile and rapid post-operative recovery. Xen45 Gel Implant (Allergan, Dublin, Ireland) is one of the MIGS alternatives, and consists in a porcine gelatin tube designed to create an aqueous flow from the anterior chamber to the subconjunctival space, bypassing the resistance of the trabecular meshwork. In this study we report the results of this technique as a favorable option in the treatment of OAG for its benefits in term of efficacy and safety, either alone or in combination with cataract surgery. This is a retrospective, single-center study conducted in consecutive OAG patients, who underwent Xen45 Gel Stent implantation alone or in combination with phacoemulsification, from October 2018 to June 2019. The primary endpoint of the study was to evaluate the reduction of both IOP and number of antiglaucoma medications at 12 months. The secondary endpoint was to correlate filtering bleb morphology evaluated by means of anterior segment OCT with efficacy in IOP lowering and eventual further procedures requirement. Data were recorded on Microsoft Excel and study analysis was performed using Microsoft Excel and SPSS (IBM). Mean values with standard deviations were calculated for IOPs and number of antiglaucoma medications at all points. Kolmogorov-Smirnov test showed that IOP followed a normal distribution at all time, therefore the paired Student’s T test was used to compare baseline and postoperative mean IOP. Correlation between postoperative Day 1 IOP and Month 12 IOP was evaluated using Pearson coefficient. Thirty-six eyes of 36 patients were evaluated. As compared to baseline, mean IOP and the mean number of antiglaucoma medications significantly decreased from 27,33 ± 7,67 mmHg to 16,3 ± 2,89 mmHg (38,8% reduction) and from 2,64 ± 1,39 to 0,42 ± 0,8 (84% reduction), respectively, at 12 months after surgery (both p < 0,001). According to bleb morphology, eyes were divided in uniform group (n=8, 22,2%), subconjunctival separation group (n=5, 13,9%), microcystic multiform group (n=9, 25%) and multiple internal layer group (n=14, 38,9%). Comparing to baseline, there was no significative difference in IOP between the 4 groups at month 12 follow-up visit. Adverse events included bleb function decrease (n=14, 38,9%), hypotony (n=8, 22,2%) and choroidal detachment (n=2, 5,6%). All eyes presenting bleb flattening underwent needling and MMC injection. The higher percentage of patients that required secondary needling was in the uniform group (75%), with a significant difference between the groups (p=0,03). Xen45 gel stent, either alone or in combination with phacoemulsification, provided a significant lowering in both IOP and medical antiglaucoma treatment and an elevated safety profile.

Keywords: anterior segment OCT, bleb morphology, micro-invasive glaucoma surgery, open angle glaucoma, Xen45 gel implant

Procedia PDF Downloads 141
17 Exploring the Effect of Nursing Students’ Self-Directed Learning and Technology Acceptance through the Use of Digital Game-Based Learning in Medical Terminology Course

Authors: Hsin-Yu Lee, Ming-Zhong Li, Wen-Hsi Chiu, Su-Fen Cheng, Shwu-Wen Lin

Abstract:

Background: The use of medical terminology is essential to professional nurses on clinical practice. However, most nursing students consider traditional lecture-based teaching of medical terminology as boring and overly conceptual and lack motivation to learn. It is thus an issue to be discussed on how to enhance nursing students’ self-directed learning and improve learning outcomes of medical terminology. Digital game-based learning is a learner-centered way of learning. Past literature showed that the most common game-based learning for language education has been immersive games and teaching games. Thus, this study selected role-playing games (RPG) and digital puzzle games for observation and comparison. It is interesting to explore whether digital game-based learning has positive impact on nursing students’ learning of medical terminology and whether students can adapt well on this type of learning. Results can be used to provide references for institutes and teachers on teaching medical terminology. These instructions give you guidelines for preparing papers for the conference. Use this document as a template if you are using Microsoft Word. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further at WASET. Define all symbols used in the abstract. Do not cite references in the abstract. Do not delete the blank line immediately above the abstract; it sets the footnote at the bottom of this column. Page margins are 1,78 cm top and down; 1,65 cm left and right. Each column width is 8,89 cm and the separation between the columns is 0,51 cm. Objective: The purpose of this research is to explore respectively the impact of RPG and puzzle game on nursing students’ self-directed learning and technology acceptance. The study further discusses whether different game types bring about different influences on students’ self-directed learning and technology acceptance. Methods: A quasi-experimental design was adopted in this study so that repeated measures between two groups could be conveniently conducted. 103 nursing students from a nursing college in Northern Taiwan participated in the study. For three weeks of experiment, the experiment group (n=52) received “traditional teaching + RPG” while the control group (n=51) received “traditional teaching + puzzle games”. Results: 1. On self-directed learning: For each game type, there were significant differences for the delayed tests of both groups as compared to the pre and post-tests of each group. However, there were no significant differences between the two game types. 2. On technology acceptance: For the experiment group, after the intervention of RPG, there were no significant differences concerning technology acceptance. For the control group, after the intervention of puzzle games, there were significant differences regarding technology acceptance. Pearson-correlation coefficient and path analysis conducted on the results of the two groups revealed that the dimension were highly correlated and reached statistical significance. Yet, the comparison of technology acceptance between the two game types did not reach statistical significance. Conclusion and Recommend: This study found that through using different digital games on learning, nursing students have effectively improved their self-directed learning. Students’ technology acceptances were also high for the two different digital game types and each dimension was significantly correlated. The results of the experimental group showed that through the scenarios of RPG, students had a deeper understanding of medical terminology, which reached the ‘Understand’ dimension of Bloom’s taxonomy. The results of the control group indicated that digital puzzle games could help students memorize and review medical terminology, which reached the ‘Remember’ dimension of Bloom’s taxonomy. The findings suggest that teachers of medical terminology could use digital games to assist their teaching according to their goals on cognitive learning. Adequate use of those games could help improve students’ self-directed learning and further enhance their learning outcome on medical terminology.

Keywords: digital game-based learning, medical terminology, nursing education, self-directed learning, technology acceptance model

Procedia PDF Downloads 167
16 Effect of Preoxidation on the Effectiveness of Gd₂O₃ Nanoparticles Applied as a Source of Active Element in the Crofer 22 APU Coated with a Protective-conducting Spinel Layer

Authors: Łukasz Mazur, Kamil Domaradzki, Maciej Bik, Tomasz Brylewski, Aleksander Gil

Abstract:

Interconnects used in solid oxide fuel and electrolyzer cells (SOFCₛ/SOECs) serve several important functions, and therefore interconnect materials must exhibit certain properties. Their thermal expansion coefficient needs to match that of the ceramic components of these devices – the electrolyte, anode and cathode. Interconnects also provide structural rigidity to the entire device, which is why interconnect materials must exhibit sufficient mechanical strength at high temperatures. Gas-tightness is also a prerequisite since they separate gas reagents, and they also must provide very good electrical contact between neighboring cells over the entire operating time. High-chromium ferritic steels meets these requirements to a high degree but are affected by the formation of a Cr₂O₃ scale, which leads to increased electrical resistance. The final criterion for interconnect materials is chemical inertness in relation to the remaining cell components. In the case of ferritic steels, this has proved difficult due to the formation of volatile and reactive oxyhydroxides observed when Cr₂O3 is exposed to oxygen and water vapor. This process is particularly harmful on the cathode side in SOFCs and the anode side in SOECs. To mitigate this, protective-conducting ceramic coatings can be deposited on an interconnect's surface. The area-specific resistance (ASR) of a single interconnect cannot exceed 0.1 m-2 at any point of the device's operation. The rate at which the CrO₃ scale grows on ferritic steels can be reduced significantly via the so-called reactive element effect (REE). Research has shown that the deposition of Gd₂O₃ nanoparticles on the surface of the Crofer 22 APU, already modified using a protective-conducting spinel layer, further improves the oxidation resistance of this steel. However, the deposition of the manganese-cobalt spinel layer is a rather complex process and is performed at high temperatures in reducing and oxidizing atmospheres. There was thus reason to believe that this process may reduce the effectiveness of Gd₂O₃ nanoparticles added as an active element source. The objective of the present study was, therefore, to determine any potential impact by introducing a preoxidation stage after the nanoparticle deposition and before the steel is coated with the spinel. This should have allowed the nanoparticles to incorporate into the interior of the scale formed on the steel. Different samples were oxidized for 7000 h in air at 1073 K under quasi-isothermal conditions. The phase composition, chemical composition, and microstructure of the oxidation products formed on the samples were determined using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. A four-point, two-probe DC method was applied to measure ASR. It was found that coating deposition does indeed reduce the beneficial effect of Gd₂O₃ addition, since the smallest mass gain and the lowest ASR value were determined for the sample for which the additional preoxidation stage had been performed. It can be assumed that during this stage, gadolinium incorporates into and segregates at grain boundaries in the thin Cr₂O₃ that is forming. This allows the Gd₂O₃ nanoparticles to be a more effective source of the active element.

Keywords: interconnects, oxide nanoparticles, reactive element effect, SOEC, SOFC

Procedia PDF Downloads 84
15 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism

Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman

Abstract:

Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.

Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator

Procedia PDF Downloads 368
14 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
13 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 96
12 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China

Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding

Abstract:

The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.

Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2

Procedia PDF Downloads 313
11 Implementing Equitable Learning Experiences to Increase Environmental Awareness and Science Proficiency in Alabama’s Schools and Communities

Authors: Carly Cummings, Maria Soledad Peresin

Abstract:

Alabama has a long history of racial injustice and unsatisfactory educational performance. In the 1870s Jim Crow laws segregated public schools and disproportionally allocated funding and resources to white institutions across the South. Despite the Supreme Court ruling to integrate schools following Brown vs. the Board of Education in 1954, Alabama’s school system continued to exhibit signs of segregation, compounded by “white flight” and the establishment of exclusive private schools, which still exist today. This discriminatory history has had a lasting impact of the state’s education system, reflected in modern school demographics and achievement data. It is well known that Alabama struggles with education performance, especially in science education. On average, minority groups scored the lowest in science proficiency. In Alabama, minority populations are concentrated in a region known as the Black Belt, which was once home to countless slave plantations and was the epicenter of the Civil Rights Movement. Today the Black Belt is characterized by a high density of woodlands and plays a significant role in Alabama’s leading economic industry-forest products. Given the economic importance of forestry and agriculture to the state, environmental science proficiency is essential to its stability; however, it is neglected in areas where it is needed most. To better understand the inequity of science education within Alabama, our study first investigates how geographic location, demographics and school funding relate to science achievement scores using ArcGIS and Pearson’s correlation coefficient. Additionally, our study explores the implementation of a relevant, problem-based, active learning lesson in schools. Relevant learning engages students by connecting material to their personal experiences. Problem-based active learning involves real-world problem-solving through hands-on experiences. Given Alabama’s significant woodland coverage, educational materials on forest products were developed with consideration of its relevance to students, especially those located in the Black Belt. Furthermore, to incorporate problem solving and active learning, the lesson centered around students using forest products to solve environmental challenges, such as water pollution- an increasing challenge within the state due to climate change. Pre and post assessment surveys were provided to teachers to measure the effectiveness of the lesson. In addition to pedagogical practices, community and mentorship programs are known to positively impact educational achievements. To this end, our work examines the results of surveys measuring educational professionals’ attitudes toward a local mentorship group within the Black Belt and its potential to address environmental and science literacy. Additionally, our study presents survey results from participants who attended an educational community event, gauging its effectiveness in increasing environmental and science proficiency. Our results demonstrate positive improvements in environmental awareness and science literacy with relevant pedagogy, mentorship, and community involvement. Implementing these practices can help provide equitable and inclusive learning environments and can better equip students with the skills and knowledge needed to bridge this historic educational gap within Alabama.

Keywords: equitable education, environmental science, environmental education, science education, racial injustice, sustainability, rural education

Procedia PDF Downloads 68
10 Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking

Authors: Achraf Al Faraj, Asma Sultana Shaik, Baraa Al Sayed

Abstract:

Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes.

Keywords: single-walled carbon nanotubes, nanomedicine, magnetic resonance imaging, cancer diagnosis and therapy

Procedia PDF Downloads 329
9 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength

Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma

Abstract:

The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.

Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.

Procedia PDF Downloads 56
8 Oxidation Behavior of Ferritic Stainless Steel Interconnects Modified Using Nanoparticles of Rare-Earth Elements under Operating Conditions Specific to Solid Oxide Electrolyzer Cells

Authors: Łukasz Mazur, Kamil Domaradzki, Bartosz Kamecki, Justyna Ignaczak, Sebastian Molin, Aleksander Gil, Tomasz Brylewski

Abstract:

The rising global power consumption necessitates the development of new energy storage solutions. Prospective technologies include solid oxide electrolyzer cells (SOECs), which convert surplus electrical energy into hydrogen. An electrolyzer cell consists of a porous anode, and cathode, and a dense electrolyte. Power output is increased by connecting cells into stacks using interconnects. Interconnects are currently made from high-chromium ferritic steels – for example, Crofer 22 APU – which exhibit high oxidation resistance and a thermal expansion coefficient that is similar to that of electrode materials. These materials have one disadvantage – their area-specific resistance (ASR) gradually increases due to the formation of a Cr₂O₃ scale on their surface as a result of oxidation. The chromia in the scale also reacts with the water vapor present in the reaction media, forming volatile chromium oxyhydroxides, which in turn react with electrode materials and cause their deterioration. The electrochemical efficiency of SOECs thus decreases. To mitigate this, the interconnect surface can be modified with protective-conducting coatings of spinel or other materials. The high prices of SOEC components -especially the Crofer 22 APU- have prevented their widespread adoption. More inexpensive counterparts, therefore, need to be found, and their properties need to be enhanced to make them viable. Candidates include the Nirosta 4016/1,4016 low-chromium ferritic steel with a chromium content of just 16.3 wt%. This steel's resistance to high-temperature oxidation was improved by depositing Gd₂O₃ nanoparticles on its surface via either dip coating or electrolysis. Modification with CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles deposited by means of spray pyrolysis was also tested. These methods were selected because of their low cost and simplicity of application. The aim of this study was to investigate the oxidation kinetics of Nirosta 4016/1,4016 modified using the afore-mentioned methods and to subsequently measure the obtained samples' ASR. The samples were oxidized for 100 h in the air as well as air/H₂O and Ar/H₂/H₂O mixtures at 1073 K. Such conditions reflect those found in the anode and cathode operating space during real-life use of SOECs. Phase and chemical composition and the microstructure of oxidation products were determined using XRD and SEM-EDS. ASR was measured over the range of 623-1073 K using a four-point, two-probe DC technique. The results indicate that the applied nanoparticles improve the oxidation resistance and electrical properties of the studied layered systems. The properties of individual systems varied significantly depending on the applied reaction medium. Gd₂O₃ nanoparticles improved oxidation resistance to a greater degree than either CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles. On the other hand, the cerium-containing nanoparticles improved electrical properties regardless of the reaction medium. The ASR values of all surface-modified steel samples were below the 0.1 Ω.cm² threshold set for interconnect materials, which was exceeded in the case of the unmodified reference sample. It can be concluded that the applied modifications increased the oxidation resistance of Nirosta 4016/1.4016 to a level that allows its use as SOEC interconnect material. Acknowledgments: Funding of Research project supported by program "Excellence initiative – research university" for the AGH University of Krakow" is gratefully acknowledged (TB).

Keywords: cerium oxide, ferritic stainless steel, gadolinium oxide, interconnect, SOEC

Procedia PDF Downloads 87
7 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis

Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu

Abstract:

Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.

Keywords: GPT, phantom-less QCT, large language model, osteoporosis

Procedia PDF Downloads 71
6 Language Anxiety and Learner Achievement among University Undergraduates in Sri Lanka: A Case Study of University of Sri Jayewardenepura

Authors: Sujeeva Sebastian Pereira

Abstract:

Language Anxiety (LA) – a distinct psychological construct of self-perceptions and behaviors related to classroom language learning – is perceived as a significant variable highly correlated with Second Language Acquisition (SLA). However, the existing scholarship has inadequately explored the nuances of LA in relation to South Asia, especially in terms of Sri Lankan higher education contexts. Thus, the current study, situated within the broad areas of Psychology of SLA and Applied Linguistics, investigates the impact of competency-based LA and identity-based LA on learner achievement among undergraduates of Sri Lanka. Employing a case study approach to explore the impact of LA, 750 undergraduates of the University of Sri Jayewardenepura, Sri Lanka, thus covering 25% of the student population from all seven faculties of the university, were selected as participants using stratified proportionate sampling in terms of ethnicity, gender, and disciplines. The qualitative and quantitative research inquiry utilized for data collection include a questionnaire consisting a set of structured and unstructured questions, and semi-structured interviews as research instruments. Data analysis includes both descriptive and statistical measures. As per the quantitative measures of data analysis, the study employed Pearson Correlation Coefficient test, Chi-Square test, and Multiple Correspondence Analysis; it used LA as the dependent variable, and two types of independent variables were used: direct and indirect variables. Direct variables encompass the four main language skills- reading, writing, speaking and listening- and test anxiety. These variables were further explored through classroom activities on grammar, vocabulary and individual and group presentations. Indirect variables are identity, gender and cultural stereotypes, discipline, social background, income level, ethnicity, religion and parents’ education level. Learner achievement was measured through final scores the participants have obtained for Compulsory English- a common first-year course unit mandatory for all undergraduates. LA was measured using the FLCAS. In order to increase the validity and reliability of the study, data collected were triangulated through descriptive content analysis. Clearly evident through both the statistical analysis and the qualitative analysis of the results is the significant linear negative correlation between LA and learner achievement, and the significant negative correlation between LA and culturally-operated gender stereotypes which create identity disparities in learners. The study also found that both competency-based LA and identity-based LA are experienced primarily and inescapably due to the apprehensions regarding speaking in English. Most participants who reported high levels of LA were from an urban socio-economic background of lower income families. Findings exemplify the linguistic inequality prevalent in the socio-cultural milieu in Sri Lankan society. This inequality makes learning English a dire need, yet, very much an anxiety provoking process because of many sociolinguistic, cultural and ideological factors related to English as a Second Language (ESL) in Sri Lanka. The findings bring out the intricate interrelatedness of both the dependent variable (LA) and the independent variables stated above, emphasizing that the significant linear negative correlation between LA and learner achievement is connected to the affective, cognitive and sociolinguistic domains of SLA. Thus, the study highlights the promise in linguistic practices such as code-switching, crossing and accommodating hybrid identities as strategies in minimizing LA and maximizing the experience of ESL.

Keywords: language anxiety, identity-based anxiety, competence-based anxiety, TESL, Sri Lanka

Procedia PDF Downloads 190
5 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 57
4 Evaluation of Coal Quality and Geomechanical Moduli Using Core and Geophysical Logs: Study from Middle Permian Barakar Formation of Gondwana Coalfield

Authors: Joyjit Dey, Souvik Sen

Abstract:

Middle Permian Barakar formation is the major economic coal bearing unit of vast east-west trending Damodar Valley basin of Gondwana coalfield. Primary sedimentary structures were studied from the core holes, which represent majorly four facies groups: sandstone dominated facies, sandstone-shale heterolith facies, shale facies and coal facies. Total eight major coal seams have been identified with the bottom most seam being the thickest. Laterally, continuous coal seams were deposited in the calm and quiet environment of extensive floodplain swamps. Channel sinuosity and lateral channel migration/avulsion results in lateral facies heterogeneity and coal splitting. Geophysical well logs (Gamma-Resistivity-Density logs) have been used to establish the vertical and lateral correlation of various litho units field-wide, which reveals the predominance of repetitive fining upwards cycles. Well log data being a permanent record, offers a strong foundation for generating log based property evaluation and helps in characterization of depositional units in terms of lateral and vertical heterogeneity. Low gamma, high resistivity, low density is the typical coal seam signatures in geophysical logs. Here, we have used a density cutoff of 1.6 g/cc as a primary discriminator of coal and the same has been employed to compute various coal assay parameters, which are ash, fixed carbon, moisture, volatile content, cleat porosity, vitrinite reflectance (VRo%), which were calibrated with the laboratory based measurements. The study shows ash content and VRo% increase from west to east (towards basin margin), while fixed carbon, moisture and volatile content increase towards west, depicting increased coal quality westwards. Seam wise cleat porosity decreases from east to west, this would be an effect of overburden, as overburden pressure increases westward with the deepening of basin causing more sediment packet deposited on the western side of the study area. Coal is a porous, viscoelastic material in which velocity and strain both change nonlinearly with stress, especially for stress applied perpendicular to the bedding plane. Usually, the coal seam has a high velocity contrast relative to its neighboring layers. Despite extensive discussion of the maceral and chemical properties of coal, its elastic characteristics have received comparatively little attention. The measurement of the elastic constants of coal presents many difficulties: sample-to-sample inhomogeneity and fragility and velocity dependence on stress, orientation, humidity, and chemical content. In this study, a conclusive empirical equation VS= 0.80VP-0.86 has been used to model shear velocity from compression velocity. Also the same has been used to compute various geomechanical moduli. Geomech analyses yield a Poisson ratio of 0.348 against coals. Average bulk modulus value is 3.97 GPA, while average shear modulus and Young’s modulus values are coming out as 1.34 and 3.59 GPA respectively. These middle Permian Barakar coals show an average 23.84 MPA uniaxial compressive strength (UCS) with 4.97 MPA cohesive strength and 0.46 as friction coefficient. The output values of log based proximate parameters and geomechanical moduli suggest a medium volatile Bituminous grade for the studied coal seams, which is found in the laboratory based core study as well.

Keywords: core analysis, coal characterization, geophysical log, geo-mechanical moduli

Procedia PDF Downloads 226
3 Utilization of Developed Single Sequence Repeats Markers for Dalmatian Pyrethrum (Tanacetum cinerariifolium) in Preliminary Genetic Diversity Study on Natural Populations

Authors: F. Varga, Z. Liber, J. Jakše, A. Turudić, Z. Šatović, I. Radosavljević, N. Jeran, M. Grdiša

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.; Asteraceae), a source of the commercially dominant plant insecticide pyrethrin, is a species endemic to the eastern Adriatic. Genetic diversity of T. cinerariifolium was previously studied using amplified fragment length polymorphism (AFLP) markers. However, microsatellite markers (single sequence repeats - SSRs) are more informative because they are codominant, highly polymorphic, locus-specific, and more reproducible, and thus are most often used to assess the genetic diversity of plant species. Dalmatian pyrethrum is an outcrossing diploid (2n = 18) whose large genome size and high repeatability have prevented the success of the traditional approach to SSR markers development. The advent of next-generation sequencing combined with the specifically developed method recently enabled the development of, to the author's best knowledge, the first set of SSRs for genomic characterization of Dalmatian pyrethrum, which is essential from the perspective of plant genetic resources conservation. To evaluate the effectiveness of the developed SSR markers in genetic differentiation of Dalmatian pyrethrum populations, a preliminary genetic diversity study was conducted on 30 individuals from three geographically distinct natural populations in Croatia (northern Adriatic island of Mali Lošinj, southern Adriatic island of Čiovo, and Mount Biokovo) based on 12 SSR loci. Analysis of molecular variance (AMOVA) by randomization test with 10,000 permutations was performed in Arlequin 3.5. The average number of alleles per locus, observed and expected heterozygosity, probability of deviations from Hardy-Weinberg equilibrium, and inbreeding coefficient was calculated using GENEPOP 4.4. Genetic distance based on the proportion of common alleles (DPSA) was calculated using MICROSAT. Cluster analysis using the neighbor-joining method with 1,000 bootstraps was performed with PHYLIP to generate a dendrogram. The results of the AMOVA analysis showed that the total SSR diversity was 23% within and 77% between the three populations. A slight deviation from Hardy-Weinberg equilibrium was observed in the Mali Lošinj population. Allele richness ranged from 2.92 to 3.92, with the highest number of private alleles observed in the Mali Lošinj population (17). The average observed DPSA between 30 individuals was 0.557. The highest DPSA (0.875) was observed between several pairs of Dalmatian pyrethrum individuals from the Mali Lošinj and Mt. Biokovo populations, and the lowest between two individuals from the Čiovo population. Neighbor-joining trees, based on DPSA, grouped individuals into clusters according to their population affiliation. The separation of Mt. Biokovo clade was supported (bootstrap value 58%), which is consistent with the previous study on AFLP markers, where isolated populations from Mt. Biokovo differed from the rest of the populations. The developed SSR markers are an effective tool for assessing the genetic diversity and structure of natural Dalmatian pyrethrum populations. These preliminary results are encouraging for a future comprehensive study with a larger sample size across the species' range. Combined with the biochemical data, these highly informative markers could help identify potential genotypes of interest for future development of breeding lines and cultivars that are both resistant to environmental stress and high in pyrethrins. Acknowledgment: This work has been supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.) insecticidal potential’- (PyrDiv) (IP-06-2016-9034) and by project KK.01.1.1.01.0005, Biodiversity and Molecular Plant Breeding, at the Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia.

Keywords: Asteraceae, genetic diversity, genomic SSRs, NGS, pyrethrum, Tanacetum cinerariifolium

Procedia PDF Downloads 114
2 Climate Change Threats to UNESCO-Designated World Heritage Sites: Empirical Evidence from Konso Cultural Landscape, Ethiopia

Authors: Yimer Mohammed Assen, Abiyot Legesse Kura, Engida Esyas Dube, Asebe Regassa Debelo, Girma Kelboro Mensuro, Lete Bekele Gure

Abstract:

Climate change has posed severe threats to many cultural landscapes of UNESCO world heritage sites recently. The UNESCO State of Conservation (SOC) reports categorized flooding, temperature increment, and drought as threats to cultural landscapes. This study aimed to examine variations and trends of rainfall and temperature extreme events and their threats to the UNESCO-designated Konso Cultural Landscape in southern Ethiopia. The study used dense merged satellite-gauge station rainfall data (1981-2020) with spatial resolution of 4km by 4km and observed maximum and minimum temperature data (1987-2020). Qualitative data were also gathered from cultural leaders, local administrators, and religious leaders using structured interview checklists. The spatial patterns, coefficient of variation, standardized anomalies, trends, and magnitude of change of rainfall and temperature extreme events both at annual and seasonal levels were computed using the Mann-Kendall trend test and Sen’s slope estimator under the CDT package. The standard precipitation index (SPI) was also used to calculate drought severity, frequency, and trend maps. The data gathered from key informant interviews and focus group discussions were coded and analyzed thematically to complement statistical findings. Thematic areas that explain the impacts of extreme events on the cultural landscape were chosen for coding. The thematic analysis was conducted using Nvivo software. The findings revealed that rainfall was highly variable and unpredictable, resulting in extreme drought and flood. There were significant (P<0.05) increasing trends of heavy rainfall (R10mm and R20mm) and the total amount of rain on wet days (PRCPTOT), which might have resulted in flooding. The study also confirmed that absolute temperature extreme indices (TXx, TXn, and TNx) and the percentile-based temperature extreme indices (TX90p, TN90p, TX10p, and TN10P) showed significant (P<0.05) increasing trends which are signals for warming of the study area. The results revealed that the frequency as well as the severity of drought at 3-months (katana/hageya seasons) was more pronounced than the 12-months (annual) time scale. The highest number of droughts in 100 years is projected at a 3-months timescale across the study area. The findings also showed that frequent drought has led to loss of grasses which are used for making traditional individual houses and multipurpose communal houses (pafta), food insecurity, migration, loss of biodiversity, and commodification of stones from terrace. On the other hand, the increasing trends of rainfall extreme indices resulted in destruction of terraces, soil erosion, loss of life and damage of properties. The study shows that a persistent decline in farmland productivity, due to erratic and extreme rainfall and frequent drought occurrences, forced the local people to participate in non-farm activities and retreat from daily preservation and management of their landscape. Overall, the increasing rainfall and temperature extremes coupled with prevalence of drought are thought to have an impact on the sustainability of cultural landscape through disrupting the ecosystem services and livelihood of the community. Therefore, more localized adaptation and mitigation strategies to the changing climate are needed to maintain the sustainability of Konso cultural landscapes as a global cultural treasure and to strengthen the resilience of smallholder farmers.

Keywords: adaptation, cultural landscape, drought, extremes indices

Procedia PDF Downloads 26
1 Characterization of Aluminosilicates and Verification of Their Impact on Quality of Ceramic Proppants Intended for Shale Gas Output

Authors: Joanna Szymanska, Paulina Wawulska-Marek, Jaroslaw Mizera

Abstract:

Nowadays, the rapid growth of global energy consumption and uncontrolled depletion of natural resources become a serious problem. Shale rocks are the largest and potential global basins containing hydrocarbons, trapped in closed pores of the shale matrix. Regardless of the shales origin, mining conditions are extremely unfavourable due to high reservoir pressure, great depths, increased clay minerals content and limited permeability (nanoDarcy) of the rocks. Taking into consideration such geomechanical barriers, effective extraction of natural gas from shales with plastic zones demands effective operations. Actually, hydraulic fracturing is the most developed technique based on the injection of pressurized fluid into a wellbore, to initiate fractures propagation. However, a rapid drop of pressure after fluid suction to the ground induces a fracture closure and conductivity reduction. In order to minimize this risk, proppants should be applied. They are solid granules transported with hydraulic fluids to locate inside the rock. Proppants act as a prop for the closing fracture, thus gas migration to a borehole is effective. Quartz sands are commonly applied proppants only at shallow deposits (USA). Whereas, ceramic proppants are designed to meet rigorous downhole conditions to intensify output. Ceramic granules predominate with higher mechanical strength, stability in strong acidic environment, spherical shape and homogeneity as well. Quality of ceramic proppants is conditioned by raw materials selection. Aim of this study was to obtain the proppants from aluminosilicates (the kaolinite subgroup) and mix of minerals with a high alumina content. These loamy minerals contain a tubular and platy morphology that improves mechanical properties and reduces their specific weight. Moreover, they are distinguished by well-developed surface area, high porosity, fine particle size, superb dispersion and nontoxic properties - very crucial for particles consolidation into spherical and crush-resistant granules in mechanical granulation process. The aluminosilicates were mixed with water and natural organic binder to improve liquid-bridges and pores formation between particles. Afterward, the green proppants were subjected to sintering at high temperatures. Evaluation of the minerals utility was based on their particle size distribution (laser diffraction study) and thermal stability (thermogravimetry). Scanning Electron Microscopy was useful for morphology and shape identification combined with specific surface area measurement (BET). Chemical composition was verified by Energy Dispersive Spectroscopy and X-ray Fluorescence. Moreover, bulk density and specific weight were measured. Such comprehensive characterization of loamy materials confirmed their favourable impact on the proppants granulation. The sintered granules were analyzed by SEM to verify the surface topography and phase transitions after sintering. Pores distribution was identified by X-Ray Tomography. This method enabled also the simulation of proppants settlement in a fracture, while measurement of bulk density was essential to predict their amount to fill a well. Roundness coefficient was also evaluated, whereas impact on mining environment was identified by turbidity and solubility in acid - to indicate risk of the material decay in a well. The obtained outcomes confirmed a positive influence of the loamy minerals on ceramic proppants properties with respect to the strict norms. This research is perspective for higher quality proppants production with costs reduction.

Keywords: aluminosilicates, ceramic proppants, mechanical granulation, shale gas

Procedia PDF Downloads 163