Search results for: revenue optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3640

Search results for: revenue optimization

1240 Accelerating Personalization Using Digital Tools to Drive Circular Fashion

Authors: Shamini Dhana, G. Subrahmanya VRK Rao

Abstract:

The fashion industry is advancing towards a mindset of zero waste, personalization, creativity, and circularity. The trend of upcycling clothing and materials into personalized fashion is being demanded by the next generation. There is a need for a digital tool to accelerate the process towards mass customization. Dhana’s D/Sphere fashion technology platform uses digital tools to accelerate upcycling. In essence, advanced fashion garments can be designed and developed via reuse, repurposing, recreating activities, and using existing fabric and circulating materials. The D/Sphere platform has the following objectives: to provide (1) An opportunity to develop modern fashion using existing, finished materials and clothing without chemicals or water consumption; (2) The potential for an everyday customer and designer to use the medium of fashion for creative expression; (3) A solution to address the global textile waste generated by pre- and post-consumer fashion; (4) A solution to reduce carbon emissions, water, and energy consumption with the participation of all stakeholders; (5) An opportunity for brands, manufacturers, retailers to work towards zero-waste designs and as an alternative revenue stream. Other benefits of this alternative approach include sustainability metrics, trend prediction, facilitation of disassembly and remanufacture deep learning, and hyperheuristics for high accuracy. A design tool for mass personalization and customization utilizing existing circulating materials and deadstock, targeted to fashion stakeholders will lower environmental costs, increase revenues through up to date upcycled apparel, produce less textile waste during the cut-sew-stitch process, and provide a real design solution for the end customer to be part of circular fashion. The broader impact of this technology will result in a different mindset to circular fashion, increase the value of the product through multiple life cycles, find alternatives towards zero waste, and reduce the textile waste that ends up in landfills. This technology platform will be of interest to brands and companies that have the responsibility to reduce their environmental impact and contribution to climate change as it pertains to the fashion and apparel industry. Today, over 70% of the $3 trillion fashion and apparel industry ends up in landfills. To this extent, the industry needs such alternative techniques to both address global textile waste as well as provide an opportunity to include all stakeholders and drive circular fashion with new personalized products. This type of modern systems thinking is currently being explored around the world by the private sector, organizations, research institutions, and governments. This technological innovation using digital tools has the potential to revolutionize the way we look at communication, capabilities, and collaborative opportunities amongst stakeholders in the development of new personalized and customized products, as well as its positive impacts on society, our environment, and global climate change.

Keywords: circular fashion, deep learning, digital technology platform, personalization

Procedia PDF Downloads 66
1239 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS

Authors: Hamidreza Bagheri, Alireza Shariati

Abstract:

There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.

Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm

Procedia PDF Downloads 521
1238 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm

Authors: A. Baviskar, C. Sandeep, K. Shankar

Abstract:

Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.

Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)

Procedia PDF Downloads 277
1237 Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology

Authors: Rotchanaphan Hengaroonprasan, Malinee Sriariyanun, Prapakorn Tantayotai, Supacharee Roddecha, Kraipat Cheenkachorn

Abstract:

Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes.

Keywords: lignocellolusic biomass, pretreatment, organic acid response surface methodology, biorefinery

Procedia PDF Downloads 654
1236 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption

Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed

Abstract:

In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.

Keywords: optimization, neural networks, real-time scheduling, low-power consumption

Procedia PDF Downloads 371
1235 Examining the Effects of Ticket Bundling Strategies and Team Identification on Purchase of Hedonic and Utilitarian Options

Authors: Young Ik Suh, Tywan G. Martin

Abstract:

Bundling strategy is a common marketing practice today. In the past decades, both academicians and practitioners have increasingly emphasized the strategic importance of bundling in today’s markets. The reason for increased interest in bundling strategy is that they normally believe that it can significantly increase profits on organization’s sales over time and it is convenient for the customer. However, little efforts has been made on ticket bundling and purchase considerations in hedonic and utilitarian options in sport consumer behavior context. Consumers often face choices between utilitarian and hedonic alternatives in decision making. When consumers purchase certain products, they are only interested in the functional dimensions, which are called utilitarian dimensions. On the other hand, others focus more on hedonic features such as fun, excitement, and pleasure. Thus, the current research examines how utilitarian and hedonic consumption can vary in typical ticket purchasing process. The purpose of this research is to understand the following two research themes: (1) the differential effect of discount framing on ticket bundling: utilitarian and hedonic options and (2) moderating effect of team identification on ticket bundling. In order to test the research hypotheses, an experimental study using a two-way ANOVA, 3 (team identification: low, medium, and high) X 2 (discount frame: ticket bundle sales with utilitarian product, and hedonic product), with mixed factorial design will be conducted to determine whether there is a statistical significance between purchasing intentions of two discount frames of ticket bundle sales within different team identification levels. To compare mean differences among the two different settings, we will create two conditions of ticket bundles: (1) offering a discount on a ticket ($5 off) if they would purchase it along with utilitarian product (e.g., iPhone8 case, t-shirt, cap), and (2) offering a discount on a ticket ($5 off) if they would purchase it along with hedonic product (e.g., pizza, drink, fans featured on big screen). The findings of the current ticket bundling study are expected to have many theoretical and practical contributions and implications by extending the research and literature pertaining to the relationship between team identification and sport consumer behavior. Specifically, this study can provide a reliable and valid framework to understanding the role of team identification as a moderator on behavioral intentions such as purchase intentions. From an academic perspective, the study will be the first known attempt to understand consumer reactions toward different discount frames related to ticket bundling. Even though the game ticket itself is the major commodity of sport event attendance and significantly related to teams’ revenue streams, most recent ticket pricing research has been done in terms of economic or cost-oriented pricing and not from a consumer psychological perspective. For sport practitioners, this study will also provide significant implications. The result will imply that sport marketers may need to develop two different ticketing promotions for loyal fan and non-loyal fans. Since loyal fans concern ticket price than tie-in products when they see ticket bundle sales, advertising campaign should be more focused on discounting ticket price.

Keywords: ticket bundling, hedonic, utilitarian, team identification

Procedia PDF Downloads 166
1234 Crafting Robust Business Model Innovation Path with Generative Artificial Intelligence in Start-up SMEs

Authors: Ignitia Motjolopane

Abstract:

Small and medium enterprises (SMEs) play an important role in economies by contributing to economic growth and employment. In the fourth industrial revolution, the convergence of technologies and the changing nature of work created pressures on economies globally. Generative artificial intelligence (AI) may support SMEs in exploring, exploiting, and transforming business models to align with their growth aspirations. SMEs' growth aspirations fall into four categories: subsistence, income, growth, and speculative. Subsistence-oriented firms focus on meeting basic financial obligations and show less motivation for business model innovation. SMEs focused on income, growth, and speculation are more likely to pursue business model innovation to support growth strategies. SMEs' strategic goals link to distinct business model innovation paths depending on whether SMEs are starting a new business, pursuing growth, or seeking profitability. Integrating generative artificial intelligence in start-up SME business model innovation enhances value creation, user-oriented innovation, and SMEs' ability to adapt to dynamic changes in the business environment. The existing literature may lack comprehensive frameworks and guidelines for effectively integrating generative AI in start-up reiterative business model innovation paths. This paper examines start-up business model innovation path with generative artificial intelligence. A theoretical approach is used to examine start-up-focused SME reiterative business model innovation path with generative AI. Articulating how generative AI may be used to support SMEs to systematically and cyclically build the business model covering most or all business model components and analyse and test the BM's viability throughout the process. As such, the paper explores generative AI usage in market exploration. Moreover, market exploration poses unique challenges for start-ups compared to established companies due to a lack of extensive customer data, sales history, and market knowledge. Furthermore, the paper examines the use of generative AI in developing and testing viable value propositions and business models. In addition, the paper looks into identifying and selecting partners with generative AI support. Selecting the right partners is crucial for start-ups and may significantly impact success. The paper will examine generative AI usage in choosing the right information technology, funding process, revenue model determination, and stress testing business models. Stress testing business models validate strong and weak points by applying scenarios and evaluating the robustness of individual business model components and the interrelation between components. Thus, the stress testing business model may address these uncertainties, as misalignment between an organisation and its environment has been recognised as the leading cause of company failure. Generative AI may be used to generate business model stress-testing scenarios. The paper is expected to make a theoretical and practical contribution to theory and approaches in crafting a robust business model innovation path with generative artificial intelligence in start-up SMEs.

Keywords: business models, innovation, generative AI, small medium enterprises

Procedia PDF Downloads 71
1233 Comparative Impact Analysis of Factors Affecting Renewable Energy Integrated and Conventional Energy Sources In Smart Grids Using MATPOWER

Authors: Sodiq Onawale, Xin Wang

Abstract:

Integrating renewable energy sources (RES) alongside conventional energy sources (NRES) in the grid has introduced challenges that highlight the need for a detailed analysis of various performance factors. Factors such as active and reactive power losses, voltage deviation, transmission line loading, power factor, fast voltage stability index, and capacity factor require careful evaluation to understand their impact on grid performance. In this study, MATPOWER’s optimization tools are used to model both NRES and a combined NRES + RES setup. The analysis compares the performance of each configuration across these factors. Findings indicate that integrating RES with NRES generally enhances performance across most of the analyzed factors compared to using NRES alone. The insights from this study offer valuable guidance for grid operators and policymakers, aiding in the balanced integration of RES with NRES to optimize smart grid performance and resilience.

Keywords: smart grid, impact analysis, renewable energy integration, FVSI, transmission line loading

Procedia PDF Downloads 7
1232 Improved Dynamic Bayesian Networks Applied to Arabic On Line Characters Recognition

Authors: Redouane Tlemsani, Abdelkader Benyettou

Abstract:

Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology. This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data. Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables. In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization. The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, computer vision

Procedia PDF Downloads 428
1231 Removal of Copper from Wastewaters by Nano-Micro Bubble Ion Flotation

Authors: R. Ahmadi, A. Khodadadi, M. Abdollahi

Abstract:

The removal of copper from a dilute synthetic wastewater (10 mg/L) was studied by ion flotation at laboratory scale. Anionic sodium dodecyl sulfate (SDS) was used as a collector and ethanol as a frother. Different parameters such as pH, collector and frother concentrations, foam height and bubble size distribution (multi bubble ion flotation) were tested to determine the optimum flotation conditions in a Denver type flotation machine. To see into the effect of bubbles size distribution in this paper, a nano-micro bubble generator was designed. The nano and microbubbles that are generated in this way were combined with normal size bubbles generated mechanically. Under the optimum conditions (concentration of SDS: 192mg/l, ethanol: 0.5%v/v, pH value: 4 and froth height=12.5 cm) the best removal obtained for the system Cu/SDS with a dry foam (water recovery: 15.5%) was 85.6%. Coalescence of nano-microbubbles with bubbles of normal size belonging to mechanical flotation cell improved the removal of Cu to a maximum floatability of 92.8% and reduced the water recovery to a 13.1%.The flotation time decreased considerably at 37.5% when the multi bubble ion flotation was used.

Keywords: froth flotation, copper, water treatment, optimization, recycling

Procedia PDF Downloads 502
1230 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture

Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi

Abstract:

Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.

Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection

Procedia PDF Downloads 65
1229 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments

Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro

Abstract:

Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.

Keywords: lean manufacturing, DOE, value stream mapping, textiles

Procedia PDF Downloads 455
1228 Optimal Load Factors for Seismic Design of Buildings

Authors: Juan Bojórquez, Sonia E. Ruiz, Edén Bojórquez, David de León Escobedo

Abstract:

A life-cycle optimization procedure to establish the best load factors combinations for seismic design of buildings, is proposed. The expected cost of damage from future earthquakes within the life of the structure is estimated, and realistic cost functions are assumed. The functions include: Repair cost, cost of contents damage, cost associated with loss of life, cost of injuries and economic loss. The loads considered are dead, live and earthquake load. The study is performed for reinforced concrete buildings located in Mexico City. The buildings are modeled as multiple-degree-of-freedom frame structures. The parameter selected to measure the structural damage is the maximum inter-story drift. The structural models are subjected to 31 soft-soil ground motions recorded in the Lake Zone of Mexico City. In order to obtain the annual structural failure rates, a numerical integration method is applied.

Keywords: load factors, life-cycle analysis, seismic design, reinforced concrete buildings

Procedia PDF Downloads 618
1227 Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor

Authors: Abdelsalam A. Ahmed

Abstract:

Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is drived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response.

Keywords: permanent magnet synchronous motor, model-based predictive control, DC source utilization, cascaded PI control, space vector pulse width modulation, TMS320F2812 DSP

Procedia PDF Downloads 644
1226 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks

Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir

Abstract:

Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.

Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.

Procedia PDF Downloads 89
1225 A Model of Foam Density Prediction for Expanded Perlite Composites

Authors: M. Arifuzzaman, H. S. Kim

Abstract:

Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15–0.5 g/cm3) produced with a range of compaction ratios (1.5-3.5), a range of sodium silicate contents (0.05–0.35 g/ml) in dilution, a range of expanded perlite particle sizes (1-4 mm), and various perlite densities (such as skeletal, material, bulk, and envelope densities). A close agreement between predictions and experimental results was found.

Keywords: expanded perlite, flotation method, foam density, model, prediction, sodium silicate

Procedia PDF Downloads 408
1224 Supply Chain Optimization through Vulnerability Control and Risk Prevention in Chicken Meat Use

Authors: Moise A. E., State G., Tudorache M., Custură I., Enea D. N., Osman (Defta) A., Drăgotoiu D.

Abstract:

This scientific paper explores risk management strategies in the food supply chain, with a focus on chicken raw materials, in the context of a company sourcing from the EU and non-EU. The aim of the paper is to adapt the requirements of international standards (IFS, BRC, QS, ITW, FSSC, ISO), proposing efficient methods to identify and remediate non-conformities and corrective and preventive actions. Defining the supply flow and acceptance steps promotes collaboration with suppliers to ensure the quality and safety of raw materials. To assess the risks of suppliers and raw materials, objective criteria are developed and vulnerabilities in the supply chain are analyzed, including the risk of fraud. Active monitoring of international alerts through RASFF helps to identify emerging risks quickly, and regular analysis of international trends and company performance enables continuous adaptation of risk management strategies. Implementing these measures strengthens food safety and consumer confidence in the final products supplied.

Keywords: food supply chain, international standards, quality and safety of raw materials, RASFF

Procedia PDF Downloads 51
1223 Mathematical Model of Corporate Bond Portfolio and Effective Border Preview

Authors: Sergey Podluzhnyy

Abstract:

One of the most important tasks of investment and pension fund management is building decision support system which helps to make right decision on corporate bond portfolio formation. Today there are several basic methods of bond portfolio management. They are duration management, immunization and convexity management. Identified methods have serious disadvantage: they do not take into account credit risk or insolvency risk of issuer. So, identified methods can be applied only for management and evaluation of high-quality sovereign bonds. Applying article proposes mathematical model for building an optimal in case of risk and yield corporate bond portfolio. Proposed model takes into account the default probability in formula of assessment of bonds which results to more correct evaluation of bonds prices. Moreover, applied model provides tools for visualization of the efficient frontier of corporate bonds portfolio taking into account the exposure to credit risk, which will increase the quality of the investment decisions of portfolio managers.

Keywords: corporate bond portfolio, default probability, effective boundary, portfolio optimization task

Procedia PDF Downloads 318
1222 Improvement of Buckling Behavior of Cold Formed Steel Uprights with Open Cross Section Used in Storage Rack Systems

Authors: Yasar Pala, Safa Senaysoy, Emre Calis

Abstract:

In this paper, structural behavior and improvement of buckling behavior of cold formed steel uprights with open cross-section used storage rack system are studied. As a first step, in the case of a stiffener having an inclined part on the flange, experimental and nonlinear finite element analysis are carried out for three different upright lengths. In the uprights with long length, global buckling is observed while distortional buckling and local buckling are observed in the uprights with medium length and those with short length, respectively. After this point, the study is divided into two groups. One of these groups is the case where the stiffener on the flange is folded at 90°. For this case, four different distances of the stiffener from the web are taken into account. In the other group, the case where different depth of stiffener on the web is considered. Combining experimental and finite element results, the cross-section giving the ultimate critical buckling load is selected.

Keywords: steel, upright, buckling, modes, nonlinear finite element analysis, optimization

Procedia PDF Downloads 260
1221 Adsorption of Cd(II) and Pb(II) from Aqueous Solutions by Using Pods of Acacia Karoo

Authors: Gulshan Kumar Jawa, Sandeep Mohan Ahuja

Abstract:

With the increase in industrialization, the presence of heavy metals in wastewater streams has turned into a serious concern for the ecosystem. The metals diffuse through the food chains, causing various health hazards. Conventional methods used to remove these heavy metals from water have some limitations, such as cost, secondary pollution due to sludge formation, recovery of metal, economic viability at low metal concentrations, etc. Many of the biomaterials have been investigated by researchers for the adsorption of heavy metals from water solutions as an alternative technique for the last two decades and have found promising results. In this paper, the batch study on the use of pods of acacia karoo for the adsorption of Cd(II) and Pb(II) from aqueous solutions has been reported. The effect of various parameters on the removal of metal ions, such as pH, contact time, stirring speed, initial metal ion concentration, adsorbent dose, and temperature, have been established to find the optimum parameters through one parameter optimization. Further, kinetic, equilibrium, and thermodynamic studies have been conducted. The pods of acacia karoo have shown great potential for adsorption of Cd(II) and Pb(II) from aqueous solutions and have proven to be a better and more economical alternative for the purpose.

Keywords: adsorption, heavy metals, biomaterials, Cadmium(II), Lead(II), pods of acacia karoo

Procedia PDF Downloads 43
1220 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data

Authors: E. Bal Beşikçi, O. Arslan

Abstract:

Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.

Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient

Procedia PDF Downloads 616
1219 Multiple Winding Multiphase Motor for Electric Drive System

Authors: Zhao Tianxu, Cui Shumei

Abstract:

This paper proposes a novel multiphase motor structure. The armature winding consists of several independent multiphase windings that have different rating rotate speed and power. Compared to conventional motor, the novel motor structure has more operation mode and fault tolerance mode, which makes it adapt to high-reliability requirement situation such as electric vehicle, aircraft and ship. Performance of novel motor structure varies with winding match. In order to find optimum control strategy, motor torque character, efficiency performance and fault tolerance ability under different operation mode are analyzed in this paper, and torque distribution strategy for efficiency optimization is proposed. Simulation analyze is taken and the result shows that proposed structure has the same efficiency on heavy load and higher efficiency on light load operation points, which expands high efficiency area of motor and cruise range of vehicle. The proposed structure can improve motor highest speed.

Keywords: multiphase motor, armature winding match, torque distribution strategy, efficiency

Procedia PDF Downloads 360
1218 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection

Procedia PDF Downloads 387
1217 Meta Mask Correction for Nuclei Segmentation in Histopathological Image

Authors: Jiangbo Shi, Zeyu Gao, Chen Li

Abstract:

Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.

Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations

Procedia PDF Downloads 140
1216 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

Authors: Loke Kean Koay, Mani Maran Ratnam

Abstract:

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Keywords: torsional scanner, design optimization, computer-aided design, magnet position variation

Procedia PDF Downloads 366
1215 Median-Based Nonparametric Estimation of Returns in Mean-Downside Risk Portfolio Frontier

Authors: H. Ben Salah, A. Gannoun, C. de Peretti, A. Trabelsi

Abstract:

The Downside Risk (DSR) model for portfolio optimisation allows to overcome the drawbacks of the classical mean-variance model concerning the asymetry of returns and the risk perception of investors. This model optimization deals with a positive definite matrix that is endogenous with respect to portfolio weights. This aspect makes the problem far more difficult to handle. For this purpose, Athayde (2001) developped a new recurcive minimization procedure that ensures the convergence to the solution. However, when a finite number of observations is available, the portfolio frontier presents an appearance which is not very smooth. In order to overcome that, Athayde (2003) proposed a mean kernel estimation of the returns, so as to create a smoother portfolio frontier. This technique provides an effect similar to the case in which we had continuous observations. In this paper, taking advantage on the the robustness of the median, we replace the mean estimator in Athayde's model by a nonparametric median estimator of the returns. Then, we give a new version of the former algorithm (of Athayde (2001, 2003)). We eventually analyse the properties of this improved portfolio frontier and apply this new method on real examples.

Keywords: Downside Risk, Kernel Method, Median, Nonparametric Estimation, Semivariance

Procedia PDF Downloads 492
1214 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora

Abstract:

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems

Procedia PDF Downloads 226
1213 Using Maximization Entropy in Developing a Filipino Phonetically Balanced Wordlist for a Phoneme-Level Speech Recognition System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

In this paper, a set of Filipino Phonetically Balanced Word list consisting of 250 words (PBW250) were constructed for a phoneme-level ASR system for the Filipino language. The Entropy Maximization is used to obtain phonological balance in the list. Entropy of phonemes in a word is maximized, providing an optimal balance in each word’s phonological distribution using the Add-Delete Method (PBW algorithm) and is compared to the modified PBW algorithm implemented in a dynamic algorithm approach to obtain optimization. The gained entropy score of 4.2791 and 4.2902 for the PBW and modified algorithm respectively. The PBW250 was recorded by 40 respondents, each with 2 sets data. Recordings from 30 respondents were trained to produce an acoustic model that were tested using recordings from 10 respondents using the HMM Toolkit (HTK). The results of test gave the maximum accuracy rate of 97.77% for a speaker dependent test and 89.36% for a speaker independent test.

Keywords: entropy maximization, Filipino language, Hidden Markov Model, phonetically balanced words, speech recognition

Procedia PDF Downloads 458
1212 A Fuzzy Multiobjective Model for Bed Allocation Optimized by Artificial Bee Colony Algorithm

Authors: Jalal Abdulkareem Sultan, Abdulhakeem Luqman Hasan

Abstract:

With the development of health care systems competition, hospitals face more and more pressures. Meanwhile, resource allocation has a vital effect on achieving competitive advantages in hospitals. Selecting the appropriate number of beds is one of the most important sections in hospital management. However, in real situation, bed allocation selection is a multiple objective problem about different items with vagueness and randomness of the data. It is very complex. Hence, research about bed allocation problem is relatively scarce under considering multiple departments, nursing hours, and stochastic information about arrival and service of patients. In this paper, we develop a fuzzy multiobjective bed allocation model for overcoming uncertainty and multiple departments. Fuzzy objectives and weights are simultaneously applied to help the managers to select the suitable beds about different departments. The proposed model is solved by using Artificial Bee Colony (ABC), which is a very effective algorithm. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that fuzzy multi-objective model was presented suitable framework for bed allocation and optimum use.

Keywords: bed allocation problem, fuzzy logic, artificial bee colony, multi-objective optimization

Procedia PDF Downloads 324
1211 The Influence of Cycle Index of Simulation Condition on Main Bearing Wear Prognosis of Internal Combustion Engine

Authors: Ziyu Diao, Yanyan Zhang, Zhentao Liu, Ruidong Yan

Abstract:

The update frequency of wear profile in main bearing wear prognosis of internal combustion engine plays an important role in the calculation efficiency and accuracy. In order to investigate the appropriate cycle index of the simplified working condition of wear simulation, the main bearing-crankshaft journal friction pair of a diesel engine in service was studied in this paper. The method of multi-body dynamics simulation was used, and the wear prognosis model of the main bearing was established. Several groups of cycle indexes were set up for the wear calculation, and the maximum wear depth and wear profile were compared and analyzed. The results showed that when the cycle index reaches 3, the maximum deviation rate of the maximum wear depth is about 2.8%, and the maximum deviation rate comes to 1.6% when the cycle index reaches 5. This study provides guidance and suggestions for the optimization of wear prognosis by selecting appropriate value of cycle index according to the requirement of calculation cost and accuracy of the simulation work.

Keywords: cycle index, deviation rate, wear calculation, wear profile

Procedia PDF Downloads 168