Search results for: corpus based approach
33699 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation
Procedia PDF Downloads 7033698 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers
Authors: Oumaima Lahmar
Abstract:
This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.Keywords: finance literature, textual analysis, topic modeling, perplexity
Procedia PDF Downloads 17033697 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate
Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas
Abstract:
Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks
Procedia PDF Downloads 10633696 Visualizing the Consequences of Smoking Using Augmented Reality
Authors: B. Remya Mohan, Kamal Bijlani, R. Jayakrishnan
Abstract:
Visualization in an educational context provides the learner with visual means of information. Conceptualizing certain circumstances such as consequences of smoking can be done more effectively with the help of the technology, Augmented Reality (AR). It is a new methodology for effective learning. This paper proposes an approach on how AR based on Marker Technology simulates the harmful effects of smoking and its consequences using Unity 3D game engine. The study also illustrates the impact of AR technology on students for better learning. AR technology can be used as a method to improve learning.Keywords: augmented reality, marker technology, multi-platform, virtual buttons
Procedia PDF Downloads 57833695 The Proactive Approach of Digital Forensics Methodology against Targeted Attack Malware
Authors: Mohamed Fadzlee Sulaiman, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin
Abstract:
Each individual organization has their own mechanism to build up cyber defense capability in protecting their information infrastructures from data breaches and cyber espionage. But, we can not deny the possibility of failing to detect and stop cyber attacks especially for those targeting credential information and intellectual property (IP). In this paper, we would like to share the modern approach of effective digital forensic methodology in order to identify the artifacts in tracing the trails of evidence while mitigating the infection from the target machine/s. This proposed approach will suit the digital forensic investigation to be conducted while resuming the business critical operation after mitigating the infection and minimizing the risk from the identified attack to transpire. Therefore, traditional digital forensics methodology has to be improvised to be proactive which not only focusing to discover the root caused and the threat actor but to develop the relevant mitigation plan in order to prevent from the same attack.Keywords: digital forensic, detection, eradication, targeted attack, malware
Procedia PDF Downloads 27533694 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 36833693 Fatigue Life Evaluation of Al6061/Al2O3 and Al6061/SiC Composites under Uniaxial and Multiaxial Loading Conditions
Authors: C. E. Sutton, A. Varvani-Farahani
Abstract:
Fatigue damage and life prediction of particle metal matrix composites (PMMCs) under uniaxial and multiaxial loading conditions were investigated. Three PMM composite materials of Al6061/Al2O3/20p-T6, Al6061/Al2O3/22p-T6 and Al6061/SiC/17w-T6 tested under tensile, torsion, and combined tension-torsion fatigue cycling were evaluated with various fatigue damage models. The fatigue damage models of Smith-Watson-Topper (S. W. T.), Ellyin, Brown-Miller, Fatemi-Socie, and Varvani were compared for their capability to assess the fatigue damage of materials undergoing various loading conditions. Fatigue life predication results were then evaluated by implementing material-dependent coefficients that factored in the effects of the particle reinforcement in the earlier developed Varvani model. The critical plane-energy approach incorporated the critical plane as the plane of crack initiation and early stage of crack growth. The strain energy density was calculated on the critical plane incorporating stress and strain components acting on the plane. This approach successfully evaluated fatigue damage values versus fatigue lives within a narrower band for both uniaxial and multiaxial loading conditions as compared with other damage approaches studied in this paper.Keywords: fatigue damage, life prediction, critical plane approach, energy approach, PMM composites
Procedia PDF Downloads 40333692 Knowledge Based Software Model for the Management and Treatment of Malaria Patients: A Case of Kalisizo General Hospital
Authors: Mbonigaba Swale
Abstract:
Malaria is an infection or disease caused by parasites (Plasmodium Falciparum — causes severe Malaria, plasmodium Vivax, Plasmodium Ovale, and Plasmodium Malariae), transmitted by bites of infected anopheles (female) mosquitoes to humans. These vectors comprise of two types in Africa, particularly in Uganda, i.e. anopheles fenestus and Anopheles gambaie (‘example Anopheles arabiensis,,); feeds on man inside the house mainly at dusk, mid-night and dawn and rests indoors and makes them effective transmitters (vectors) of the disease. People in both urban and rural areas have consistently become prone to repetitive attacks of malaria, causing a lot of deaths and significantly increasing the poverty levels of the rural poor. Malaria is a national problem; it causes a lot of maternal pre-natal and antenatal disorders, anemia in pregnant mothers, low birth weights for the newly born, convulsions and epilepsy among the infants. Cumulatively, it kills about one million children every year in sub-Saharan Africa. It has been estimated to account for 25-35% of all outpatient visits, 20-45% of acute hospital admissions and 15-35% of hospital deaths. Uganda is the leading victim country, for which Rakai and Masaka districts are the most affected. So, it is not clear whether these abhorrent situations and episodes of recurrences and failure to cure from the disease are a result of poor diagnosis, prescription and dosing, treatment habits and compliance of the patients to the drugs or the ethical domain of the stake holders in relation to the main stream methodology of malaria management. The research is aimed at offering an alternative approach to manage and deal absolutely with problem by using a knowledge based software model of Artificial Intelligence (Al) that is capable of performing common-sense and cognitive reasoning so as to take decisions like the human brain would do to provide instantaneous expert solutions so as to avoid speculative simulation of the problem during differential diagnosis in the most accurate and literal inferential aspect. This system will assist physicians in many kinds of medical diagnosis, prescribing treatments and doses, and in monitoring patient responses, basing on the body weight and age group of the patient, it will be able to provide instantaneous and timely information options, alternative ways and approaches to influence decision making during case analysis. The computerized system approach, a new model in Uganda termed as “Software Aided Treatment” (SAT) will try to change the moral and ethical approach and influence conduct so as to improve the skills, experience and values (social and ethical) in the administration and management of the disease and drugs (combination therapy and generics) by both the patient and the health worker.Keywords: knowledge based software, management, treatment, diagnosis
Procedia PDF Downloads 5733691 Physician and Theologian: An Analysis of Ibn Rabban’s Approach on Sīra Nabawiyya
Authors: Ahmad Sanusi Azmi, Amiruddin Mohd Sobali, Zulhilmi Mohamed Nor, Mohd Yusuf Ismail, Amran Abdul Halim
Abstract:
The non-Muslim communities’ reactions to the denials of the prophethood of Muḥammad in the ninth century created an impact on the development of Islamic prophetology. Vigorous refutations from non-Muslim community, specifically the Jews, Christians and Brahmins urged Muslims to develop a solid mechanism in defense of the status of their beloved prophet. One of the works that has been recognized as an apparatus to defend the Prophet Muḥammad veracity is al-Dīn wa al-Dawla composed by Ibn Rabban, a physician of the Caliph’s court. This study analyses the novelty of his approaches in exploring Sīra Nabawiyya and defending the prophethood of Muḥammad. The study employed a descriptive, comparative and critical approach where it analyses and extracts the author original approach in explaining the legitimacy of Muḥammad’s prophethood and enlightening the Prophet’s biography. The study in its finding argues that most of Ibn Rabban arguments in this work are actually developed from the foundations of Biblical scripture. His style of interpreting Biblical passages indicates a possible dependence on Ibn al-Layth’s letter. However, the way in which he presents Qur’ānic references seems not to be in accordance with Ibn al-Layth’s perspective. This is where the novelty of his approach is distinguished. As a result, the study also affirms that Ibn Rabban imposes his own standards of selection and interpretation of Qur’ānic verses when he applies it as reference to the Prophet life.Keywords: Sīra Nabawiyya, Ibn Rabban, al-Dīn wa al-Dawla, Christian, Dalāil Nubuwwa
Procedia PDF Downloads 33333690 A Thermal Analysis Based Approach to Obtain High Carbonaceous Fibers from Chicken Feathers
Authors: Y. Okumuş, A. Tuna, A. T. Seyhan, H. Çelebi
Abstract:
Useful carbon fibers were derived from chicken feathers (PCFs) based on a two-step pyrolysis method. The collected PCFs were cleaned and categorized as black, white and brown. Differential scanning calorimeter (DSC) and thermo-gravimetric analyzer (TGA) were systemically used to design the pyrolysis steps. Depending on colors, feathers exhibit different glass transition (Tg) temperatures. Long-time heat treatment applied to the feathers emerged influential on the surface quality of the resulting carbon fibers. Fourier Transformation Infrared (FTIR) examination revealed that the extent of disulfide bond cleavage is highly associated with the feather melting stability. Scanning electron microscopy (SEM) examinations were employed to evaluate the morphological changes of feathers after pyrolysis. Of all, brown feathers were found to be the most promising to turn into useful carbon fibers without any trace of melting and shape distortion when pyrolysis was carried out at 230°C for 24 hours and at 450°C for 1 hour.Keywords: poultry chicken feather, keratin protein fiber, pyrolysis, high carbonaceous fibers
Procedia PDF Downloads 33033689 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology
Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian
Abstract:
Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.Keywords: energy in buildings, hardware in loop testing, modelica modelling, Monte Carlo simulation, uncertainty propagation
Procedia PDF Downloads 13733688 Project-Based Learning and Evidence Based Nursing as Tools for Developing Students' Integrative Critical Thinking Skills: Content Analysis of Final Students' Projects
Authors: E. Maoz
Abstract:
Background: As a teaching method, project-based learning is strongly linked to developing students’ critical thinking skills. It combines creative independent thinking, team work, and disciplinary subject-field integration. In the 'Introduction to Nursing Research Methods' course (year 3, Generic Track), project based learning is used to teach the topic of 'Evidence-Based Nursing'. This topic examines a clinical care issue encountered by students in the field. At the end of their project, students present proposals for managing the said issue. Proposals are the product of independent integrative thinking integrating a wide range of factors influencing the issue’s management. Method: Papers by 27 groups of students (165 students) were content analyzed to identify which themes emerged from the students' recommendations for managing the clinical issue. Findings: Five main themes emerged—current management approach; adapting procedures in line with current recent research recommendations; training for change (veteran nursing staff, beginner students, patients, significant others); analysis of 'economic benefit vs. patient benefit'; multidisciplinary team engagement in implementing change in practice. Two surprising themes also emerged: advertising and marketing using new technologies, which reflects how the new generation thinks. Summary and Recommendations: Among the main challenges in nursing education is training nursing graduates to think independently, integratively, and critically. Combining PBL with classical teaching methods stimulates students cognitively while opening new vistas with implications on all levels of the profession: management, research, education, and practice. Advanced students can successfully grasp and interpret the current state of clinical practice. They are competent and open to leading change and able to consider the diverse factors and interconnections that characterize the nurse's work.Keywords: evidence based nursing, critical thinking skills, project based learning, students education
Procedia PDF Downloads 9133687 A Flipped Classroom Approach for Non Science Majors
Authors: Nidhi Gadura
Abstract:
To ensure student success in a non majors biology course, a flipped classroom pedagogical approach is developed and implemented. All students are assigned online lectures to listen to before they come to class. A three hour lecture is split into one hour of online component, one hour of in class lecture and one hour of worksheets done by students in the classroom. This deviation from a traditional 3 hour in class lecture has resulted in increased student interest in science as well as better understanding of difficult scientific concepts. A pre and post survey was given to measure the interest rates and grades were used to measure the success rates. While the overall grade average did not change dramatically, students reported a better appreciation of biology. Also, students overwhelmingly like the use of worksheets in class to help them understand the concepts. They liked the fact that they could listen to lectures at their own pace on line and even repeat if needed. The flipped classroom approach turned out to work really well our non science majors and the author is ready to implement this in other classrooms.Keywords: flipped classroom, non science majors, pedagogy, technological pedagogical model
Procedia PDF Downloads 41833686 A Life Cycle Assessment (LCA) of Aluminum Production Process
Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour
Abstract:
The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts
Procedia PDF Downloads 53233685 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose
Authors: Mariamawit T. Belete
Abstract:
Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.Keywords: sorghum anthracnose, data mining, case based reasoning, integration
Procedia PDF Downloads 8233684 A Clustering-Based Approach for Weblog Data Cleaning
Authors: Amine Ganibardi, Cherif Arab Ali
Abstract:
This paper addresses the data cleaning issue as a part of web usage data preprocessing within the scope of Web Usage Mining. Weblog data recorded by web servers within log files reflect usage activity, i.e., End-users’ clicks and underlying user-agents’ hits. As Web Usage Mining is interested in End-users’ behavior, user-agents’ hits are referred to as noise to be cleaned-off before mining. Filtering hits from clicks is not trivial for two reasons, i.e., a server records requests interlaced in sequential order regardless of their source or type, website resources may be set up as requestable interchangeably by end-users and user-agents. The current methods are content-centric based on filtering heuristics of relevant/irrelevant items in terms of some cleaning attributes, i.e., website’s resources filetype extensions, website’s resources pointed by hyperlinks/URIs, http methods, user-agents, etc. These methods need exhaustive extra-weblog data and prior knowledge on the relevant and/or irrelevant items to be assumed as clicks or hits within the filtering heuristics. Such methods are not appropriate for dynamic/responsive Web for three reasons, i.e., resources may be set up to as clickable by end-users regardless of their type, website’s resources are indexed by frame names without filetype extensions, web contents are generated and cancelled differently from an end-user to another. In order to overcome these constraints, a clustering-based cleaning method centered on the logging structure is proposed. This method focuses on the statistical properties of the logging structure at the requested and referring resources attributes levels. It is insensitive to logging content and does not need extra-weblog data. The used statistical property takes on the structure of the generated logging feature by webpage requests in terms of clicks and hits. Since a webpage consists of its single URI and several components, these feature results in a single click to multiple hits ratio in terms of the requested and referring resources. Thus, the clustering-based method is meant to identify two clusters based on the application of the appropriate distance to the frequency matrix of the requested and referring resources levels. As the ratio clicks to hits is single to multiple, the clicks’ cluster is the smallest one in requests number. Hierarchical Agglomerative Clustering based on a pairwise distance (Gower) and average linkage has been applied to four logfiles of dynamic/responsive websites whose click to hits ratio range from 1/2 to 1/15. The optimal clustering set on the basis of average linkage and maximum inter-cluster inertia results always in two clusters. The evaluation of the smallest cluster referred to as clicks cluster under the terms of confusion matrix indicators results in 97% of true positive rate. The content-centric cleaning methods, i.e., conventional and advanced cleaning, resulted in a lower rate 91%. Thus, the proposed clustering-based cleaning outperforms the content-centric methods within dynamic and responsive web design without the need of any extra-weblog. Such an improvement in cleaning quality is likely to refine dependent analysis.Keywords: clustering approach, data cleaning, data preprocessing, weblog data, web usage data
Procedia PDF Downloads 17033683 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning
Authors: Eiman Kattan
Abstract:
This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.Keywords: conventional neural network, remote sensing, land cover, land use
Procedia PDF Downloads 37033682 Computational Analysis of Potential Inhibitors Selected Based on Structural Similarity for the Src SH2 Domain
Authors: W. P. Hu, J. V. Kumar, Jeffrey J. P. Tsai
Abstract:
The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.Keywords: nonpeptide inhibitor, Src SH2 domain, LibDock, molecular dynamics simulation
Procedia PDF Downloads 26933681 Nanoliposomes in Photothermal Therapy: Advancements and Applications
Authors: Mehrnaz Mostafavi
Abstract:
Nanoliposomes, minute lipid-based vesicles at the nano-scale, show promise in the realm of photothermal therapy (PTT). This study presents an extensive overview of nanoliposomes in PTT, exploring their distinct attributes and the significant progress in this therapeutic methodology. The research delves into the fundamental traits of nanoliposomes, emphasizing their adaptability, compatibility with biological systems, and their capacity to encapsulate diverse therapeutic substances. Specifically, it examines the integration of light-absorbing materials, like gold nanoparticles or organic dyes, into nanoliposomal formulations, enabling their efficacy as proficient agents for photothermal treatment Additionally, this paper elucidates the mechanisms involved in nanoliposome-mediated PTT, highlighting their capability to convert light energy into localized heat, facilitating the precise targeting of diseased cells or tissues. This precise regulation of light absorption and heat generation by nanoliposomes presents a non-invasive and precisely focused therapeutic approach, particularly in conditions like cancer. The study explores advancements in nanoliposomal formulations aimed at optimizing PTT outcomes. These advancements include strategies for improved stability, enhanced drug loading, and the targeted delivery of therapeutic agents to specific cells or tissues. Furthermore, the paper discusses multifunctional nanoliposomal systems, integrating imaging components or targeting elements for real-time monitoring and improved accuracy in PTT. Moreover, the review highlights recent preclinical and clinical trials showcasing the effectiveness and safety of nanoliposome-based PTT across various disease models. It also addresses challenges in clinical implementation, such as scalability, regulatory considerations, and long-term safety assessments. In conclusion, this paper underscores the substantial potential of nanoliposomes in advancing PTT as a promising therapeutic approach. Their distinctive characteristics, combined with their precise ability to convert light into heat, offer a tailored and efficient method for treating targeted diseases. The encouraging outcomes from preclinical studies pave the way for further exploration and potential clinical applications of nanoliposome-based PTT.Keywords: nanoliposomes, photothermal therapy, light absorption, heat conversion, therapeutic agents, targeted delivery, cancer therapy
Procedia PDF Downloads 11333680 Relationship Building Between Peer Support Worker and Person in Recovery in the Community-based One-to-One Peer Support Service of Mental Health Setting
Authors: Yuen Man Yan
Abstract:
Peer support has been a rising prevalent mental health service in the globe. The community-based mental health services employ persons with lived experience of mental illness to be peer support workers (PSWs) to provide peer support service to those who are in the progress of recovery (PIRs). It represents the transformation of mental health service system to a recovery-oriented and person-centered care. Literatures proved the feasibility and effectiveness of the peer support service. Researchers have attempted to explore the unique good qualities of peer support service that benefit the PIRs. Empirical researches found that the strength of the relationship between those who sought for change and the change agents positively related to the outcomes in one-to-one therapies across theoretical orientations. However, there is lack of literature on investigating the relationship building between the PSWs and PIRs in the one-to-one community-based peer support service. This study aims to identify and characterise the relationship in the community-based one-to-one peer support service from the perspectives of PSWs and PIRs; and to conceptualize the components of relationship building between PSWs and PIRs in the community-based one-to-one peer support service. The study adopted the constructivist grounded theory approach. 10 pairs of the PSWs and PIRs participated in the study. Data were collected through multiple qualitative methods, including observation of the interaction and exchange of the PSWs and PIRs in the 1ₛₜ, 3ᵣ𝒹 and 9th sessions of the community-based one-to-one peer support service; and semi-structural interview with the PSWs and PIRs separately after the 3ᵣ𝒹and 9ₜₕ session of the peer support service. This presentation is going to report the preliminary findings of the study. PSWs and PIRs identified their relationship as “life alliance”. Empathy was found to be one of key components of the relationship between the PSWs and the PIRs. Unlike the empathy, as explained by Carl Roger, in which the service provider was able to put themselves into the shoes of the service recipients as if he was the service recipients, the intensity of the empathy was much greater in the relationship between PSWs and PIRs because PSWs had the lived experience of mental illness and recovery. The dimensions of the empathy in the relationship between PSWs and PIRs was found to be multiple, not only related to the mental illness but also related to various aspects in life, like family relationship, employment, interest of life, self-esteem and etc.Keywords: person with lived experience, peer support worker, peer support service, relationship building, therapeutic alliance, community-based mental health setting
Procedia PDF Downloads 7233679 Microfinance for the Marginalised: The Impact of the Rojiroti Approach in India
Authors: Gil Yaron, Rebecca Gordon, John Best, Sunil Choudhary
Abstract:
There have been a number of studies examining the impact of microfinance; however, the magnitude of impact varies across regions, and there has been mixed evidence due to the differences in the nature of interventions, context and the way in which microfinance is implemented. The Rojiroti approach to microfinance involves the creation of women's self-help groups (SHGs), rotated loans from savings and subsequent credit from a Bihar-based NGO. Rojiroti serves customers who are significantly poorer and more marginalised than those typically served by microfinance in India. In the data analysed, more than 90 percent of members are from scheduled caste and tribes (62 percent) or other disadvantaged castes. This paper analyses the impact of Rojiroti microfinance using panel data on 740 new SHG members and 340 women in matched control sites at baseline and after 18 months. We consider changes in assets, children's education, women's mobility and domestic violence among other indicators. These results show significant gains for Rojiroti borrowers relative to control sites for important, but not all, variables. Comparison with more longstanding SHGs (at least 36 months) helps to explain how the borrowing patterns of poor and marginalised SHG members evolve. The context of this intervention is also important; in this case, innovative microfinance is provided too much poorer and marginalised women than is typically the case, and so the results seen are in contrast to numerous studies that show little or no effect of microfinance on the lives of their clients.Keywords: microfinance, gender, impact, pro-poor
Procedia PDF Downloads 15733678 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 9133677 Filtering Intrusion Detection Alarms Using Ant Clustering Approach
Authors: Ghodhbani Salah, Jemili Farah
Abstract:
With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms
Procedia PDF Downloads 40433676 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments
Authors: Xiaoqin Wang, Li Yin
Abstract:
Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.Keywords: causal effect, point effect, statistical modelling, sequential causal inference
Procedia PDF Downloads 20533675 Balancing Security and Human Rights: A Comprehensive Approach to Security and Defense Policy
Authors: Babatunde Osabiya
Abstract:
Cybersecurity has emerged as a pressing policy problem in recent years, affecting individuals, businesses, and governments worldwide. This research paper aims to critically review the literature on cybersecurity policy and apply policy theory to propose a policy approach that balances the freedom to access and use technology with the human rights risks and threats posed by cyber. Drawing on various credible sources, the paper examines the scale and seriousness of cyber threats, highlighting the growing threat posed by cybercriminals, hackers, and nation-states. The paper also identifies the key challenges facing policymakers, including the need for more significant investment in cybersecurity research and development and the importance of balancing the benefits of technological innovation with the risks to privacy, security, and human rights. To address these challenges, the paper proposes a policy approach emphasizing investing in cybersecurity research and development to maintain a technological edge over potential adversaries. This approach also highlights the need for greater collaboration between government, industry, and civil society to develop effective cybersecurity policies and practices that protect the rights and freedoms of people while mitigating the risks posed by cyber threats. This paper will contribute to the growing body of literature on cybersecurity policy and offers a policy framework for addressing this critical policy challenge.Keywords: security risk, legal framework, cyber security and policy, national security
Procedia PDF Downloads 9333674 Market Solvency Capital Requirement Minimization: How Non-linear Solvers Provide Portfolios Complying with Solvency II Regulation
Authors: Abraham Castellanos, Christophe Durville, Sophie Echenim
Abstract:
In this article, a portfolio optimization problem is performed in a Solvency II context: it illustrates how advanced optimization techniques can help to tackle complex operational pain points around the monitoring, control, and stability of Solvency Capital Requirement (SCR). The market SCR of a portfolio is calculated as a combination of SCR sub-modules. These sub-modules are the results of stress-tests on interest rate, equity, property, credit and FX factors, as well as concentration on counter-parties. The market SCR is non convex and non differentiable, which does not make it a natural optimization criteria candidate. In the SCR formulation, correlations between sub-modules are fixed, whereas risk-driven portfolio allocation is usually driven by the dynamics of the actual correlations. Implementing a portfolio construction approach that is efficient on both a regulatory and economic standpoint is not straightforward. Moreover, the challenge for insurance portfolio managers is not only to achieve a minimal SCR to reduce non-invested capital but also to ensure stability of the SCR. Some optimizations have already been performed in the literature, simplifying the standard formula into a quadratic function. But to our knowledge, it is the first time that the standard formula of the market SCR is used in an optimization problem. Two solvers are combined: a bundle algorithm for convex non- differentiable problems, and a BFGS (Broyden-Fletcher-Goldfarb- Shanno)-SQP (Sequential Quadratic Programming) algorithm, to cope with non-convex cases. A market SCR minimization is then performed with historical data. This approach results in significant reduction of the capital requirement, compared to a classical Markowitz approach based on the historical volatility. A comparative analysis of different optimization models (equi-risk-contribution portfolio, minimizing volatility portfolio and minimizing value-at-risk portfolio) is performed and the impact of these strategies on risk measures including market SCR and its sub-modules is evaluated. A lack of diversification of market SCR is observed, specially for equities. This was expected since the market SCR strongly penalizes this type of financial instrument. It was shown that this direct effect of the regulation can be attenuated by implementing constraints in the optimization process or minimizing the market SCR together with the historical volatility, proving the interest of having a portfolio construction approach that can incorporate such features. The present results are further explained by the Market SCR modelling.Keywords: financial risk, numerical optimization, portfolio management, solvency capital requirement
Procedia PDF Downloads 11733673 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings
Authors: Lotfi O. Gargab, Ruichong R. Zhang
Abstract:
A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake
Procedia PDF Downloads 36933672 The Discriminate Analysis and Relevant Model for Mapping Export Potential
Authors: Jana Gutierez Chvalkovska, Michal Mejstrik, Matej Urban
Abstract:
There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.Keywords: export strategy, modeling export, calibration, export promotion
Procedia PDF Downloads 49833671 Evidence Theory Based Emergency Multi-Attribute Group Decision-Making: Application in Facility Location Problem
Authors: Bidzina Matsaberidze
Abstract:
It is known that, in emergency situations, multi-attribute group decision-making (MAGDM) models are characterized by insufficient objective data and a lack of time to respond to the task. Evidence theory is an effective tool for describing such incomplete information in decision-making models when the expert and his knowledge are involved in the estimations of the MAGDM parameters. We consider an emergency decision-making model, where expert assessments on humanitarian aid from distribution centers (HADC) are represented in q-rung ortho-pair fuzzy numbers, and the data structure is described within the data body theory. Based on focal probability construction and experts’ evaluations, an objective function-distribution centers’ selection ranking index is constructed. Our approach for solving the constructed bicriteria partitioning problem consists of two phases. In the first phase, based on the covering’s matrix, we generate a matrix, the columns of which allow us to find all possible partitionings of the HADCs with the service centers. Some constraints are also taken into consideration while generating the matrix. In the second phase, based on the matrix and using our exact algorithm, we find the partitionings -allocations of the HADCs to the centers- which correspond to the Pareto-optimal solutions. For an illustration of the obtained results, a numerical example is given for the facility location-selection problem.Keywords: emergency MAGDM, q-rung orthopair fuzzy sets, evidence theory, HADC, facility location problem, multi-objective combinatorial optimization problem, Pareto-optimal solutions
Procedia PDF Downloads 9233670 The Role of Social Capital in Community-Based Water Resources Management in Kenya's Polycentric Water Resource Governance System
Authors: Brenda Margaret Behan
Abstract:
Kenya is a water-stressed country with highly varied socio-ecological environments in its devolved county system, and is currently implementing a polycentric water governance system; this paper examines the importance of social capital in community-based natural resource management and its role in supporting good water governance systems in the Kenya context. Through a robust literature review of theory and case studies, specific aspects of social capital are examined to determine their importance in the implementation of local community-based water management arrangements which support and complement the more formal institutions outlined in the 2002 and 2016 Water Acts of Kenya. Water is an increasingly important and scarce resource not only for Kenya, but for many communities across the globe, and lessons learned in the Kenya context can be useful for other countries and communities faced with similar challenges. Changing climates, increasing populations, and increased per capita consumption of water is contributing to a situation in which the management of water resources will be vital to community resilience. Community-based natural resource management is widely recognized as a building block and component of wider water resource management systems, and when properly conducted can provide a way to enable sustainable use of resources and empower communities. Greater attention to the social and cultural norms and traditional institutions associated with a community’s social capital can lead to better results for Kenya’s polycentric governance of water. The key findings and recommendations from this research show that in Kenya, traditional institutions need to be understood and integrated into governance systems; social values and cultural norms have a significant impact on the implementation of community-based water management efforts; and social capital is a dynamic concept which influences and is influenced by policies and practices. The community-based water management approach will continue to be a key cornerstone for Kenya’s polycentric water governance structure, especially in the more remote arid and semi-arid lands; thus, the successful integration of social capital aspects into planning and implementation will contribute to a strengthened, sustainable, and more equitable national water governance system. Specific observations and recommendations from this study will help practitioners and policymakers to better craft community-based interventions.Keywords: community-based natural resource management, social capital, traditional institutions, water governance
Procedia PDF Downloads 168