Search results for: composite materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8157

Search results for: composite materials

5787 Packaging Processes for the Implantable Medical Microelectronics

Authors: Chung-Yu Wu, Chia-Chi Chang, Wei-Ming Chen, Pu-Wei Wu, Shih-Fan Chen, Po-Chun Chen

Abstract:

Electrostimulation medical devices for neural diseases require electroactive and biocompatible materials to transmit signals from electrodes to targeting tissues. Protection of surrounding tissues has become a great challenge for long-term implants. In this study, we designed back-end processes with compatible, efficient, and reliable advantages over the current state-of-the-art. We explored a hermetic packaging process with high quality of adhesion and uniformity as the biocompatible devices for long-term implantation. This approach is able to provide both excellent biocompatibility and protection to the biomedical electronic devices by performing conformal coating of biocompatible materials. We successfully developed a packaging process that is capable of exposing the stimulating electrode and cover all other faces of chip with high quality of protection to prevent leakage of devices and body fluid.

Keywords: biocompatible package, medical microelectronics, surface coating, long-term implantation

Procedia PDF Downloads 525
5786 Functional Surfaces and Edges for Cutting and Forming Tools Created Using Directed Energy Deposition

Authors: Michal Brazda, Miroslav Urbanek, Martina Koukolikova

Abstract:

This work focuses on the development of functional surfaces and edges for cutting and forming tools created through the Directed Energy Deposition (DED) technology. In the context of growing challenges in modern engineering, additive technologies, especially DED, present an innovative approach to manufacturing tools for forming and cutting. One of the key features of DED is its ability to precisely and efficiently deposit Fully dense metals from powder feedstock, enabling the creation of complex geometries and optimized designs. Gradually, it becomes an increasingly attractive choice for tool production due to its ability to achieve high precision while simultaneously minimizing waste and material costs. Tools created using DED technology gain significant durability through the utilization of high-performance materials such as nickel alloys and tool steels. For high-temperature applications, Nimonic 80A alloy is applied, while for cold applications, M2 tool steel is used. The addition of ceramic materials, such as tungsten carbide, can significantly increase the tool's resistance. The introduction of functionally graded materials is a significant contribution, opening up new possibilities for gradual changes in the mechanical properties of the tool and optimizing its performance in different sections according to specific requirements. In this work, you will find an overview of individual applications and their utilization in the industry. Microstructural analyses have been conducted, providing detailed insights into the structure of individual components alongside examinations of the mechanical properties and tool life. These analyses offer a deeper understanding of the efficiency and reliability of the created tools, which is a key element for successful development in the field of cutting and forming tools. The production of functional surfaces and edges using DED technology can result in financial savings, as the entire tool doesn't have to be manufactured from expensive special alloys. The tool can be made from common steel, onto which a functional surface from special materials can be applied. Additionally, it allows for tool repairs after wear and tear, eliminating the need for producing a new part and contributing to an overall cost while reducing the environmental footprint. Overall, the combination of DED technology, functionally graded materials, and verified technologies collectively set a new standard for innovative and efficient development of cutting and forming tools in the modern industrial environment.

Keywords: additive manufacturing, directed energy deposition, DED, laser, cutting tools, forming tools, steel, nickel alloy

Procedia PDF Downloads 50
5785 Low Frequency Ultrasonic Degassing to Reduce Void Formation in Epoxy Resin and Its Effect on the Thermo-Mechanical Properties of the Cured Polymer

Authors: A. J. Cobley, L. Krishnan

Abstract:

The demand for multi-functional lightweight materials in sectors such as automotive, aerospace, electronics is growing, and for this reason fibre-reinforced, epoxy polymer composites are being widely utilized. The fibre reinforcing material is mainly responsible for the strength and stiffness of the composites whilst the main role of the epoxy polymer matrix is to enhance the load distribution applied on the fibres as well as to protect the fibres from the effect of harmful environmental conditions. The superior properties of the fibre-reinforced composites are achieved by the best properties of both of the constituents. Although factors such as the chemical nature of the epoxy and how it is cured will have a strong influence on the properties of the epoxy matrix, the method of mixing and degassing of the resin can also have a significant impact. The production of a fibre-reinforced epoxy polymer composite will usually begin with the mixing of the epoxy pre-polymer with a hardener and accelerator. Mechanical methods of mixing are often employed for this stage but such processes naturally introduce air into the mixture, which, if it becomes entrapped, will lead to voids in the subsequent cured polymer. Therefore, degassing is normally utilised after mixing and this is often achieved by placing the epoxy resin mixture in a vacuum chamber. Although this is reasonably effective, it is another process stage and if a method of mixing could be found that, at the same time, degassed the resin mixture this would lead to shorter production times, more effective degassing and less voids in the final polymer. In this study the effect of four different methods for mixing and degassing of the pre-polymer with hardener and accelerator were investigated. The first two methods were manual stirring and magnetic stirring which were both followed by vacuum degassing. The other two techniques were ultrasonic mixing/degassing using a 40 kHz ultrasonic bath and a 20 kHz ultrasonic probe. The cured cast resin samples were examined under scanning electron microscope (SEM), optical microscope, and Image J analysis software to study morphological changes, void content and void distribution. Three point bending test and differential scanning calorimetry (DSC) were also performed to determine the thermal and mechanical properties of the cured resin. It was found that the use of the 20 kHz ultrasonic probe for mixing/degassing gave the lowest percentage voids of all the mixing methods in the study. In addition, the percentage voids found when employing a 40 kHz ultrasonic bath to mix/degas the epoxy polymer mixture was only slightly higher than when magnetic stirrer mixing followed by vacuum degassing was utilized. The effect of ultrasonic mixing/degassing on the thermal and mechanical properties of the cured resin will also be reported. The results suggest that low frequency ultrasound is an effective means of mixing/degassing a pre-polymer mixture and could enable a significant reduction in production times.

Keywords: degassing, low frequency ultrasound, polymer composites, voids

Procedia PDF Downloads 296
5784 Cold Spray Coating and Its Application for High Temperature

Authors: T. S. Sidhu

Abstract:

Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature.

Keywords: cold spray coating, hot corrosion, thermal spray coating, high-temperature materials

Procedia PDF Downloads 243
5783 Ion Beam Polishing of Si in W/Si Multilayer X-Ray Analyzers

Authors: Roman Medvedev, Andrey Yakshin, Konstantin Nikolaev, Sergey Yakunin, Fred Bijkerk

Abstract:

Multilayer structures are used as spectroscopic elements in fluorescence analysis. These serve the purpose of analyzing soft x-ray emission spectra of materials upon excitation by x-rays or electrons. The analysis then allows quantitative determination of the x-ray emitting elements in the materials. Shorter wavelength range for this application, below 2.5nm, can be covered by using short period multilayers, with a period of 2.5 nm and lower. Thus the detrimental effect on the reflectivity of morphological roughness between materials of the multilayers becomes increasingly pronounced. Ion beam polishing was previously shown to be effective in reducing roughness in some multilayer systems with Si. In this work, we explored W/Si multilayers with the period of 2.5 nm. Si layers were polishing by Ar ions, employing low energy ions, 100 and 80 eV, with the etched Si thickness being in the range 0.1 to 0.5 nm. CuK X-ray diffuse scattering measurements revealed a significant reduction in the diffused scattering in the polished multilayers. However, Grazing Incidence CuK X-ray showed only a marginal reduction of the overall roughness of the systems. Still, measurements of the structures with Grazing Incidence Small Angle X-ray scattering indicated that the vertical correlation length of roughness was strongly reduced in the polished multilayers. These results together suggest that polishing results in the reduction of the vertical propagation of roughness from layer to layer, while only slightly affecting the overall roughness. This phenomenon can be explained by ion-induced surface roughening inherently present in the ion polishing methods. Alternatively, ion-induced densification of thin Si films should also be considered. Finally, the reflectivity of 40% at 0.84 nm at grazing incidence of 9 degrees has been obtained in this work for W/Si multilayers. Analysis of the obtained results is expected to lead to further progress in reflectance.

Keywords: interface roughness, ion polishing, multilayer structures, W/Si

Procedia PDF Downloads 134
5782 Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles

Authors: Amir Mahmoudi

Abstract:

In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength.

Keywords: Portland cement, composite, nanoparticles, compressive strength

Procedia PDF Downloads 435
5781 The Effect of Gas Pollutants on Museum Environment: Case Study of an Oil Paintings in Ethnographic Museum, Egypt

Authors: Hagar Ezzat, Mostafa Attia, Ahmed Bedeir, Abdelrazek Elnagger, Matija Strlic

Abstract:

Ethnographic Museum in Cairo- Egypt is a place of valuable collections (manuscripts, paintings, textiles and other ethnographic materials), the museum experiences serious neglecting with unacceptable display and storage conditions, the museum is located in Tahrir sq., which consider a high traffic area where pollution levels exceed the acceptable levels in museums. The materials used in manufacturing the display cases are expected to be source of many pollutants which affecting the sensitive oil paintings objects in the galleries. 24 diffusion tubes (12 No2, So2 & 12 O3) have been used in "winter 2014 and spring 2014" for monitoring museum environment with three cases "outdoor & indoor and in the gallery display". A series of analytical techniques with scientific tools: Ion Chromatography have been used to assess measurements and effects of gas pollutants on the museum which help us to make good assessment for the damage of oil paintings objects and the condition of the museum and understand the effect of the museum environment on the deterioration of the sensitive oil paintings.

Keywords: environment, museum, paintings, ethnographic, conservation

Procedia PDF Downloads 242
5780 Vietnamese Trade Ceramics from the 14th Century to the 17th Century through Materials

Authors: Ngo the Bach

Abstract:

Vietnam is one of not many Asian countries that have a long-standing and famous tradition of pottery production. Vietnam is also one of three countries including China, Vietnam, and Japan developed strongly the export of ceramics to other countries. In recent decades, the studies of Vietnamese and foreign scholars on Vietnamese trade ceramics as well as Vietnamese foreign trade was initially recorded. The aim of this article is to introduce an overview of the findings situation and research results; the development of Vietnam ceramics and the Vietnamese history of maritime trade with Asian ceramics from the 14th century to the 17th century. Given that, the author systematized materials; carried out the synthetic and analysis for research results of Vietnamese and foreign researchers until now on Vietnamese export ceramics on the basis of the historical sources, archaeological findings discovered from relics in the tombs, relics of residence, relics of trading port inland, and the ancient shipwreck sank in the Asian countries.

Keywords: Vietnamese ceramics, trading, maritime, international

Procedia PDF Downloads 269
5779 Greyscale: A Tree-Based Taxonomy for Grey Literature Published by Fisheries Agencies

Authors: Tatiana Tunon, Gottfried Pestal

Abstract:

Government agencies responsible for the management of fisheries resources publish many types of grey literature, and these materials are increasingly accessible to the public on agency websites. However, scope and quality vary considerably, and end-users need meta-data about the report series when deciding whether to use the information (e.g. apply the methods, include the results in a systematic review), or when prioritizing materials for archiving (e.g. library holdings, reference databases). A proposed taxonomy for these report series was developed based on a review of 41 report series from 6 government agencies in 4 countries (Canada, New Zealand, Scotland, and United States). Each report series was categorized according to multiple criteria describing peer-review process, content, and purpose. A robust classification tree was then fitted to these descriptions, and the resulting taxonomic groups were used to compare agency output from 4 countries using reports available in their online repositories.

Keywords: classification tree, fisheries, government, grey literature

Procedia PDF Downloads 283
5778 Adsorption of Phenolic Compounds on Activated Carbon DSAC36-24

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi, Dhananjay R. Mishra, Ammar Houas

Abstract:

Activated carbon DSAC36-24 iy is adsorbent materials, characterized by a specific surface area of 548.13 m²g⁻¹. Their manufacture uses the natural raw materials like the nucleus of dates. In this study the treatment is done in two stages: A chemical treatment by H3PO4 followed by a physical treatment under nitrogen for 1 hour then under stream of CO2 for 24 hours. A characterization of the various parameters was determined such as the measurement of the specific surface area, determination of pHPZC, bulk density, iodine value. The study of the adsorption of organic molecules (hydroquinone, paranitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol) indicates that the adsorption phenomena are essentially due to the van der Waals interaction. In the case of organic molecules carrying the polar substituents, the existence of hydrogen bonds is also proved by the donor-acceptor forces. The study of the pH effect was done with modeling by different models (Langmuir, Freundlich, Langmuir-Freundlich, Redlich-Peterson), a kinetic treatment is also followed by the application of Lagergren, Weber, Macky.

Keywords: adsoprtion ishoterms, adsorption kinetics, DSAC36-24, organic molecule

Procedia PDF Downloads 279
5777 Modelling of Silicon Solar Cell with Anti-reflecting Coating

Authors: Ankita Gaur, Mouli Karmakar, Shyam

Abstract:

In this study, a silicon solar cell has been modeled and analyzed to enhance its electrical performance by improving the optical properties using an antireflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various Anti-Reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF₂ coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for Anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively.

Keywords: antireflecting coating, electrical efficiency, reflectance, solar cell, transmittance

Procedia PDF Downloads 153
5776 Effects of Learner-Content Interaction Activities on the Context of Verbal Learning Outcomes in Interactive Courses

Authors: Alper Tolga Kumtepe, Erdem Erdogdu, M. Recep Okur, Eda Kaypak, Ozlem Kaya, Serap Ugur, Deniz Dincer, Hakan Yildirim

Abstract:

Interaction is one of the most important components of open and distance learning. According to Moore, who proposed one of the keystones on interaction types, there are three basic types of interaction: learner-teacher, learner-content, and learner-learner. From these interaction types, learner-content interaction, without doubt, can be identified as the most fundamental one on which all education is based. Efficacy, efficiency, and attraction of open and distance learning systems can be achieved by the practice of effective learner-content interaction. With the development of new technologies, interactive e-learning materials have been commonly used as a resource in open and distance learning, along with the printed books. The intellectual engagement of the learners with the content that is course materials may also affect their satisfaction for the open and distance learning practices in general. Learner satisfaction holds an important place in open and distance learning since it will eventually contribute to the achievement of learning outcomes. Using the learner-content interaction activities in course materials, Anadolu University, by its Open Education system, tries to involve learners in deep and meaningful learning practices. Especially, during the e-learning material design and production processes, identifying appropriate learner-content interaction activities within the context of learning outcomes holds a big importance. Considering the lack of studies adopting this approach, as well as its being a study on the use of e-learning materials in Open Education system, this research holds a big value in open and distance learning literature. In this respect, the present study aimed to investigate a) which learner-content interaction activities included in interactive courses are the most effective in learners’ achievement of verbal information learning outcomes and b) to what extent distance learners are satisfied with these learner-content interaction activities. For this study, the quasi-experimental research design was adopted. The 120 participants of the study were from Anadolu University Open Education Faculty students living in Eskişehir. The students were divided into 6 groups randomly. While 5 of these groups received different learner-content interaction activities as a part of the experiment, the other group served as the control group. The data were collected mainly through two instruments: pre-test and post-test. In addition to those tests, learners’ perceived learning was assessed with an item at the end of the program. The data collected from pre-test and post-test were analyzed by ANOVA, and in the light of the findings of this approximately 24-month study, suggestions for the further design of e-learning materials within the context of learner-content interaction activities will be provided at the conference. The current study is planned to be an antecedent for the following studies that will examine the effects of activities on other learning domains.

Keywords: interaction, distance education, interactivity, online courses

Procedia PDF Downloads 194
5775 Comparative Study of Sorption of Cr Ions and Dye Bezaktiv Yellow HE-4G with the Use of Adsorbents Natural Mixture of Olive Stone and Date Pits from Aqueous Solution

Authors: H. Aksas, H. Babaci, K. Louhab

Abstract:

In this paper, a comparative study of the adsorption of Chromium and dyes, onto mixture biosorbents, olive stones and date pits at different percentage was investigated in aqueous solution. The study of various parameters: Effect of contact time, pH, temperature and initial concentration shows that these materials possess a high affinity for the adsorption of chromium for the adsorption of dye bezaktiv yellow HE-4G. To deepen the comparative study of the adsorption of chromium and dye with the use of different blends of olive stones and date pits, the following models are studied: Langmuir, Freundlich isotherms and Dubinin- Radushkvich (D-R) were used as the adsorption equilibrium data model. Langmuir isotherm model was the most suitable for the adsorption of the dye bezaktiv HE-4G and the D-R model is most suitable for adsorption Chrome. The pseudo-first-order model, pseudo-second order and intraparticle diffusion were used to describe the adsorption kinetics. The apparent activation energy was found to be less than 8KJ/mol, which is characteristic of a controlled chemical reaction for the adsorption of two materials. t was noticed that adsorption of chromium and dye BEZAKTIV HE-YELLOW 4G follows the kinetics of the pseudo second order. The study of the effect of temperature was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes. The resulting thermodynamic parameters indicate the endothermic nature of the adsorption of Cr (VI) ions and the dye Bezaktiv HE-4G. But these materials are very good adsorbents, as they represent a low cost. in addition, it has been noticed that the greater the quantity of olive stone in the mixture increases, the adsorption ability of the dye or chromium increases.

Keywords: chromium ions, anions dye, sorption, mixed adsorbents, olive stone, date pits

Procedia PDF Downloads 228
5774 Influence of the Non-Uniform Distribution of Filler Porosity on the Thermal Performance of Sensible Heat Thermocline Storage Tanks

Authors: Yuchao Hua, Lingai Luo

Abstract:

Thermal energy storage is of critical importance for the highly-efficient utilization of renewable energy sources. Over the past decades, single-tank thermocline technology has attracted much attention owing to its high cost-effectiveness. In the present work, we investigate the influence of the filler porosity’s non-uniform distribution on the thermal performance of the packed-bed sensible heat thermocline storage tanks on the basis of the analytical model obtained by the Laplace transform. It is found that when the total amount of filler materials (i.e., the integration of porosity) is fixed, the different porosity distributions can result in the significantly-different behaviors of outlet temperature and thus the varied charging and discharging efficiencies. Our results indicate that a non-uniform distribution of the fillers with the proper design can improve the heat storage performance without changing the total amount of the filling materials.

Keywords: energy storage, heat thermocline storage tank, packed bed, transient thermal analysis

Procedia PDF Downloads 94
5773 A Numerical Study on the Connection of an SC Wall to an RC Foundation

Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma

Abstract:

There are a large number of methods to connect SC walls to RC foundations. An experimental study of the cyclic nonlinear behavior of SC walls in the NEES laboratory at the University at Buffalo used a connection detail involving the post-tensioning of a steel baseplate to the SC wall to a RC foundation. This type of connection introduces flexibility that influenced substantially the global response of the SC walls. The assumption of a rigid base, which would be commonly made by practitioners, would lead to a substantial overestimation of initial stiffness. This paper presents an analytical approach to characterize the rotational flexibility and to predict the initial stiffness of flexure-critical SC wall piers with baseplate connection. The good agreement between the analytical and test results confirmed the utility of the proposed method for calculating the initial stiffness of an SC wall with baseplate connection.

Keywords: steel-plate composite shear wall, flexure-critical wall, cyclic loading, analytical model

Procedia PDF Downloads 340
5772 Building Carbon Footprint Comparison between Building Permit, as Built, as Built with Circular Material Usage

Authors: Kadri-Ann Kertsmik, Martin Talvik, Kimmo Lylykangas, Simo Ilomets, Targo Kalamees

Abstract:

This study compares the building carbon footprint (CF) values for a case study of a private house located in a cold climate, using the Level(s) methodology. It provides a framework for measuring the environmental performance of buildings throughout their life cycle, taking into account various factors. The study presents the results of the three scenarios, comparing their carbon emissions and highlighting the benefits of circular material usage. The construction process was thoroughly documented, and all materials and components (including minuscule mechanical fasteners, each meter of cable, a kilogram of mortar, and the component of HVAC systems, among other things) delivered to the construction site were noted. Transportation distances of each delivery, the fuel consumption of construction machines, and electricity consumption for temporary heating and electrical tools were also monitored. Using the detailed data on material and energy resources, the CF was calculated for two scenarios: one where circular material usage was applied and another where virgin materials were used instead of reused ones. The results were compared with the CF calculated based on the building permit design model using the Level(s) methodology. To study the range of possible results in the early stage of CF assessment, the same building permit design was given to several experts. Results showed that embodied carbon values for a built scenario were significantly lower than the values predicted by the building permit stage as a result of more precise material quantities, as the calculation methodology is designed to overestimate the CF. Moreover, designers made an effort to reduce the building's CF by reusing certain materials such as ceramic tiles, lightweight concrete blocks, and timber during the construction process. However, in a cold climate context where operational energy (B6) continues to dominate, the total building CF value changes between the three scenarios were less significant. The calculation for the building permit project was performed by several experts, and CF results were in the same range. It alludes that, for the first estimation of preliminary building CF, using average values proves to be an appropriate method for the Estonian national carbon footprint estimation phase during building permit application. The study also identified several opportunities for reducing the carbon footprint of the building, such as reusing materials from other construction sites, preferring local material producers, and reducing wastage on site. The findings suggest that using circular materials can significantly reduce the carbon footprint of buildings. Overall, the study highlights the importance of using a comprehensive approach to measure the environmental performance of buildings, taking into account both the project and the actually built house. It also emphasises the need for ongoing monitoring for designing the building and construction site waste. The study also gives some examples of how to enable future circularity of building components and materials, e.g., building in layers, using wood as untreated, etc.

Keywords: carbon footprint, circular economy, sustainable construction, level(s) methodology

Procedia PDF Downloads 87
5771 Carbon Capture and Storage Using Porous-Based Aerogel Materials

Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar

Abstract:

The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.

Keywords: CCS, porous, carbon capture, oil and gas, sustainability

Procedia PDF Downloads 44
5770 High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold

Authors: A. Apostolopoulou, D. Sygkridou, A. N. Kalarakis, E. Stathatos

Abstract:

Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO2 mesoporous layer, with a current density of 23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO2 mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency.

Keywords: ambient conditions, high efficiency solar cells, mesoscopic perovskite solar cells, TiO₂ / In₂O₃ bilayer

Procedia PDF Downloads 270
5769 In situ One-Step Synthesis of Graphene Quantum Dots-Metal Free and Zinc Phthalocyanines Conjugates: Investigation of Photophysicochemical Properties

Authors: G. Fomo, O. J. Achadu, T. Nyokong

Abstract:

Nanoconjugates of graphene quantum dots (GQDs) and 4-(tetrakis-5-(trifluoromethyl)-2-mercaptopyridinephthalocyanine (H₂Pc(OPyF₃)₄) or 4-(tetrakis-5-(trifluoromethyl)-2-mercaptopyridinephthalocyaninato) zinc (II) (ZnPc(OPyF₃)₄) were synthesized via a novel in situ one-step route. The bottom-up approach for the prepared conjugates could ensure the intercalation of the phthalocyanines (Pcs) directly onto the edges or surface of the GQDs and or non-covalent coordination using the π-electron systems of both materials. The as-synthesized GQDs and their Pcs conjugates were characterized using different spectroscopic techniques and their photophysicochemical properties evaluated. The singlet oxygen quantum yields of the Pcs in the presence of GQDs were enhanced due to Förster resonance energy transfer (FRET) occurrence within the conjugated hybrids. Hence, these nanoconjugates are potential materials for photodynamic therapy (PDT) and photocatalysis applications.

Keywords: graphene quantum dots, metal free fluorinated phthalocyanine, zinc fluorinated phthalocyanine, photophysicochemical properties

Procedia PDF Downloads 182
5768 A Pilot Study to Investigate the Use of Machine Translation Post-Editing Training for Foreign Language Learning

Authors: Hong Zhang

Abstract:

The main purpose of this study is to show that machine translation (MT) post-editing (PE) training can help our Chinese students learn Spanish as a second language. Our hypothesis is that they might make better use of it by learning PE skills specific for foreign language learning. We have developed PE training materials based on the data collected in a previous study. Training material included the special error types of the output of MT and the error types that our Chinese students studying Spanish could not detect in the experiment last year. This year we performed a pilot study in order to evaluate the PE training materials effectiveness and to what extent PE training helps Chinese students who study the Spanish language. We used screen recording to record these moments and made note of every action done by the students. Participants were speakers of Chinese with intermediate knowledge of Spanish. They were divided into two groups: Group A performed PE training and Group B did not. We prepared a Chinese text for both groups, and participants translated it by themselves (human translation), and then used Google Translate to translate the text and asked them to post-edit the raw MT output. Comparing the results of PE test, Group A could identify and correct the errors faster than Group B students, Group A did especially better in omission, word order, part of speech, terminology, mistranslation, official names, and formal register. From the results of this study, we can see that PE training can help Chinese students learn Spanish as a second language. In the future, we could focus on the students’ struggles during their Spanish studies and complete the PE training materials to teach Chinese students learning Spanish with machine translation.

Keywords: machine translation, post-editing, post-editing training, Chinese, Spanish, foreign language learning

Procedia PDF Downloads 144
5767 Enhancement of Learning Style in Kolej Poly-Tech MARA (KPTM) via Mobile EEF Learning System (MEEFLS)

Authors: M. E. Marwan, A. R. Madar, N. Fuad

Abstract:

Mobile communication provides access to the outside world without borders everywhere and at any time. The learning method that related to mobile communication technology is known as mobile learning (M-learning). It is a method that communicates learning materials with mobile device technology. The purpose of this method is to increase the interest in learning among students and assist them in obtaining learning materials at Kolej Poly-Tech MARA (KPTM) in order to improve the student’s performance in their study and to encourage educators to diversify the teaching practices. This paper discusses the student’s awareness for enhancement of learning style using mobile technologies and their readiness to apply the elements of mobile learning in learning to improve performance and interest in learning among students. An application called Mobile EEF Learning System (MEEFLS) has been developed as a tool to be used as a pilot test in KPTM.

Keywords: awareness, mobile learning, MEEFLS, teaching and learning, readiness

Procedia PDF Downloads 379
5766 A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel

Authors: Kittiphat Rattanachan

Abstract:

The sheet metal forming process, the raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloy, which have the different cell unit, mechanical property and chemical composition. They were forming into cone shape specimens 100 mm diameter with different wall’s incline angle: 90o, 75o, and 60o. The investigation, the specimens were forming until the surface fracture was occurred. The experimental result showed that both materials with the smaller wall’s incline angle, the higher formability. The formability limited of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 was higher formability than SUS 304. This result could be used as the initial utilized data in designing the single point incremental forming parts.

Keywords: NC incremental forming, single point incremental forming, wall incline angle, formability

Procedia PDF Downloads 344
5765 Research on Eco-Sustainable Recycling of Industrial Wastes

Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu

Abstract:

In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible.

Keywords: fly ash, drilled solid wastes, metallurgical slag, recycling, building materials

Procedia PDF Downloads 312
5764 SiC Particulate-Reinforced SiC Composites Fabricated by PIP Method Using Highly Concentrated SiC Slurry

Authors: Jian Gu, Sea-Hoon Lee, Jun-Seop Kim

Abstract:

SiC particulate-reinforced SiC ceramic composites (SiCp/SiC) were successfully fabricated using polymer impregnation and pyrolysis (PIP) method. The effects of green density, infiltrated method, pyrolytic temperature, and heating rate on the densification behavior of the composites were investigated. SiCp/SiC particulate reinforced composites with high relative density up to 88.06% were fabricated after 4 PIP cycles using SiC pellets with high green density. The pellets were prepared by drying 62-70 vol.% aqueous SiC slurries, and the maximum relative density of the pellets was 75.5%. The hardness of the as-fabricated SiCp/SiCs was 21.05 GPa after 4 PIP cycles, which value increased to 23.99 GPa after a heat treatment at 2000℃. Excellent mechanical properties, thermal stability, and short processing time render the SiCp/SiC composite as a challenging candidate for the high-temperature application.

Keywords: high green density, mechanical property, polymer impregnation and pyrolysis, structural application

Procedia PDF Downloads 138
5763 The Effects of Incompetence in the Use of Mother Tongue on the Spoken English of Selected Primary School Pupils in Abeokuta South Local Government Ogun State, Nigeria

Authors: K. G. Adeosun, K. Osunaiye, E. C. Chinaguh, M. A. Aliyu, C. A. Onifade

Abstract:

This study examined the effects of incompetence in the use of the mother tongue on the spoken English of selected Primary School pupils in Abeokuta South Local Government, Ogun State, Nigeria. The study used a structured questionnaire and interview guide as data collection instruments. The target population was 110 respondents. The sample was obtained by the use of simple random and stratified sampling techniques. The study samples were pupils from Government Primary Schools in Abeokuta South Local Government. The result revealed that the majority of pupils exhibited mother tongue interference in their oral production stage and that the local indigenous languages interfered with the pronunciation of English words to a large extent such that they pronounced ‘people’ as ‘fitful.’ The findings also revealed that there is no significant difference between inadequate teaching materials, shortage of funds towards the promotion of the mother tongue (Yoruba) and spoken English of Primary school pupils in the study area. The study recommended, among other things, that government should provide the necessary support for schools in the areas of teaching and learning materials, funds and other related materials that can enhance the effective use of the mother tongue towards spoken English by Primary School pupils. Government should ensure that oral English is taught to the pupils and the examination at the end of Primary school education should be made compulsory for all pupils. More so, the Government should provide language laboratories and other equipment to facilitate good teaching and learning of oral English.

Keywords: education, effective, government, learning, teaching

Procedia PDF Downloads 83
5762 Poly(propylene fumarate) Copolymers with Phosphonic Acid-based Monomers Designed as Bone Tissue Engineering Scaffolds

Authors: Görkem Cemali̇, Avram Aruh, Gamze Torun Köse, Erde Can ŞAfak

Abstract:

In order to heal bone disorders, the conventional methods which involve the use of autologous and allogenous bone grafts or permanent implants have certain disadvantages such as limited supply, disease transmission, or adverse immune response. A biodegradable material that acts as structural support to the damaged bone area and serves as a scaffold that enhances bone regeneration and guides bone formation is one desirable solution. Poly(propylene fumarate) (PPF) which is an unsaturated polyester that can be copolymerized with appropriate vinyl monomers to give biodegradable network structures, is a promising candidate polymer to prepare bone tissue engineering scaffolds. In this study, hydroxyl-terminated PPF was synthesized and thermally cured with vinyl phosphonic acid (VPA) and diethyl vinyl phosphonate (VPES) in the presence of radical initiator benzoyl peroxide (BP), with changing co-monomer weight ratios (10-40wt%). In addition, the synthesized PPF was cured with VPES comonomer at body temperature (37oC) in the presence of BP initiator, N, N-Dimethyl para-toluidine catalyst and varying amounts of Beta-tricalcium phosphate (0-20 wt% ß-TCP) as filler via radical polymerization to prepare composite materials that can be used in injectable forms. Thermomechanical properties, compressive properties, hydrophilicity and biodegradability of the PPF/VPA and PPF/VPES copolymers were determined and analyzed with respect to the copolymer composition. Biocompatibility of the resulting polymers and their composites was determined by the MTS assay and osteoblast activity was explored with von kossa, alkaline phosphatase and osteocalcin activity analysis and the effects of VPA and VPES comonomer composition on these properties were investigated. Thermally cured PPF/VPA and PPF/VPES copolymers with different compositions exhibited compressive modulus and strength values in the wide range of 10–836 MPa and 14–119 MPa, respectively. MTS assay studies showed that the majority of the tested compositions were biocompatible and the overall results indicated that PPF/VPA and PPF/VPES network polymers show significant potential for applications as bone tissue engineering scaffolds where varying PPF and co-monomer ratio provides adjustable and controllable properties of the end product. The body temperature cured PPF/VPES/ß-TCP composites exhibited significantly lower compressive modulus and strength values than the thermal cured PPF/VPES copolymers and were therefore found to be useful as scaffolds for cartilage tissue engineering applications.

Keywords: biodegradable, bone tissue, copolymer, poly(propylene fumarate), scaffold

Procedia PDF Downloads 166
5761 Material Use and Life Cycle GHG Emissions of Different Electrification Options for Long-Haul Trucks

Authors: Nafisa Mahbub, Hajo Ribberink

Abstract:

Electrification of long-haul trucks has been in discussion as a potential strategy to decarbonization. These trucks will require large batteries because of their weight and long daily driving distances. Around 245 million battery electric vehicles are predicted to be on the road by the year 2035. This huge increase in the number of electric vehicles (EVs) will require intensive mining operations for metals and other materials to manufacture millions of batteries for the EVs. These operations will add significant environmental burdens and there is a significant risk that the mining sector will not be able to meet the demand for battery materials, leading to higher prices. Since the battery is the most expensive component in the EVs, technologies that can enable electrification with smaller batteries sizes have substantial potential to reduce the material usage and associated environmental and cost burdens. One of these technologies is an ‘electrified road’ (eroad), where vehicles receive power while they are driving, for instance through an overhead catenary (OC) wire (like trolleybuses and electric trains), through wireless (inductive) chargers embedded in the road, or by connecting to an electrified rail in or on the road surface. This study assessed the total material use and associated life cycle GHG emissions of two types of eroads (overhead catenary and in-road wireless charging) for long-haul trucks in Canada and compared them to electrification using stationary plug-in fast charging. As different electrification technologies require different amounts of materials for charging infrastructure and for the truck batteries, the study included the contributions of both for the total material use. The study developed a bottom-up approach model comparing the three different charging scenarios – plug in fast chargers, overhead catenary and in-road wireless charging. The investigated materials for charging technology and batteries were copper (Cu), steel (Fe), aluminium (Al), and lithium (Li). For the plug-in fast charging technology, different charging scenarios ranging from overnight charging (350 kW) to megawatt (MW) charging (2 MW) were investigated. A 500 km of highway (1 lane of in-road charging per direction) was considered to estimate the material use for the overhead catenary and inductive charging technologies. The study considered trucks needing an 800 kWh battery under the plug-in charger scenario but only a 200 kWh battery for the OC and inductive charging scenarios. Results showed that overall the inductive charging scenario has the lowest material use followed by OC and plug-in charger scenarios respectively. The materials use for the OC and plug-in charger scenarios were 50-70% higher than for the inductive charging scenarios for the overall system including the charging infrastructure and battery. The life cycle GHG emissions from the construction and installation of the charging technology material were also investigated.

Keywords: charging technology, eroad, GHG emissions, material use, overhead catenary, plug in charger

Procedia PDF Downloads 51
5760 Application of Response Surface Methodology (RSM) for Optimization of Fluoride Removal by Using Banana Peel

Authors: Pallavi N., Gayatri Jadhav

Abstract:

Good quality water is of prime importance for a healthy living. Fluoride is one such mineral present in water which causes many health problems in humans and specially children. Fluoride is said to be a double edge sword because lesser and higher concentration of fluoride in drinking water can cause both dental and skeletal fluorosis. Fluoride is one of the important mineral usually present at a higher concentration in ground water. There are many researches being carried out for defluoridation method. In the present research, fluoride removal is demonstrated using banana peel which is a biowaste as a biocoagulant. Response Surface Methodology (RSM) is a statistical design tool which is used to design the experiment. Central Composite Design (CCD) was used to determine the influence of the pH and dosage of the coagulant on the optimal removal of fluoride from a simulated water sample. 895 of fluoride removal were obtained in a acidic pH range of 4 – 9 and bio coagulant dosage of dosage of 18 – 20mg/L.

Keywords: Fluoride, Response Surface Methodology, Dosage, banana peel

Procedia PDF Downloads 160
5759 Synthesis, Characterization, and Properties Study of New Magnetic Materials

Authors: Messai Amel, Badis Zakaria, Benali-Cherif Nourredine, Dominique Luneaub

Abstract:

We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nano sciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base. Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper (II) has been investigated. Tetra nuclear complex with a cubane like core have been synthesized with (Sciff base), with the same base and cobalt (II) we obtain an other single magnetic complex completely different. In this presentation, we report the synthesis, crystal structure and magnetic properties of the tetranuclear compound (Cu4 L4), and the tetranuclear compound. (Co4L4)

Keywords: cluster-assembled materials, magnetic compounds, Sciff base, cupper, cobalt

Procedia PDF Downloads 449
5758 Low Temperature Powders Synthesis of la1-xMgxAlO3 through Sol-Gel Method

Authors: R. Benakcha, M. Omari

Abstract:

Powders of La1-xMgxAlO3 (0 ≤ x ≤ 5) oxides, with large surface areas were synthesized by sol-gel process, utilizing citric acid. Heating of a mixed solution of CA, EtOH, and nitrates of lanthanum, aluminium and magnesium at 70°C gave transparent gel without any precipitation. The formation of pure perovskite La1-xMgxAlO3, occurred when the precursor was heat-treated at 800°C for 6 h. No X-ray diffraction evidence for the presence of crystalline impurities was obtained. The La1-xMgxAlO3 powders prepared by the sol-gel method have a considerably large surface area in the range of 12.9–20 m^2.g^-1 when compared with 0.3 m^2.g^-1 for the conventional solid-state reaction of LaAlO3. The structural characteristics were examined by means of conventional techniques namely X-ray diffraction, infrared spectroscopy, thermogravimetry and differential thermal (TG-DTA) and specific surface SBET. Pore diameters and crystallite sizes are in the 8.8-11.28 nm and 25.4-30.5 nm ranges, respectively. The sol-gel method is a simple technique that has several advantages. In addition to that of not requiring high temperatures, it has the potential to synthesize many kinds of mixed oxides and obtain other materials homogeneous and large purities. It also allows formatting a variety of materials: very fine powders, fibers and films.

Keywords: aluminate, lanthan, perovskite, sol-gel

Procedia PDF Downloads 279