Search results for: Chemical etching
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4555

Search results for: Chemical etching

2185 The Experiment and Simulation Analysis of the Effect of CO₂ and Steam Addition on Syngas Composition of Natural Gas Non-Catalyst Partial Oxidation

Authors: Zhenghua Dai, Jianliang Xu, Fuchen Wang

Abstract:

Non-catalyst partial oxidation technology has been widely used to produce syngas by reforming of hydrocarbon, including gas (natural gas, shale gas, refinery gas, coalbed gas, coke oven gas, pyrolysis gas, etc.) and liquid (residual oil, asphalt, deoiled asphalt, biomass oil, etc.). For natural gas non-catalyst partial oxidation, the H₂/CO(v/v) of syngas is about 1.8, which is agreed well with the request of FT synthesis. But for other process, such as carbonylation and glycol, the H₂/CO(v/v) should be close to 1 and 2 respectively. So the syngas composition of non-catalyst partial oxidation should be adjusted to satisfy the request of different chemical synthesis. That means a multi-reforming method by CO₂ and H₂O addition. The natural gas non-catalytic partial oxidation hot model was established. The effects of O₂/CH4 ratio, steam, and CO₂ on the syngas composition were studied. The results of the experiment indicate that the addition of CO₂ and steam into the reformer can be applied to change the syngas H₂/CO ratio. The reactor network model (RN model) was established according to the flow partition of industrial reformer and GRI-Mech 3.0. The RN model results agree well with the industrial data. The effects of steam, CO₂ on the syngas compositions were studied with the RN model.

Keywords: non-catalyst partial oxidation, natural gas, H₂/CO, CO₂ and H₂O addition, multi-reforming method

Procedia PDF Downloads 212
2184 Physico-Chemical and Sensory Properties of Orange Marmalade Supplemented with Aloe vera Powder

Authors: Farhat Rashid

Abstract:

A study was conducted at the Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan, to evaluate the effect of different concentration of Aloe vera (Aloe barbadensis Mill.) powder on physicochemical and sensory properties of orange marmalade. All treatments (0, 2, 4 6, 8 and 10% Aloe vera powder) were analyzed for titratable acidity, TSS, pH, moisture, fat, fiber and protein contents. The data indicated gradual increase in titratable acidity (0.08 to 0.18%), moisture (0.23 to 0.48%), protein (0.09 to 0.40%) and fiber (0.12 to 1.03%) among all treatments with increasing concentration of Aloe vera powder. However, a decreasing trend in pH (3.81 to 2.74), TSS (68 to 56 °Brix) and fat content (1.1 to 0.08%) was noticed with gradual increase in concentration of Aloe vera powder in orange marmalade. Sensory attributes like color, taste, texture, flavor and overall acceptability were found acceptable among all treatments but T1 (2% Aloe vera powder) was liked most and T5 (10% Aloe vera powder) was least appealing to the judges. It is concluded from present study that the addition of different concentrations of Aloe vera powder in orange marmalade significantly affected the physicochemical and sensory properties of marmalade.

Keywords: orange marmalade, Aloe vera, Aloe barbadensis mill, physicochemical, characteristics, organoleptic properties, Pakistan, treatments, significance

Procedia PDF Downloads 358
2183 Controlling Dimensions and Shape of Carbon Nanotubes Using Nanoporous Anodic Alumina under Different Conditions

Authors: Amine Mezni, Merfat Algethami, Ali Aldalbahi, Arwa Alrooqi, Abel Santos, Dusan Losic, Sarah Alharthi, Tariq Altalhi

Abstract:

In situ synthesis of carbon nanotubes featuring different diameters (10-200 nm), lengths (1 to 100 µm) and periodically nanostructured shape was performed in a custom designed chemical vapor deposition (CVD) system using nanoporous anodic alumina (NAA) under different conditions. The morphology of the resulting CNTs/NAA composites and free-standing CNTs were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results confirm that highly ordered arrays of CNTs with precise control of nanotube dimensions in the range 20-200 nm with tube length in the range < 1 µm to > 100 μm and with periodically shaped morphology can be fabricated using nanostructured NAA templates prepared by anodization. This technique allows us to obtain tubes open at one / both ends with a uniform diameter along the pore length without using any metal catalyst. Our finding suggests that this fabrication strategy for designing new CNTs membranes and structures can be significant for emerging applications as molecular separation/transport, optical biosensing, and drug delivery.

Keywords: carbon nanotubes, CVD approach, composites membrane, nanoporous anodic alumina

Procedia PDF Downloads 281
2182 FTIR and AFM Properties of Doubly Doped Tin Oxide Thin Films Prepared by Spin Coating Technique

Authors: Bahattin Duzgun, Adem Kocyigit, Demet Tatar, Ahmet Battal

Abstract:

Tin oxide thin films are semiconductor materials highly transparent and with high mechanical and chemical stability, except for their interactions with oxygen atoms at high temperature. Many dopants, such as antimony (Sb), arsenic (As), fluorine (F), indium (In), molybdenum and (Mo) etc. have been used to improve the electrical properties of tin oxide films. Among these, Sb and F are found to be the most commonly used dopants for solar cell layers. Also Tin oxide tin films investigated and characterized by researchers different film deposition and analysis method. In this study, tin oxide thin films are deposited on glass substrate by spin coating technique and characterized by FTIR and AFM. FTIR spectroscopy revealed that all films have O-Sn-O and Sn-OH vibration bonds not changing with layer effect. AFM analysis indicates that all films are homogeneity and uniform. It can be seen that all films have needle shape structure in their surfaces. Uniformity and homogeneity of the films generally increased for increasing layers. The results found in present study showed that doubly doped SnO2 thin films is a good candidate for solar cells and other optoelectronic and technological applications.

Keywords: doubly doped, spin coating, FTIR analysis, AFM analysis

Procedia PDF Downloads 451
2181 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors

Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski

Abstract:

In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.

Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride

Procedia PDF Downloads 454
2180 Expanded Polyurethane Foams and Waterborne-Polyurethanes from Vegetable Oils

Authors: A.Cifarelli, L. Boggioni, F. Bertini, L. Magon, M. Pitalieri, S. Losio

Abstract:

Nowadays, the growing environmental awareness and the dwindling of fossil resources stimulate the polyurethane (PU) industry towards renewable polymers with low carbon footprint to replace the feed stocks from petroleum sources. The main challenge in this field consists in replacing high-performance products from fossil-fuel with novel synthetic polymers derived from 'green monomers'. The bio-polyols from plant oils have attracted significant industrial interest and major attention in scientific research due to their availability and biodegradability. Triglycerides rich in unsaturated fatty acids, such as soybean oil (SBO) and linseed oil (ELO), are particularly interesting because their structures and functionalities are tunable by chemical modification in order to obtain polymeric materials with expected final properties. Unfortunately, their use is still limited for processing or performance problems because a high functionality, as well as OH number of the polyols will result in an increase in cross-linking densities of the resulting PUs. The main aim of this study is to evaluate soy and linseed-based polyols as precursors to prepare prepolymers for the production of polyurethane foams (PUFs) or waterborne-polyurethanes (WPU) used as coatings. An effective reaction route is employed for its simplicity and economic impact. Indeed, bio-polyols were synthesized by a two-step method: epoxidation of the double bonds in vegetable oils and solvent-free ring-opening reaction of the oxirane with organic acids. No organic solvents have been used. Acids with different moieties (aliphatic or aromatics) and different length of hydrocarbon backbones can be used to customize polyols with different functionalities. The ring-opening reaction requires a fine tuning of the experimental conditions (time, temperature, molar ratio of carboxylic acid and epoxy group) to control the acidity value of end-product as well as the amount of residual starting materials. Besides, a Lewis base catalyst is used to favor the ring opening reaction of internal epoxy groups of the epoxidized oil and minimize the formation of cross-linked structures in order to achieve less viscous and more processable polyols with narrower polydispersity indices (molecular weight lower than 2000 g/mol⁻¹). The functionality of optimized polyols is tuned from 2 to 4 per molecule. The obtained polyols are characterized by means of GPC, NMR (¹H, ¹³C) and FT-IR spectroscopy to evaluate molecular masses, molecular mass distributions, microstructures and linkage pathways. Several polyurethane foams have been prepared by prepolymer method blending conventional synthetic polyols with new bio-polyols from soybean and linseed oils without using organic solvents. The compatibility of such bio-polyols with commercial polyols and diisocyanates is demonstrated. The influence of the bio-polyols on the foam morphology (cellular structure, interconnectivity), density, mechanical and thermal properties has been studied. Moreover, bio-based WPUs have been synthesized by well-established processing technology. In this synthesis, a portion of commercial polyols is substituted by the new bio-polyols and the properties of the coatings on leather substrates have been evaluated to determine coating hardness, abrasion resistance, impact resistance, gloss, chemical resistance, flammability, durability, and adhesive strength.

Keywords: bio-polyols, polyurethane foams, solvent free synthesis, waterborne-polyurethanes

Procedia PDF Downloads 131
2179 Design and Fabrication of Optical Nanobiosensors for Detection of MicroRNAs Involved in Neurodegenerative Diseases

Authors: Mahdi Rahaie

Abstract:

MicroRNAs are a novel class of small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. To produce sensitive, simple and cost-effective assays for microRNAs, detection is in urgent demand due to important role of these biomolecules in progression of human disease such as Alzheimer’s, Multiple sclerosis, and some other neurodegenerative diseases. Herein, we report several novel, sensitive and specific microRNA nanobiosensors which were designed based on colorimetric and fluorescence detection of nanoparticles and hybridization chain reaction amplification as an enzyme-free amplification. These new strategies eliminate the need for enzymatic reactions, chemical changes, separation processes and sophisticated equipment whereas less limit of detection with most specify are acceptable. The important features of these methods are high sensitivity and specificity to differentiate between perfectly matched, mismatched and non-complementary target microRNAs and also decent response in the real sample analysis with blood plasma. These nanobiosensors can clinically be used not only for the early detection of neuro diseases but also for every sickness related to miRNAs by direct detection of the plasma microRNAs in real clinical samples, without a need for sample preparation, RNA extraction and/or amplification.

Keywords: hybridization chain reaction, microRNA, nanobiosensor, neurodegenerative diseases

Procedia PDF Downloads 151
2178 Improving Gas Separation Performance of Poly(Vinylidene Fluoride) Based Membranes Containing Ionic Liquid

Authors: S. Al-Enezi, J. Samuel, A. Al-Banna

Abstract:

Polymer based membranes are one of the low-cost technologies available for the gas separation. Three major elements required for a commercial gas separating membrane are high permeability, high selectivity, and good mechanical strength. Poly(vinylidene fluoride) (PVDF) is a commercially available fluoropolymer and a widely used membrane material in gas separation devices since it possesses remarkable thermal, chemical stability, and excellent mechanical strength. The PVDF membrane was chemically modified by soaking in different ionic liquids and dried. The thermal behavior of modified membranes was investigated by differential scanning calorimetry (DSC), and thermogravimetry (TGA), and the results clearly show the best affinity between the ionic liquid and the polymer support. The porous structure of the PVDF membranes was clearly seen in the scanning electron microscopy (SEM) images. The CO₂ permeability of blended membranes was explored in comparison with the unmodified matrix. The ionic liquid immobilized in the hydrophobic PVDF support exhibited good performance for separations of CO₂/N₂. The improved permeability of modified membrane (PVDF-IL) is attributed to the high concentration of nitrogen rich imidazolium moieties.

Keywords: PVDF, polymer membrane, gas permeability, CO₂ separation, nanotubes

Procedia PDF Downloads 284
2177 Formulation and Evaluation of Silver Nanoparticles as Drug Carrier for Cancer Therapy

Authors: Abdelhadi Adam Salih Denei

Abstract:

Silver nanoparticles (AgNPs) have been used in cancer therapy, and the area of nanomedicine has made unheard-of strides in recent years. A thorough summary of the development and assessment of AgNPs for their possible use in the fight against cancer is the goal of this review. Targeted delivery methods have been designed to optimise therapeutic efficacy by using AgNPs' distinct physicochemical features, such as their size, shape, and surface chemistry. Firstly, the study provides an overview of the several synthesis routes—both chemical and green—that are used to create AgNPs. Natural extracts and biomolecules are used in green synthesis techniques, which are becoming more and more popular since they are biocompatible and environmentally benign. It is next described how synthesis factors affect the physicochemical properties of AgNPs, emphasising how crucial it is to modify these parameters for particular therapeutic uses. An extensive analysis is conducted on the anticancer potential of AgNPs, emphasising their capacity to trigger apoptosis, impede angiogenesis, and alter cellular signalling pathways. The analysis also investigates the potential benefits of combining AgNPs with currently used cancer treatment techniques, including radiation and chemotherapy. AgNPs' safety profile for use in clinical settings is clarified by a comprehensive evaluation of their cytotoxicity and biocompatibility.

Keywords: silver nanoparticles, cancer, nanocarrier system, targeted delivery

Procedia PDF Downloads 66
2176 Zeolite-Enhanced Pyrolysis: Transforming Waste Plastics into Hydrogen

Authors: Said Sair, Hanane Ait Ousaleh, Ilyas Belghazi, Othmane Amadine

Abstract:

Plastic waste has become a major environmental issue, driving the need for innovative solutions to convert it into valuable resources. This study explores the catalytic pyrolysis of plastic waste to produce hydrogen, using zeolite catalysts as a key component in the process. Various zeolites, including types X, A, and P, are synthesized and characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). These techniques are employed to assess the structural and chemical properties of the catalysts. Catalytic pyrolysis experiments are performed under different conditions, including variations in temperature, catalyst loading, and reaction time, to optimize hydrogen production. The results demonstrate that the choice of zeolite catalyst significantly impacts plastic waste conversion efficiency into hydrogen. This research contributes to advancing circular economy principles by providing an effective method for plastic waste management and clean energy production, promoting environmental sustainability.

Keywords: hydrogen production, plastic waste, zeolite catalysts, catalytic pyrolysis, circular economy, sustainable energy

Procedia PDF Downloads 22
2175 Phytochemical and Biological Study of Chrozophora oblongifolia

Authors: Al-Braa Kashegari, Ali M. El-Halawany, Akram A. Shalabi, Sabrin R. M. Ibrahim, Hossam M. Abdallah

Abstract:

Chemical investigation of Chrozophora oblongifolia resulted in the isolation of five major compounds that were identified as apeginin-7-O-glucoside (1), quercetin-3-O-glucuronic acid (2), quercetin-3-O-glacturonic acid (3), rutin (4), and 1,3,6-trigalloyl glucose (5). The identity of isolated compounds was assessed by different spectroscopic methods, including one- and two-dimensional NMR. The isolated compounds were tested for their antioxidant activity using different assays viz., DPPH, FRAP, ABTS, ORAC, and metal chelation effects. In addition, the inhibition of target enzymes involved in the metabolic syndrome, such as alpha-glucosidase and pancreatic lipase, were carried out. Moreover, the effect of the compounds on the advanced glycation end-products (AGEs) as one of the major complications of oxidative stress and hyperglycemia in metabolic syndromes were carried out using BSA‐fructose (bovine serum albumin), BSA-methylglyoxal, and arginine methylglyoxal models. The pure isolates showed a protective effect in metabolic syndromes as well as promising antioxidant activity. The results showed potent activity of compound 5 in all measured parameters meanwhile, none of the tested compounds showed activity against pancreatic lipase.

Keywords: Chrozophora oblongifolia, antioxidant, pancreatic lipase, metabolic syndromes

Procedia PDF Downloads 111
2174 Synthesis of Nano Iron Copper Core-Shell by Using K-M Reactor

Authors: Mohamed Ahmed AbdelKawy, A. H. El-Shazly

Abstract:

In this study, Nano iron-copper core-shell was synthesized by using Kinetic energy micro reactor ( K-M reactor). The reaction between nano-pure iron with copper sulphate pentahydrate (CuSO4.5H2O) beside NaCMC as a stabilizer at K-M reactor gives many advantages in comparison with the traditional chemical method for production of nano iron-Copper core-shell in batch reactor. Many factors were investigated for its effect on the process performance such as initial concentrations of nano iron and copper sulphate pentahydrate solution. Different techniques were used for investigation and characterization of the produced nano iron particles such as SEM, XRD, UV-Vis, XPS, TEM and PSD. The produced Nano iron-copper core-shell particle using micro mixer showed better characteristics than those produced using batch reactor in different aspects such as homogeneity of the produced particles, particle size distribution and size, as core diameter 10nm particle size were obtained. The results showed that 10 nm core diameter were obtained using Micro mixer as compared to 80 nm core diameter in one-fourth the time required by using traditional batch reactor and high thickness of copper shell and good stability.

Keywords: nano iron, core-shell, reduction reaction, K-M reactor

Procedia PDF Downloads 309
2173 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone

Procedia PDF Downloads 403
2172 A phytochemical and Biological Study of Viscum schemperi Engl. Growing in Saudi Arabia

Authors: Manea A. I. Alqrad, Alaa Sirwi, Sabrin R. M. Ibrahim, Hossam M. Abdallah, Gamal A. Mohamed

Abstract:

Phytochemical study of the methanolic extract of the air dried powdered of the parts of Viscum schemperi Engl. (Family: Viscaceae) using different chromatographic techniques led to the isolation of five compounds: -amyrenone (1), betulinic acid (2), (3β)-olean-12-ene-3,23-diol (3), -oleanolic acid (4), and α-oleanolic acid (5). Their structures were established based on physical, chemical, and spectral data. Anti-inflammatory and anti-apoptotic activities of oleanolic acid in a mouse model of acute hepatorenal damage were assessed. This study showed the efficacy of oleanolic acid to counteract thioacetamide-induced hepatic and kidney injury in mice through the reduction of hepatocyte oxidative damage, suppression of inflammation, and apoptosis. More importantly, oleanolic acid suppressed thioacetamide-induced hepatic and kidney injury by inhibiting NF-κB/TNF-α-mediated inflammation/apoptosis and enhancing SIRT1/Nrf2/Heme-oxygenase signalling pathway. These promising pharmacological activities suggest the potential use of oleanolic acid against hepatorenal damage.

Keywords: oleanolic acid, viscum schimperi, thioacetamide, SIRT1/Nrf2/NF-κB, hepatorenal damage

Procedia PDF Downloads 99
2171 Algorithmic Generation of Carbon Nanochimneys

Authors: Sorin Muraru

Abstract:

Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018.

Keywords: carbon nanochimneys, computational, carbon nanotube, carbon nanocone, molecular modeling, carbon nanostructures

Procedia PDF Downloads 170
2170 Phytochemicals from Enantia Chlorantha Stem Bark Inhibits the Activity ?-Amylase and ?-Glucosidase: Molecular Docking Studies

Authors: Hammed Tanimowo Aiyelabegan, Oluchukwu Franklin Aladi, Mutiu Adewumi Alabi, Raliat Abimbola Aladodo, Emmanuel Oladipupo Ajani, Abdulganiyu Giwa, Esther Owolabi

Abstract:

The study aimed to evaluate the inhibitory activities of ligands from Enantia chlorantha stem bark on α-amylase and α-glucosidase. In silico pharmacokinetic properties and docking scores were employed to analyse the inhibition using SwissADME and Autodock4.2, respectively. Results revealed that drug-likeness, pharmacokinetics and bioavailability radar of all the ligands except jatrorrhizine and acarbose falls within the radar according to the Lipinski rule of 5. The binding energies of the protein-ligand interactions also show that the ligand fits into the active site. The results obtained from this study show that the chemical constituents from Enantia chlorantha stem bark may bring about positive physiological changes in a patient suffering from diabetes mellitus. Further in vitro studies on diabetes cell lines and in vivo studies on the animal may validate these compounds for diabetes treatment. These phytoconstituents could help in the development of novel anti-diabetic molecules.

Keywords: diabetes mellitus, ?-amylase, ?-glucosidase, in silico, Enantia chlorantha stem bark

Procedia PDF Downloads 173
2169 Heavy Metals of Natural Phosphate Ore and the Way They Affect the Various Mineralurgic Modes of Treatment

Authors: Bezzi Nacer

Abstract:

The study focused on the qualitative and quantitative study of Trace elements contained in the natural phosphate ore of Djebel Onk layer and their behaviour to the various mineralurgic modes of treatment. The main objective is to locate the importance of these contents according to granulometry and their association with the existing mineralogical species and to define how the most appropriate treatment. The raw ore is in first submitted to a prior mechanical treatment consisting of homogenization operations, of grinding and of sifting, in order to separate it into three particle-size classes: fine <100 µm (F); medium 100-500 µm (I) and coarse > 500 µm (G), and then treated by calcination, washing and floatation. The identification of the different mineralogical phases, the chemical composition and the thermal behaviour of these samples were realized by various techniques: MEB, DRX, ATG-ATD, etc. The study of Trace elements, carried out by ICP-MS, identified thirty items, consisting mainly of rare earths and of transition metals. A close relation between trace elements and various minerals phases (apatite, dolomite and silicates), through operations of substitution. These elements are distributed between several mineralogical phases, in particular apatite (strontium, uranium, chrome, barium, cadmium) and silicates (strontium, sodium, nickel, zinc and copper).

Keywords: valorization of natural phosphate ore, heavy metals, qualitative and quantitative analysis, various mineralurgic

Procedia PDF Downloads 337
2168 α-Amylase Inhibitory Activity of Some Tunisian Aromatic and Medicinal Plants

Authors: Hamdi Belfeki, Belgacem Chandoul, Mnasser Hassouna, Mondher Mejri

Abstract:

Aqueous and ethanolic extracts of eight Tunisian aromatic and medicinal plants (TAMP) were characterized by studying their composition in polyphenols and also their antiradical and antioxidant capacities. In absence and in the presence of the various extracts, α-amylase from Bacillus subtlis activity, was measured in order to detect a potential inhibition. The total contents of polyphenols and flavonoid vary in function of TAMP and the mobile phase used for the extraction (distilled water or ethanol). The ethanolic extracts showed the most significant antiradical and antioxidant activities. Only the extracts from Coriandrum sativum showed a significant inhibiting effect on the α-amylase activity. This inhibiting capacity could be correlated with the chemical profile of the two extracts, due to the fact that they have the greatest amount of total flavonoid. The ethanolic extract has the most important antioxidant and anti-radicalizing activities among the sixteen extracts studied. The inhibition kinetics of the two coriander extracts were evaluated by pre-incubation method, using Lineweaver-Burk’s equation, obtained by linearization of Michaeilis-Menten’s expression. The results showed that both extracts exercised a competitive inhibition mechanism.

Keywords: α-amylase, antioxidant activity, aromatic and medicinal plants, inhibition

Procedia PDF Downloads 450
2167 Formation and Development of Polyspecies Biofilm on the Surface of Ti-7.5Mo Nanotubes Growth

Authors: Escada A. L. A., Pereira C. A., Jorge A. O. C., Alves Claro A. P. R.

Abstract:

In the present work, a susceptibility and efficacy of the Ti–7.5Mo alloy nanotube and Ti–7.5Mo alloy to bacterial biofilm formation after surface treatment was evaluated. The Ti–7.5Mo alloy was obtained in arc furnace under an argon atmosphere. Ingots were then homogenized under vacuum at 1100 ◦C for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting. Nanotubes were processed using anodic oxidation in 0.25% NH4F electrolyte solution. Biofilms were grown in discs immersed in sterile brain heart infusion broth (BHI) containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. Next, the discs were placed in tubes with sterile physiological solution 0.9% sodium chloride (NaCl) and sonicated for to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then, the numbers CFU/ml (log 10) were counted and analyzed statistically. Scanning electron microscopy (SEM) on discs with biofilms groupswas performed, atomic force microscope (AFM) and contact angle. The results show that there is no difference in bacterial adhesion between Ti–7.5Mo alloy nanotube pure titanium and Ti–7.5Mo alloy.

Keywords: biofilm, titanium alloy, brain heart infusion, scanning electron microscopy

Procedia PDF Downloads 318
2166 Screening for Antibacterial, Antifungal and Cytotoxic Agents in Three Hard Coral Species from Persian Gulf

Authors: Maryam Ehsanpou, Majid Afkhami, Flora Mohammadizadeh, Amirhoushang Bahri, Rastin Afkhami

Abstract:

Within the frame of a biodiversity and bioactivity study of marine macro organisms from the Persian Gulf, three hard coral species extracts were investigated for cytotoxic, antibacterial and antifungal activities against five human pathogenic microorganisms. All concentrations of extracts from three hard corals showed no antifungal activity towards the tested strains. In antibacterial assays, the hard coral extracts showed significant activity solely against Staphylococcus aureus with MICs ranging from 3 to 9 μg/ml. The highest antibacterial activity was found in the aqueous methanol extract of Porites compressa with an inhibition zone of 22 mm against Staphylococcus aureus at 18 μg/ml extract concentration. Methanol extracts from Porites harrisoi and Porites compressa exhibited only weak cytotoxic activities. It is important for future research to concentrate on finding the mechanisms employed by corals to defend themselves against invasion, the mechanism of infections and the type of chemical compounds in coral extracts that inhibit antibacterial growth or proliferation in underexplored areas such as the Persian Gulf.

Keywords: antibacterial, antifungal, cytotoxic, hard corals, Persian Gulf

Procedia PDF Downloads 489
2165 Re-Use of Waste Marble in Producing Green Concrete

Authors: Hasan Şahan Arel

Abstract:

In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO3 and SiO2 present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO2 emissions by 12% and also lowering the costs from US$40/m3 to US$33/m3.

Keywords: cement production, concrete, CO2 emission, marble, mechanical properties

Procedia PDF Downloads 316
2164 Dried Venison Quality Parameters Changes during Storage

Authors: Laima Silina, Ilze Gramatina, Liga Skudra, Tatjana Rakcejeva

Abstract:

The aim of the current research was to determine quality parameters changes of dried venison during storage. Protein, fat and moisture content dynamics as well microbiological quality was analyzed. For the experiments the meat (0.02×4.00×7.00 cm) pieces were marinated in “teriyaki sauce” marinade (composition: teriyaki sauce, sweet and sour sauce, taco sauce, soy sauce, American BBQ sauce hickory, sesame oil, garlic, garlic salt, tabasco red pepper sauce) at 4±2°C temperature for 48±1h. Sodium monophosphate (E339) was also added in part of marinade to improve the meat textural properties. After marinating, meat samples were dried in microwave-vacuum drier MUSSON–1, packaged in vacuum pouches made from polymer film (PA/PE) with barrier properties and storage for 4 months at 18±1°C temperature in dark place. Dried venison samples were analyzed after 0, 35, 91 and 112 days of storage. During the storage total plate counts of dried venison samples significantly (p<0.05) increased. No significant differences in the content of protein, fat and moisture were detected when analyzing dried meat samples during storage and comparing them with the chemical parameters of just dried meat.

Keywords: drying, microwave-vacuum drier, quality, venison

Procedia PDF Downloads 321
2163 Synthesis and Thermoluminescence Study of Nanocrystalline Radiation Dosimeter CaSO₄:Ce/Sm/Dy

Authors: Anant Pandey, Kanika Sharma, Vibha Chopra, Shaila Bahl, Pratik Kumar, S. P. Lochab, Birendra Singh

Abstract:

This paper reports the thermoluminescence (TL) properties of nanocrystalline CaSO₄ activated by Ce, Sm, and Dy. TL properties are investigated by chiefly changing the dopant element and also by varying the concentration of the dopant elements (from 0.05 mol % to 0.5 mol %) so as to establish the optimized dopant concentration for each of the activators. The method of salt preparation used is the typical chemical co-precipitation method and the technique used for characterization of the prepared samples is the X-Ray Diffraction (XRD) technique. Further, the phosphors are irradiated with gamma radiation from Co-60 (1.25 MeV) source (dose range- 30 Gy to 500 Gy). The optimized concentration (vis-a-vis TL peak intensity) of activator for CaSO₄:Ce is found to be 0.2 mol %, for CaSO₄:Sm it is 0.1 mol % and for CaSO₄:Dy it is 0.2 mol %. Further, the primary study of the TL response curves for all the three phosphors confirms linearity in the studied dose range (i.e., 30 Gy to 500 Gy). Finally, CaSO₄:Dy was also studied for its energy dependence property which plays an important role in defining the utility of a phosphor for dosimetric applications. The range of doses used for the energy dependence study was from 30 Gy to 500 Gy from Cs-137 (0.662 MeV). The nano-phosphors showed potential to be used as radiation dosimeter in the studied range of gamma radiation and thus must be studied for a wider range of doses.

Keywords: gamma radiation, nanocrystalline, radiation dosimetry, thermoluminescence

Procedia PDF Downloads 175
2162 Development and Characterization of Castor Oil-Based Biopolyurethanes for High-Performance Coatings and Waterproofing Applications

Authors: Julie Anne Braun, Leonardo D. da Fonseca, Gerson C. Parreira, Ricardo J. E. Andrade

Abstract:

Polyurethanes (PU) are multifunctional polymers used across various industries. In construction, thermosetting polyurethanes are applied as coatings for flooring, paints, and waterproofing. They are widely specified in Brazil for waterproofing concrete structures like roof slabs and parking decks. Applied to concrete, they form a fully adhered membrane, providing a protective barrier with low water absorption, high chemical resistance, impermeability to liquids, and low vapor permeability. Their mechanical properties, including tensile strength (1 to 35 MPa) and Shore A hardness (83 to 88), depend on resin molecular weight and functionality, often using Methylene diphenyl diisocyanate. PU production, reliant on fossil-derived isocyanates and polyols, contributes significantly to carbon emissions. Sustainable alternatives, such as biopolyurethanes from renewable sources, are needed. Castor oil is a viable option for synthesizing sustainable polyurethanes. As a bio-based feedstock, castor oil is extensively cultivated in Brazil, making it a feasible option for the national market and ranking third internationally. This study aims to develop and characterize castor oil-based biopolyurethane for high-performance waterproofing and coating applications. A comparative analysis between castor oil-based PU and polyether polyol-based PU was conducted. Mechanical tests (tensile strength, Shore A hardness, abrasion resistance) and surface properties (contact angle, water absorption) were evaluated. Thermal, chemical, and morphological properties were assessed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results demonstrated that both polyurethanes exhibited high mechanical strength. Specifically, the tensile strength for castor oil-based PU was 19.18 MPa, compared to 12.94 MPa for polyether polyol-based PU. Similarly, the elongation values were 146.90% for castor oil-based PU and 135.50% for polyether polyol-based PU. Both materials exhibited satisfactory performance in terms of abrasion resistance, with mass loss of 0.067% for castor oil PU and 0.043% for polyether polyol PU and Shore A hardness values of 89 and 86, respectively, indicating high surface hardness. The results of the water absorption and contact angle tests confirmed the hydrophilic nature of polyether polyol PU, with a contact angle of 58.73° and water absorption of 2.53%. Conversely, the castor oil-based PU exhibited hydrophobic properties, with a contact angle of 81.05° and water absorption of 0.45%. The results of the FTIR analysis indicated the absence of a peak around 2275 cm-1, which suggests that all of the NCO groups were consumed in the stoichiometric reaction. This conclusion is supported by the high mechanical test results. The TGA results indicated that polyether polyol PU demonstrated superior thermal stability, exhibiting a mass loss of 13% at the initial transition (around 310°C), in comparison to castor oil-based PU, which experienced a higher initial mass loss of 25% at 335°C. In summary, castor oil-based PU demonstrated mechanical properties comparable to polyether polyol PU, making it suitable for applications such as trafficable coatings. However, its higher hydrophobicity makes it more promising for watertightness. Increasing environmental concerns necessitate reducing reliance on non-renewable resources and mitigating the environmental impacts of polyurethane production. Castor oil is a viable option for sustainable polyurethanes, aligning with emission reduction goals and responsible use of natural resources.

Keywords: polyurethane, castor oil, sustainable, waterproofing, construction industry

Procedia PDF Downloads 42
2161 Characterization of Coal Fly Ash with Potential Use in the Manufacture Geopolymers to Solidify/Stabilize Heavy Metal Ions

Authors: P. M. Fonseca Alfonso, E. A. Murillo Ruiz, M. Diaz Lagos

Abstract:

Understanding the physicochemical properties and mineralogy of fly ash from a particular source is essential for to protect the environment and considering its possible applications, specifically, in the production of geopolymeric materials that solidify/stabilize heavy metals ions. The results of the characterization of three fly ash samples are shown in this paper. The samples were produced in the TERMOPAIPA IV thermal power plant in the State of Boyaca, Colombia. The particle size distribution, chemical composition, mineralogy, and molecular structure of three samples were analyzed using laser diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction, and infrared spectroscopy respectively. The particle size distribution of the three samples probably ranges from 0.128 to 211 μm. Approximately 59 elements have been identified in the three samples. It is noticeable that the ashes are made up of aluminum and silicon compounds. Besides, the iron phase in low content was also found. According to the results found in this study, the fly ash samples type F has a great potential to be used as raw material for the manufacture of geopolymers with potential use in the stabilization/solidification of heavy metals; mainly due to the presence of amorphous aluminosilicates typical of this type of ash, which react effectively with alkali-activator.

Keywords: fly ash, geopolymers, molecular structure, physicochemical properties.

Procedia PDF Downloads 118
2160 Assessment of Essential and Nonessential Metal Concentration in Selected Edible Fruit and Leaf Vegetables Grown with Adiahferom River, Tigray, Ethiopia

Authors: Mulugeta Gurum Gerechal

Abstract:

In this piece of study, food safety questions and potential health risks make this as one of the most serious environmental concerns. Then, the levels of essential and non-essential heavy metals concentration were studied in Onion, Carrot, Swiss chard and Lettuce vegetables and compared the permissible levels with international guidelines for safe food. The concentration of Fe was found in the higher concentrations compared to other metals analyzed or significantly different at 95% confidence level than the rest metals studied in this study. However, the levels of the concentration of Cd and Pb exceeded the permissible level set by WHO specifications in water samples, Cd and Pb exceeded the permissible level set by FAO/WHO specifications in all vegetable samples collected from Adiahferom River Fe and Cu were also found below the recommended levels. The higher concentration of Pb and Cd above the permissible level in vegetables used for human food may pose health risk to consumer. However, the Fe hasn’t any health effect they take on from the Adiahferom body River. Mostly, the levels of metals in similar vegetable samples differed between the three sampling site, that may be due to variation in sources and processes of contaminations.

Keywords: Adiahferom, turbidity, temperature, physico-chemical, assessment

Procedia PDF Downloads 11
2159 Effect of Pack Aluminising Conditions on βNiAl Coatings

Authors: A. D. Chandio, P. Xiao

Abstract:

In this study, nickel aluminide coatings were deposited onto CMSX-4 single crystal superalloy and pure Ni substrates by using in-situ chemical vapour deposition (CVD) technique. The microstructural evolutions and coating thickness (CT) were studied upon the variation of processing conditions i.e. time and temperature. The results demonstrated (under identical conditions) that coating formed on pure Ni contains no substrate entrapments and have lower CT in comparison to one deposited on the CMSX-4 counterpart. In addition, the interdiffusion zone (IDZ) of Ni substrate is a γ’-Ni3Al in comparison to the CMSX-4 alloy that is βNiAl phase. The higher CT on CMSX-4 superalloy is attributed to presence of γ-Ni/γ’-Ni3Al structure which contains ~ 15 at.% Al before deposition (that is already present in superalloy). Two main deposition parameters (time and temperature) of the coatings were also studied in addition to standard comparison of substrate effects. The coating formation time was found to exhibit profound effect on CT, whilst temperature was found to change coating activities. In addition, the CT showed linear trend from 800 to 1000 °C, thereafter reduction was observed. This was attributed to the change in coating activities.

Keywords: βNiAl, in-situ CVD, CT, CMSX-4, Ni, microstructure

Procedia PDF Downloads 240
2158 Enhanced Decolourization and Biodegradation of Textile Azo and Xanthene Dyes by Using Bacterial Isolates

Authors: Gimhani Madhushika Hewayalage, Thilini Ariyadasa, Sanja Gunawardena

Abstract:

In Sri Lanka, the largest contribution for the industrial export earnings is governed by textile and apparel industry. However, this industry generates huge quantities of effluent consists of unfixed dyes which enhance the effluent colour and toxicity thereby leading towards environmental pollution. Therefore, the effluent should properly be treated prior to the release into the environment. The biological technique has now captured much attention as an environmental-friendly and cost-competitive effluent decolourization method due to the drawbacks of physical and chemical treatment techniques. The present study has focused on identifying dye decolourizing potential of several bacterial isolates obtained from the effluent of the local textile industry. Yellow EXF, Red EXF, Blue EXF, Nova Black WNN and Nylosan-Rhodamine-EB dyes have been selected for the study to represent different chromophore groups such as Azo and Xanthene. The rates of decolorization of each dye have been investigated by employing distinct bacterial isolates. Bacterial isolate which exhibited effective dye decolorizing potential was identified as Proteus mirabilis using 16S rRNA gene sequencing analysis. The high decolorizing rates of identified bacterial strain indicate its potential applicability in the treatment of dye-containing wastewaters.

Keywords: azo, bacterial, biological, decolourization, xanthene

Procedia PDF Downloads 252
2157 First-Principles Study of Inter-Cage Interactions in Inorganic Molecular Crystals

Authors: Abdul Majid, Alia Jabeen, Nimra Zulifqar

Abstract:

The inorganic molecular crystal (IMCs) due to their unusual structure has grabbed a lot of attention due to anisotropy in crystal structure. The IMCs consist of the molecular structures joined together via weak forces. Therefore, a difference between the bonding between the inter-cage and intra-cage interactions exists. To look closely at the bonding and interactions, we investigated interactions between two cages of Sb2O3 structure. The interactions were characterized via Extended Transition State-Natural Orbital for Chemical Valence-method (ETS-NOCV), Natural Bond Orbitals (NBO) and Quantum Theory of Atoms in Molecules (QTAIM). The results revealed strong intra-cage covalent bonding while weak van der Waals (vdWs) interactions along inter-cages exits. This structure cannot be termed as layered material although they have anisotropy in bonding and presence of weak vdWs interactions but its bulk is termed as inorganic layered clusters. This is due to the fact that the free standing sheet/films with these materials are not possible. This type of structures may be the most feasible to be used for the system to deal with high pressures and stress bearing materials.

Keywords: inorganic molecular crystals, density functional theory, cages, interactions

Procedia PDF Downloads 95
2156 Effects of Copper and Cobalt Co-Doping on Structural, Optical and Electrical Properties of Tio2 Thin Films Prepared by Sol Gel Method

Authors: Rabah Bensaha, Badreeddine Toubal

Abstract:

Un-doped TiO2, Co single doped TiO2 and (Cu-Co) co-doped TiO2 thin films have been growth on silicon substrates by the sol-gel dip coating technique. We mainly investigated both effects of the dopants and annealing temperature on the structural, optical and electrical properties of TiO2 films using X-ray diffraction (XRD), Raman and FTIR spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), UV–Vis spectroscopy. The chemical compositions of Co-doped and (Cu-Co) co-doped TiO2 films were confirmed by XRD, Raman and FTIR studies. The average grain sizes of CoTiO3-TiO2 nanocomposites were increased with annealing temperature. AFM and SEM reveal a completely the various nanostructures of CoTiO3-TiO2 nanocomposites thin films. The films exhibit a high optical reflectance with a large band gap. The highest electrical conductivity was obtained for the (Cu-Co) co-doped TiO2 films. The polyhedral surface morphology might possibly improve the surface contact between particle sizes and then contribute to better electron mobility as well as conductivity. The obtained results suggest that the prepared TiO2 films can be used for optoelectronic applications.

Keywords: sol-gel, TiO2 thin films, CoTiO3-TiO2 nanocomposites films, Electrical conductivity

Procedia PDF Downloads 443