Search results for: missing data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25438

Search results for: missing data

25228 Comparative Analysis of Identity Semiotics in Iran’s Modern and Traditional House Design

Authors: Maryam Ghasemi

Abstract:

One of the most significant components that provide comfort and protection is having a shelter called a house. Even if components and regions are changed or restored to meet new functions, the house's identity must be preserved. In the contemporary era, houses are increasingly being built regardless of cultural identity. This misunderstanding caused a sense of unease. This study analyses archaic and modern architecture to find semiotic areas and qualities in the latter, using the former as a reference. This study's technique used an exploratory assessment of architectural components from both periods. The Abbasid residence and the Ekbatan architectural complex were used as case studies. The identity of Iranian architecture does not correlate with current buildings. The other part is privacy, which is a missing link between traditional and modern Iranian architecture because it is directly related to the identities of homes based on the cultures of their residents.

Keywords: housing, traditional, contemporary, privacy, semiotic

Procedia PDF Downloads 107
25227 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 294
25226 A Review on Big Data Movement with Different Approaches

Authors: Nay Myo Sandar

Abstract:

With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.

Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques

Procedia PDF Downloads 88
25225 A Probability Analysis of Construction Project Schedule Using Risk Management Tool

Authors: A. L. Agarwal, D. A. Mahajan

Abstract:

Construction industry tumbled along with other industry/sectors during recent economic crash. Construction business could not regain thereafter and still pass through slowdown phase, resulted many real estate as well as infrastructure projects not completed on schedule and within budget. There are many theories, tools, techniques with software packages available in the market to analyze construction schedule. This study focuses on the construction project schedule and uncertainties associated with construction activities. The infrastructure construction project has been considered for the analysis of uncertainty on project activities affecting project duration and analysis is done using @RISK software. Different simulation results arising from three probability distribution functions are compiled to benefit construction project managers to plan more realistic schedule of various construction activities as well as project completion to document in the contract and avoid compensations or claims arising out of missing the planned schedule.

Keywords: construction project, distributions, project schedule, uncertainty

Procedia PDF Downloads 351
25224 Optimized Approach for Secure Data Sharing in Distributed Database

Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal

Abstract:

In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.

Keywords: ER-schema, electronic record, P2P framework, API, query formulation

Procedia PDF Downloads 333
25223 Fertilizer Procurement and Distribution in Nigeria: Assessing Policy against Implementation

Authors: Jacob Msughter Gwa, Rhys Williams

Abstract:

It is widely known that food security is a major concern in Sub-Saharan Africa. In many regions, including Nigeria, this is due to an agriculture-old problem of soil erosion beyond replacement levels. It seems that the use of fertilizer would be an immediate solution as it can boost agricultural productivity, and low agricultural productivity is attributed to the low use of fertilizers in Nigeria. The Government of Nigeria has been addressing the challenges of food shortage but with limited success. The utilisation of a practical and efficient subsidy programme in addressing this issue seems to be needed. However, the problem of procurement and distribution changes from one stage of subsidy to another. This paper looks at the difference between the ideal and the actual implementation of agricultural fertilizer policies in Nigeria, as it currently runs the risk of meeting required standards on paper but missing the desired real outcomes, and recognises the need to close the gap between the paper work and the realities on the ground.

Keywords: agricultural productivity, fertilizer distribution, fertilizer procurement, Nigeria

Procedia PDF Downloads 368
25222 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland

Authors: Raptis Sotirios

Abstract:

Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.

Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services

Procedia PDF Downloads 236
25221 Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands

Authors: Julio Albuja, David Zaldumbide

Abstract:

Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set.

Keywords: algorithms, data, decision tree, transformation

Procedia PDF Downloads 375
25220 Application of Blockchain Technology in Geological Field

Authors: Mengdi Zhang, Zhenji Gao, Ning Kang, Rongmei Liu

Abstract:

Management and application of geological big data is an important part of China's national big data strategy. With the implementation of a national big data strategy, geological big data management becomes more and more critical. At present, there are still a lot of technology barriers as well as cognition chaos in many aspects of geological big data management and application, such as data sharing, intellectual property protection, and application technology. Therefore, it’s a key task to make better use of new technologies for deeper delving and wider application of geological big data. In this paper, we briefly introduce the basic principle of blockchain technology at the beginning and then make an analysis of the application dilemma of geological data. Based on the current analysis, we bring forward some feasible patterns and scenarios for the blockchain application in geological big data and put forward serval suggestions for future work in geological big data management.

Keywords: blockchain, intellectual property protection, geological data, big data management

Procedia PDF Downloads 92
25219 The First Trial of Transcranial Pulse Stimulation on Young Adolescents With Autism Spectrum Disorder in Hong Kong

Authors: Teris Cheung, Joyce Yuen Ting Lam, Kwan Hin Fong, Yuen Shan Ho, Tim Man Ho Li, Andy Choi-Yeung Tse, Cheng-Ta Li, Calvin Pak-Wing Cheng, Roland Beisteiner

Abstract:

Transcranial pulse stimulation (TPS) is a non-intrusive brain stimulation technology that has been proven effective in older adults with mild neurocognitive disorders and adults with major depressive disorder. Given these robust evidences, TPS might be an adjunct treatment options in neuropsychiatric disorders, for example, autism spectrum disorder (ASD) – which is a common neurodevelopmental disorder in children. This trial aimed to investigate the effects of TPS on right temporoparietal junction, a key node for social cognition for Autism Spectrum Disorder (ASD), and to examine the association between TPS, executive functions and social functions. Design: This trial adopted a two-armed (verum TPS group vs. sham TPS group), double-blinded, randomized, sham-controlled design. Sampling: 32 subjects aged between 12 and 17, diagnosed with ASD were recruited. All subjects were computerized randomized into either verum TPS group or the sham TPS group on a 1:1 ratio. All subjects undertook functional MRI before and after the TPS interventions. Intervention: Six 30-min TPS sessions were administered to subjects in 2 weeks’ time on alternate days assessing neural connectivity changes. Baseline measurements and post-TPS evaluation of the ASD symptoms, executive functions, and social functions were conducted. Participants were followed up at 2-weeks, at 1-month and 3-month, assessing the short-and long-term sustainability of the TPS intervention. Data analysis: Generalized Estimating Equations with repeated measures were used to analyze the group and time difference. Missing data were managed by multiple imputations. The level of significance was set at p < 0.05. To our best knowledge, this is the first study evaluating the efficacy and safety of TPS among adolescents with ASD in Hong Kong and nationwide. Results emerging from this study will develop insight on whether TPS can be used as an adjunct treatment on ASD in neuroscience and clinical psychiatry. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT05408793.

Keywords: adolescents, autism spectrum disorder, neuromodulation, rct, transcranial pulse stimulation

Procedia PDF Downloads 74
25218 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 437
25217 The Role Of Data Gathering In NGOs

Authors: Hussaini Garba Mohammed

Abstract:

Background/Significance: The lack of data gathering is affecting NGOs world-wide in general to have good data information about educational and health related issues among communities in any country and around the world. For example, HIV/AIDS smoking (Tuberculosis diseases) and COVID-19 virus carriers is becoming a serious public health problem, especially among old men and women. But there is no full details data survey assessment from communities, villages, and rural area in some countries to show the percentage of victims and patients, especial with this world COVID-19 virus among the people. These data are essential to inform programming targets, strategies, and priorities in getting good information about data gathering in any society.

Keywords: reliable information, data assessment, data mining, data communication

Procedia PDF Downloads 180
25216 The Law of Donation and Transplantation of Human Body Organs in the Kurdistan Region of Iraq

Authors: Rebaz Sdiq Ismail

Abstract:

Organ donation and transplantation is one of the most debated topics in modern jurisprudence. It is a surgical procedure that aims to prolong a person’s life suffering from damaged or missing organs. This surgical procedure is carried out by removing an organ from a donor and transplanting it into the body of the recipient. As human life is of high value in Islamic Sharia, therefore, the donor and recipient should go through an intensive medical examination to remove any health risk associated with the organ and transplantation procedure. Thus, in carrying out the organ donation process, any violation of the Sharia decree that might cause harm to the human body is strictly prohibited. The researcher concludes that the former scholars of Islamic Sharia, along with some of the contemporary scholars, are against the entire concept of organ donation and transplant. However, the majority of contemporary scholars support organ donation.

Keywords: law, donation, organ, Kurdistan, sharia

Procedia PDF Downloads 32
25215 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 854
25214 Evaluation of the Efficacy and Tolerance of Gabapentin in the Treatment of Neuropathic Pain

Authors: A. Ibovi Mouondayi, S. Zaher, R. Assadi, K. Erraoui, S. Sboul, J. Daoudim, S. Bousselham, K. Nassar, S. Janani

Abstract:

INTRODUCTION: Neuropathic pain (NP) caused by damage to the somatosensory nervous system has a significant impact on quality of life and is associated with a high economic burden on the individual and society. The treatment of neuropathic pain consists of the use of a wide range of therapeutic agents, including gabapentin, which is used in the treatment of neuropathic pain. OBJECTIF: The objective of this study was to evaluate the efficacy and tolerance of gabapentin in the treatment of neuropathic pain. MATERIAL AND METHOD: This is a monocentric, cross-sectional, descriptive, retrospective study conducted in our department over a period of 19 months from October 2020 to April 2022. The missing parameters were collected during phone calls of the patients concerned. The diagnostic tool adopted was the DN4 questionnaire in the dialectal Arabic version. The impact of NP was assessed by the visual analog scale (VAS) on pain, sleep, and function. The impact of PN on mood was assessed by the "Hospital anxiety, and depression scale HAD" score in the validated Arabic version. The exclusion criteria were patients followed up for depression and other psychiatric pathologies. RESULTS: A total of 67 patients' data were collected. The average age was 64 years (+/- 15 years), with extremes ranging from 26 years to 94 years. 58 women and 9 men with an M/F sex ratio of 0.15. Cervical radiculopathy was found in 21% of this population, and lumbosacral radiculopathy in 61%. Gabapentin was introduced in doses ranging from 300 to 1800 mg per day with an average dose of 864 mg (+/- 346) per day for an average duration of 12.6 months. Before treatment, 93% of patients had a non-restorative sleep quality (VAS>3). 54% of patients had a pain VAS greater than 5. The function was normal in only 9% of patients. The mean anxiety score was 3.25 (standard deviation: 2.70), and the mean HAD depression score was 3.79 (standard deviation: 1.79). After treatment, all patients had improved the quality of their sleep (p<0.0001). A significant difference was noted in pain VAS, function, as well as anxiety and depression, and HAD score. Gabapentin was stopped for side effects (dizziness and drowsiness) and/or unsatisfactory response. CONCLUSION: Our data demonstrate a favorable effect of gabapentin on the management of neuropathic pain with a significant difference before and after treatment on the quality of life of patients associated with an acceptable tolerance profile.

Keywords: neuropathic pain, chronic pain, treatment, gabapentin

Procedia PDF Downloads 95
25213 Evaluating Service Trustworthiness for Service Selection in Cloud Environment

Authors: Maryam Amiri, Leyli Mohammad-Khanli

Abstract:

Cloud computing is becoming increasingly popular and more business applications are moving to cloud. In this regard, services that provide similar functional properties are increasing. So, the ability to select a service with the best non-functional properties, corresponding to the user preference, is necessary for the user. This paper presents an Evaluation Framework of Service Trustworthiness (EFST) that evaluates the trustworthiness of equivalent services without need to additional invocations of them. EFST extracts user preference automatically. Then, it assesses trustworthiness of services in two dimensions of qualitative and quantitative metrics based on the experiences of past usage of services. Finally, EFST determines the overall trustworthiness of services using Fuzzy Inference System (FIS). The results of experiments and simulations show that EFST is able to predict the missing values of Quality of Service (QoS) better than other competing approaches. Also, it propels users to select the most appropriate services.

Keywords: user preference, cloud service, trustworthiness, QoS metrics, prediction

Procedia PDF Downloads 288
25212 To Handle Data-Driven Software Development Projects Effectively

Authors: Shahnewaz Khan

Abstract:

Machine learning (ML) techniques are often used in projects for creating data-driven applications. These tasks typically demand additional research and analysis. The proper technique and strategy must be chosen to ensure the success of data-driven projects. Otherwise, even exerting a lot of effort, the necessary development might not always be possible. In this post, an effort to examine the workflow of data-driven software development projects and its implementation process in order to describe how to manage a project successfully. Which will assist in minimizing the added workload.

Keywords: data, data-driven projects, data science, NLP, software project

Procedia PDF Downloads 84
25211 Cranioplasty With Custom Implant Realized Using 3D Printing Technology

Authors: R. Trad Khodja, A. Guessmi, R. Ghoul, A. Mahtout, S. A. Benbouali, M. A. Boulahlib

Abstract:

Cranioplasty is a surgical act that aims to restore cranial bone losses in order to protect the brain from external aggressions and to improve the patient's aesthetic appearance. This objective can be achieved by taking advantage of the current technological development in computer science and biomechanics. The objective of this paper is to present an approach for the realization of high-precision biocompatible cranial implants using new 3D printing technologies at the lowest cost. The proposed method is to reproduce the missing part of the skull by referring to its healthy contralateral part. Once the model is validated by the neurosurgeons, a mold is 3D printed for the production of a biocompatible implant in Poly-Methyl-Methacrylate (PMMA) acrylic cement. Using this procedure, ten patients underwent this procedure with excellent aesthetic results.

Keywords: cranioplasty, cranial defect, PMMA, 3d printing, custom made implants

Procedia PDF Downloads 61
25210 Urban Governance in Major Development Projects: Challenges, Issues and Constraints - Case of Constantine

Authors: Chouabbia Khedidja, Lazri Youcef, Mouhoubi Nedjima

Abstract:

In optics and in ambition to break into the ranks of international metropolis cities, Constantine, a regional metropolis of eastern Algeria, is facing multiple challenges shared between the response to the urban crisis plaguing the city and the creation of territorial attractiveness in the metropolisation process. This ambition cannot be achieve in conditions of poor governance and lack of cooperation especially between the actors involved in major development projects, these last qualified by change and hope carriers to make the city more attractive and pleasant. Thus, governance or good governance has become not only a necessity but also a challenge for the city of Constantine. Through this example of Constantine. We will analyze the challenges facing a metropolis amongst other urban governance and the constraints that affect the smooth running of major development projects when governance is missing or inoperative.

Keywords: urban governance, metropolis, big development project, actors, constantine

Procedia PDF Downloads 457
25209 The Relationship Between Artificial Intelligence, Data Science, and Privacy

Authors: M. Naidoo

Abstract:

Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others.

Keywords: artificial intelligence, data science, law, policy

Procedia PDF Downloads 106
25208 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: simulation data, data summarization, spatial histograms, exploration, visualization

Procedia PDF Downloads 177
25207 Supporting 'vulnerable' Students to Complete Their Studies During the Economic Crisis in Greece: The Umbrella Program of International Hellenic University

Authors: Rigas Kotsakis, Nikolaos Tsigilis, Vasilis Grammatikopoulos, Evridiki Zachopoulou

Abstract:

During the last decade, Greece has faced an unprecedented financial crisis, affecting various aspects and functionalities of Higher Education. Besides the restricted funding of academic institutions, the students and their families encountered economical difficulties that undoubtedly influenced the effective completion of their studies. In this context, a fairly large number of students in Alexander campus of International Hellenic University (IHU) delay, interrupt, or even abandon their studies, especially when they come from low-income families, belong to sensitive social or special needs groups, they have different cultural origins, etc. For this reason, a European project, named “Umbrella”, was initiated aiming at providing the necessary psychological support and counseling, especially to disadvantaged students, towards the completion of their studies. To this end, a network of various academic members (academic staff and students) from IHU, namely iMentor, were implicated in different roles. Specifically, experienced academic staff trained students to serve as intermediate links for the integration and educational support of students that fall into the aforementioned sensitive social groups and face problems for the completion of their studies. The main idea of the project is held upon its person-centered character, which facilitates direct student-to-student communication without the intervention of the teaching staff. The backbone of the iMentors network are senior students that face no problem in their academic life and volunteered for this project. It should be noted that there is a provision from the Umbrella structure for substantial and ethical rewards for their engagement. In this context, a well-defined, stringent methodology was implemented for the evaluation of the extent of the problem in IHU and the detection of the profile of the “candidate” disadvantaged students. The first phase included two steps, (a) data collection and (b) data cleansing/ preprocessing. The first step involved the data collection process from the Secretary Services of all Schools in IHU, from 1980 to 2019, which resulted in 96.418 records. The data set included the School name, the semester of studies, a student enrolling criteria, the nationality, the graduation year or the current, up-to-date academic state (still studying, delayed, dropped off, etc.). The second step of the employed methodology involved the data cleansing/preprocessing because of the existence of “noisy” data, missing and erroneous values, etc. Furthermore, several assumptions and grouping actions were imposed to achieve data homogeneity and an easy-to-interpret subsequent statistical analysis. Specifically, the duration of 40 years recording was limited to the last 15 years (2004-2019). In 2004 the Greek Technological Institutions were evolved into Higher Education Universities, leading into a stable and unified frame of graduate studies. In addition, the data concerning active students were excluded from the analysis since the initial processing effort was focused on the detection of factors/variables that differentiated graduate and deleted students. The final working dataset included 21.432 records with only two categories of students, those that have a degree and those who abandoned their studies. Findings of the first phase are presented across faculties and further discussed.

Keywords: higher education, students support, economic crisis, mentoring

Procedia PDF Downloads 115
25206 Unicellular to Multicellular: Some Empirically Parsimoniously Plausible Hypotheses

Authors: Catherine K. Derow

Abstract:

Possibly a slime mold somehow mutated or already was mutated at progeniture and so stayed as a metazoan when it developed into the fruiting stage and so the slime mold(s) we are evolved and similar to are genetically differ from the slime molds in existence now. This may be why there are genetic links between humans and other metazoa now alive and slime molds now alive but we are now divergent branches of the evolutionary tree compared to the original slime mold, or perhaps slime mold-like organisms, that gave rise to metazoan animalia and perhaps algae and plantae as slime molds were undifferentiated enough in many ways that could allow their descendants to evolve into these three separate phylogenetic categories. Or it may be a slime mold was born or somehow progenated as multicellular, as the particular organism was mutated enough to have say divided in a a 'pseudo-embryonic' stage, and this could have happened for algae, plantae as well as animalia or all the branches may be from the same line but the missing link might be covered in 'phylogenetic sequence comparison noise'.

Keywords: metazoan evolution, unicellular bridge to metazoans, evolution, slime mold

Procedia PDF Downloads 227
25205 Algorithms used in Spatial Data Mining GIS

Authors: Vahid Bairami Rad

Abstract:

Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.

Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining

Procedia PDF Downloads 462
25204 Middle School as a Developmental Context for Emergent Citizenship

Authors: Casta Guillaume, Robert Jagers, Deborah Rivas-Drake

Abstract:

Civically engaged youth are critical to maintaining and/or improving the functioning of local, national and global communities and their institutions. The present study investigated how school climate and academic beliefs (academic self-efficacy and school belonging) may inform emergent civic behaviors (emergent citizenship) among self-identified middle school youth of color (African American, Multiracial or Mixed, Latino, Asian American or Pacific Islander, Native American, and other). Study aims: 1) Understand whether and how school climate is associated with civic engagement behaviors, directly and indirectly, by fostering a positive sense of connection to the school and/or engendering feelings of self-efficacy in the academic domain. Accordingly, we examined 2) The association of youths’ sense of school connection and academic self-efficacy with their personally responsible and participatory civic behaviors in school and community contexts—both concurrently and longitudinally. Data from two subsamples of a larger study of social/emotional development among middle school students were used for longitudinal and cross sectional analysis. The cross-sectional sample included 324 6th-8th grade students, of which 43% identified as African American, 20% identified as Multiracial or Mixed, 18% identified as Latino, 12% identified as Asian American or Pacific Islander, 6% identified as Other, and 1% identified as Native American. The age of the sample ranged from 11 – 15 (M = 12.33, SD = .97). For the longitudinal test of our mediation model, we drew on data from the 6th and 7th grade cohorts only (n =232); the ethnic and racial diversity of this longitudinal subsample was virtually identical to that of the cross-sectional sample. For both the cross-sectional and longitudinal analyses, full information maximum likelihood was used to deal with missing data. Fit indices were inspected to determine if they met the recommended thresholds of RMSEA below .05 and CFI and TLI values of at least .90. To determine if particular mediation pathways were significant, the bias-corrected bootstrap confidence intervals for each indirect pathway were inspected. Fit indices for the latent variable mediation model using the cross-sectional data suggest that the hypothesized model fit the observed data well (CFI = .93; TLI =. 92; RMSEA = .05, 90% CI = [.04, .06]). In the model, students’ perceptions of school climate were significantly and positively associated with greater feelings of school connectedness, which were in turn significantly and positively associated with civic engagement. In addition, school climate was significantly and positively associated with greater academic self-efficacy, but academic self-efficacy was not significantly associated with civic engagement. Tests of mediation indicated there was one significant indirect pathway between school climate and civic engagement behavior. There was an indirect association between school climate and civic engagement via its association with sense of school connectedness, indirect association estimate = .17 [95% CI: .08, .32]. The aforementioned indirect association via school connectedness accounted for 50% (.17/.34) of the total effect. Partial support was found for the prediction that students’ perceptions of a positive school climate are linked to civic engagement in part through their role in students’ sense of connection to school.

Keywords: civic engagement, early adolescence, school climate, school belonging, developmental niche

Procedia PDF Downloads 370
25203 Data Stream Association Rule Mining with Cloud Computing

Authors: B. Suraj Aravind, M. H. M. Krishna Prasad

Abstract:

There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.

Keywords: data stream, association rule mining, cloud computing, frequent itemsets

Procedia PDF Downloads 503
25202 Exploring Valproic Acid (VPA) Analogues Interactions with HDAC8 Involved in VPA Mediated Teratogenicity: A Toxicoinformatics Analysis

Authors: Sakshi Piplani, Ajit Kumar

Abstract:

Valproic acid (VPA) is the first synthetic therapeutic agent used to treat epileptic disorders, which account for affecting nearly 1% world population. Teratogenicity caused by VPA has prompted the search for next generation drug with better efficacy and lower side effects. Recent studies have posed HDAC8 as direct target of VPA that causes the teratogenic effect in foetus. We have employed molecular dynamics (MD) and docking simulations to understand the binding mode of VPA and their analogues onto HDAC8. A total of twenty 3D-structures of human HDAC8 isoforms were selected using BLAST-P search against PDB. Multiple sequence alignment was carried out using ClustalW and PDB-3F07 having least missing and mutated regions was selected for study. The missing residues of loop region were constructed using MODELLER and energy was minimized. A set of 216 structural analogues (>90% identity) of VPA were obtained from Pubchem and ZINC database and their energy was optimized with Chemsketch software using 3-D CHARMM-type force field. Four major neurotransmitters (GABAt, SSADH, α-KGDH, GAD) involved in anticonvulsant activity were docked with VPA and its analogues. Out of 216 analogues, 75 were selected on the basis of lower binding energy and inhibition constant as compared to VPA, thus predicted to have anti-convulsant activity. Selected hHDAC8 structure was then subjected to MD Simulation using licenced version YASARA with AMBER99SB force field. The structure was solvated in rectangular box of TIP3P. The simulation was carried out with periodic boundary conditions and electrostatic interactions and treated with Particle mesh Ewald algorithm. pH of system was set to 7.4, temperature 323K and pressure 1atm respectively. Simulation snapshots were stored every 25ps. The MD simulation was carried out for 20ns and pdb file of HDAC8 structure was saved every 2ns. The structures were analysed using castP and UCSF Chimera and most stabilized structure (20ns) was used for docking study. Molecular docking of 75 selected VPA-analogues with PDB-3F07 was performed using AUTODOCK4.2.6. Lamarckian Genetic Algorithm was used to generate conformations of docked ligand and structure. The docking study revealed that VPA and its analogues have more affinity towards ‘hydrophobic active site channel’, due to its hydrophobic properties and allows VPA and their analogues to take part in van der Waal interactions with TYR24, HIS42, VAL41, TYR20, SER138, TRP137 while TRP137 and SER138 showed hydrogen bonding interaction with VPA-analogues. 14 analogues showed better binding affinity than VPA. ADMET SAR server was used to predict the ADMET properties of selected VPA analogues for predicting their druggability. On the basis of ADMET screening, 09 molecules were selected and are being used for in-vivo evaluation using Danio rerio model.

Keywords: HDAC8, docking, molecular dynamics simulation, valproic acid

Procedia PDF Downloads 254
25201 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques

Authors: Tosin Ige

Abstract:

Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.

Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique

Procedia PDF Downloads 173
25200 Big Data: Concepts, Technologies and Applications in the Public Sector

Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora

Abstract:

Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.

Keywords: big data, big data analytics, Hadoop, cloud

Procedia PDF Downloads 312
25199 Social Space or the Art of Belonging: The Socio-Spatial Approach in the Field of Residential Facilities for Persons with Disabilities

Authors: Sarah Reker

Abstract:

The Convention on the Rights of Persons with Disabilities (CRPD) provides the basis of this study. For all countries which have ratified the convention since its entry into force in 2007, the effective implementation of the requirements often leads to considerable challenges. Furthermore, missing indicators make it difficult to measure progress. Therefore, the aim of the research project is to contribute to analyze the consequences of the implementation process on the inclusion and exclusion conditions for people with disabilities in Germany. Disabled People’s Organisations and other associations consider the social space to be relevant for the successful implementation of the CRPD. Against this background, the research project wants to focus on the relationship between a barrier-free access to the social space and the “full and effective participation and inclusion” (Art. 3) of persons with disabilities. The theoretical basis of the study is the sociological theory of social space (“Sozialraumtheorie”).

Keywords: decentralisation, qualitative research, residential facilities, social space

Procedia PDF Downloads 365