Search results for: teaching-learning based optimization
27673 A Common Automated Programming Platform for Knowledge Based Software Engineering
Authors: Ivan Stanev, Maria Koleva
Abstract:
A common platform for automated programming (CPAP) is defined in details. Two versions of CPAP are described: Cloud-based (including the set of components for classic programming, and the set of components for combined programming) and KBASE based (including the set of components for automated programming, and the set of components for ontology programming). Four KBASE products (module for automated programming of robots, intelligent product manual, intelligent document display, and intelligent form generator) are analyzed and CPAP contributions to automated programming are presented.Keywords: automated programming, cloud computing, knowledge based software engineering, service oriented architecture
Procedia PDF Downloads 34427672 Sulfur Removal of Hydrocarbon Fuels Using Oxidative Desulfurization Enhanced by Fenton Process
Authors: Mahsa Ja’fari, Mohammad R. Khosravi-Nikou, Mohsen Motavassel
Abstract:
A comprehensive development towards the production of ultra-clean fuels as a feed stoke is getting to raise due to the increasing use of diesel fuels and global air pollution. Production of environmental-friendly fuels can be achievable by some limited single methods and most integrated ones. Oxidative desulfurization (ODS) presents vast ranges of technologies possessing suitable characteristics with regard to the Fenton process. Using toluene as a model fuel feed with dibenzothiophene (DBT) as a sulfur compound under various operating conditions is the attempt of this study. The results showed that this oxidative process followed a pseudo-first order kinetics. Removal efficiency of 77.43% is attained under reaction time of 40 minutes with (Fe+2/H2O2) molar ratio of 0.05 in acidic pH environment. In this research, temperature of 50 °C represented the most influential role in proceeding the reaction.Keywords: design of experiment (DOE), dibenzothiophene (DBT), optimization, oxidative desulfurization (ODS)
Procedia PDF Downloads 21727671 High Efficiency Class-F Power Amplifier Design
Authors: Abdalla Mohamed Eblabla
Abstract:
Due to the high increase and demand for a wide assortment of applications that require low-cost, high-efficiency, and compact systems, RF power amplifiers are considered the most critical design blocks and power consuming components in wireless communication, TV transmission, radar, and RF heating. Therefore, much research has been carried out in order to improve the performance of power amplifiers. Classes-A, B, C, D, E, and F are the main techniques for realizing power amplifiers. An implementation of high efficiency class-F power amplifier with Gallium Nitride (GaN) High Electron Mobility Transistor (HEMT) was realized in this paper. The simulation and optimization of the class-F power amplifier circuit model was undertaken using Agilent’s Advanced Design system (ADS). The circuit was designed using lumped elements.Keywords: Power Amplifier (PA), gallium nitride (GaN), Agilent’s Advanced Design System (ADS), lumped elements
Procedia PDF Downloads 44127670 How Social Capital Mediates the Relationships between Interpersonal Interaction and Health: Location-Based Augmented Reality Games
Authors: Chechen Liao, Pui-Lai To, Yi-Hui Wang
Abstract:
Recently location-based augmented reality games (LBS+AR) have become increasingly popular as a major form of entertainment. Location-based augmented reality games have provided a lot of opportunities for face-to-face interaction among players. Prior studies also indicate that the social side of location-based augmented reality games are one of the major reasons for players to engage in the games. However, the impact of the usage of location-based augmented reality games has not been well explored. The study examines how interpersonal interaction affects social capital and health through playing location-based augmented reality games. The study also investigates how social capital mediates the relationships between interpersonal interaction and health. The study uses survey method to collect data. Six-hundred forty-seven questionnaires are collected. Structural equation modeling is used to investigate the relationships among variables. The causal relationships between variables in the research model are tested. The results of the study indicated that four interpersonal attraction attributes, including ability, proximity, similarity, and familiarity, are identified by ways of factor analysis. Interpersonal attraction is important for location-based augmented reality game-players to develop bonding and bridging social capital. Bonding and bridging social capital have a positive impact on the mental and social health of game-players. The results of the study provide academic and practical implications for future growth of location-based augmented reality games.Keywords: health, interpersonal interaction, location-based augmented reality games, social capital
Procedia PDF Downloads 25827669 Tribological Behavior of Pongamia Oil Based Biodiesel Blended Lubricant at Different Load
Authors: Yashvir Singh, Amneesh Singla, Swapnil Bhurat
Abstract:
Around the globe, there is demand for the development of bio-based lubricant which will be biodegradable, non toxic, and environmentally-friendly. This paper outlines the friction and wear characteristics of ponagamia biodiesel contaminated bio-lubricant by using pin-on-disc tribometer. To formulate the bio-lubricants, Ponagamia oil based biodiesel were blended in the ratios 5, 10, and 20% by volume with the base lubricant SAE 20 W 40. Tribological characteristics of these blends were carried out at 2.5 m/s sliding velocity and loads applied were 50, 100, 150 N. Experimental results showed that the lubrication regime that occurred during the test was boundary lubrication while the main wear mechanisms was the adhesive wear. During testing, the lowest wear was found with the addition of 5 and 10% Ponagamia oil based biodiesel, and above this contamination, the wear rate was increased considerably. The addition of 5 and 10% Ponagamia oil based biodiesel with the base lubricant acted as a very good lubricant additive which reduced the friction and wear rate during the test. It has been concluded that the PBO 5 and PBO 10 can act as an alternative lubricant to increase the mechanical efficiency at 2.5 m/s sliding velocity and contribute in reduction of dependence on the petroleum based products.Keywords: friction, load, pongamia oil blend, sliding velocity, wear
Procedia PDF Downloads 30927668 Thermal Assessment of Outer Rotor Direct Drive Gearless Small-Scale Wind Turbines
Authors: Yusuf Yasa, Erkan Mese
Abstract:
This paper investigates the thermal issue of permanent magnet synchronous generator which is frequently used in direct drive gearless small-scale wind turbine applications. Permanent magnet synchronous generator (PMSG) is designed with 2.5 kW continuous and 6 kW peak power. Then considering generator geometry, mechanical design of wind turbine is performed. Thermal analysis and optimization is carried out considering all wind turbine components to reach realistic results. These issue is extremely important in research and development(R&D) process for wind turbine applications.Keywords: direct drive, gearless wind turbine, permanent magnet synchronous generator (PMSG), small-scale wind turbine, thermal management
Procedia PDF Downloads 69727667 Artificial Neurons Based on Memristors for Spiking Neural Networks
Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi
Abstract:
Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to its high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO₂-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO₂-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.Keywords: leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity
Procedia PDF Downloads 13427666 Optimizing The Residential Design Process Using Automated Technologies
Authors: Martin Georgiev, Milena Nanova, Damyan Damov
Abstract:
Architects, engineers, and developers need to analyse and implement a wide spectrum of data in different formats, if they want to produce viable residential developments. Usually, this data comes from a number of different sources and is not well structured. The main objective of this research project is to provide parametric tools working with real geodesic data that can generate residential solutions. Various codes, regulations and design constraints are described by variables and prioritized. In this way, we establish a common workflow for architects, geodesists, and other professionals involved in the building and investment process. This collaborative medium ensures that the generated design variants conform to various requirements, contributing to a more streamlined and informed decision-making process. The quantification of distinctive characteristics inherent to typical residential structures allows a systematic evaluation of the generated variants, focusing on factors crucial to designers, such as daylight simulation, circulation analysis, space utilization, view orientation, etc. Integrating real geodesic data offers a holistic view of the built environment, enhancing the accuracy and relevance of the design solutions. The use of generative algorithms and parametric models offers high productivity and flexibility of the design variants. It can be implemented in more conventional CAD and BIM workflow. Experts from different specialties can join their efforts, sharing a common digital workspace. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the building investment during its entire lifecycle.Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization
Procedia PDF Downloads 5227665 Gel-Based Autologous Chondrocyte Implantation (GACI) in the Knee: Multicentric Short Term Study
Authors: Shaival Dalal, Nilesh Shah, Dinshaw Pardiwala, David Rajan, Satyen Sanghavi, Charul Bhanji
Abstract:
Autologous Chondrocyte Implantation (ACI) is used worldwide since 1998 to treat cartilage defect. GEL based ACI is a new tissue-engineering technique to treat full thickness cartilage defect with fibrin and thrombin as scaffold for chondrocytes. Purpose of this study is to see safety and efficacy of gel based ACI for knee cartilage defect in multiple centres with different surgeons. Gel-based Autologous Chondrocyte Implantation (GACI) has shown effectiveness in treating isolated cartilage defect of knee joint. Long term results are still needed to be studied. This study was followed-up up to two years and showed benefit to patients. All enrolled patients with a mean age of 28.5 years had an average defect size of3 square centimeters, and were grade IV as per ICRS grading. All patients were followed up several times and at several intervals at 6th week, 8th week, 11th week, 17th week, 29th week, 57th week after surgery. The outcomes were measured based on the IKDC (subjective and objective) and MOCART scores.Keywords: knee, chondrocyte, autologous chondrocyte implantation, fibrin gel based
Procedia PDF Downloads 38127664 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit
Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu
Abstract:
Diagonal sparse matrix-vector multiplication is a well-studied topic in the fields of scientific computing and big data processing. However, when diagonal sparse matrices are stored in DIA format, there can be a significant number of padded zero elements and scattered points, which can lead to a degradation in the performance of the current DIA kernel. This can also lead to excessive consumption of computational and memory resources. In order to address these issues, the authors propose the DIA-Adaptive scheme and its kernel, which leverages the parallel instruction sets on MLU. The researchers analyze the effect of allocating a varying number of threads, clusters, and hardware architectures on the performance of SpMV using different formats. The experimental results indicate that the proposed DIA-Adaptive scheme performs well and offers excellent parallelism.Keywords: adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication
Procedia PDF Downloads 13627663 Evaluation of the Impact of Reducing the Traffic Light Cycle for Cars to Improve Non-Vehicular Transportation: A Case of Study in Lima
Authors: Gheyder Concha Bendezu, Rodrigo Lescano Loli, Aldo Bravo Lizano
Abstract:
In big urbanized cities of Latin America, motor vehicles have priority over non-motor vehicles and pedestrians. There is an important problem that affects people's health and quality of life; lack of inclusion towards pedestrians makes it difficult for them to move smoothly and safely since the city has been planned for the transit of motor vehicles. Faced with the new trend for sustainable and economical transport, the city is forced to develop infrastructure in order to incorporate pedestrians and users with non-motorized vehicles in the transport system. The present research aims to study the influence of non-motorized vehicles on an avenue, the optimization of a cycle using traffic lights based on simulation in Synchro software, to improve the flow of non-motor vehicles. The evaluation is of the microscopic type; for this reason, field data was collected, such as vehicular, pedestrian, and non-motor vehicle user demand. With the values of speed and travel time, it is represented in the current scenario that contains the existing problem. These data allow to create a microsimulation model in Vissim software, later to be calibrated and validated so that it has a behavior similar to reality. The results of this model are compared with the efficiency parameters of the proposed model; these parameters are the queue length, the travel speed, and mainly the travel times of the users at this intersection. The results reflect a reduction of 27% in travel time, that is, an improvement between the proposed model and the current one for this great avenue. The tail length of motor vehicles is also reduced by 12.5%, a considerable improvement. All this represents an improvement in the level of service and in the quality of life of users.Keywords: bikeway, microsimulation, pedestrians, queue length, traffic light cycle, travel time
Procedia PDF Downloads 17627662 FPGA Based IIR Filter Design Using MAC Algorithm
Authors: Rajesh Mehra, Bharti Thakur
Abstract:
In this paper, an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with Matlab and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.Keywords: Butterworth filter, DSP, IIR, MAC, FPGA
Procedia PDF Downloads 38827661 Critical Review of Web Content Mining Extraction Mechanisms
Authors: Rabia Bashir, Sajjad Akbar
Abstract:
There is an inevitable demand of web mining due to rapid increase of huge information on the Internet, but the striking variety of web structures has made required content retrieval a difficult task. To counter this issue, Web Content Mining (WCM) emerges as a potential candidate which extracts and integrates suitable resources of data to users. In past few years, research has been done on several extraction techniques for WCM i.e. agent-based, template-based, assumption-based, statistic-based, wrapper-based and machine learning. However, it is still unclear that either these approaches are efficiently tackling the significant challenges of WCM or not. To answer this question, this paper identifies these challenges such as language independency, structure flexibility, performance, automation, dynamicity, redundancy handling, intelligence, relevant content retrieval, and privacy. Further, mapping of these challenges is done with existing extraction mechanisms which helps to adopt the most suitable WCM approach, given some conditions and characteristics at hand.Keywords: content mining challenges, web content mining, web content extraction approaches, web information retrieval
Procedia PDF Downloads 54827660 Optimization of a Hybrid PV-Diesel Mini grid System: A Case Study of Vimtim-Mubi, Nigeria
Authors: Julius Agaka Yusufu
Abstract:
This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.Keywords: Vimtim-Nigeria, homer, renewable energy, PV-diesel hybrid system.
Procedia PDF Downloads 7227659 Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD
Authors: Eleni Ioannou, Pascal Nucara, Keith Pullen
Abstract:
The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an ”oval” type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept.Keywords: CFD, centrifugal compressor, micro-gas turbine, pipe diffuser, SLM, wedge diffuser
Procedia PDF Downloads 40627658 Analysis of Cycling Accessibility on Chengdu Tianfu Greenway Based on Improved Two-Step Floating Catchment Area Method: A Case Study of Jincheng Greenway
Authors: Qin Zhu
Abstract:
Under the background of accelerating the construction of Beautiful and Livable Park City in Chengdu, the Tianfu greenway system, as an important support system for the construction of parks in the whole region, its accessibility is one of the key indicators to measure the effectiveness of the greenway construction. In recent years, cycling has become an important transportation mode for residents to go to the greenways because of its low-carbon, healthy and convenient characteristics, and the study of greenway accessibility under cycling mode can provide reference suggestions for the optimization and improvement of greenways. Taking Jincheng Greenway in Chengdu City as an example, the Baidu Map Application Programming Interface (API) and questionnaire survey was used to improve the two-step floating catchment area (2SFCA) method from the three dimensions of search threshold, supply side and demand side, to calculate the cycling accessibility of the greenway and to explore the spatial matching relationship with the population density, the number of entrances and the comprehensive attractiveness. The results show that: 1) the distribution of greenway accessibility in Jincheng shows a pattern of "high in the south and low in the north, high in the west and low in the east", 2) the spatial match between greenway accessibility and population density of the residential area is imbalanced, and there is a significant positive correlation between accessibility and the number of selectable greenway access points in residential areas, as well as the overall attractiveness of greenways, with a high degree of match. On this basis, it is proposed to give priority to the mismatch area to alleviate the contradiction between supply and demand, optimize the greenway access points to improve the traffic connection, enhance the comprehensive quality of the greenway and strengthen the service capacity, to further improve the cycling accessibility of the Jincheng Greenway and improve the spatial allocation of greenway resources.Keywords: accessibility, Baidu maps API, cycling, greenway, 2SFCA
Procedia PDF Downloads 8627657 The Molecular Characteristic of Heliotropium digynum in Saudi Arabia by Inter-Simple Sequence Repeat (ISSR) Analysis
Authors: Mona Alwhibi, Najat Bukhary
Abstract:
Heliotropium digynum, a member of Boraginaceae family, the growth of the plant, as well as its size, length of inflorescence, and speed of development depends on the amount of rain in its habitat. In this study, we studied the applicability of inter-simple sequence repeat (ISSR) polymorphism in Heliotropium digynum in a different region of Saudi Arabia. We found that. ISSR analysis using 15 primers were used for ISSR-PCR optimization trials, five primers (UBC810, UBC811, UBC818, UBC834, and UBC849) which gave the best amplification results produced a total of 43 polymorphic bands. The number of polymorphic loci was 20 and the percentage of polymorphism was 90.47%. The similarity result indicates the presence of a high-level genetic diversity between populations and a dendrogram constructed by UPGMA method.Keywords: genetic differentiation, genetic diversity, Heliotropium digynum, ISSR
Procedia PDF Downloads 48327656 Differentiation of the Functional in an Optimization Problem for Coefficients of Elliptic Equations with Unbounded Nonlinearity
Authors: Aigul Manapova
Abstract:
We consider an optimal control problem in the higher coefficient of nonlinear equations with a divergent elliptic operator and unbounded nonlinearity, and the Dirichlet boundary condition. The conditions imposed on the coefficients of the state equation are assumed to hold only in a small neighborhood of the exact solution to the original problem. This assumption suggests that the state equation involves nonlinearities of unlimited growth and considerably expands the class of admissible functions as solutions of the state equation. We obtain formulas for the first partial derivatives of the objective functional with respect to the control functions. To calculate the gradients the numerical solutions of the state and adjoint problems are used. We also prove that the gradient of the cost function is Lipchitz continuous.Keywords: cost functional, differentiability, divergent elliptic operator, optimal control, unbounded nonlinearity
Procedia PDF Downloads 17227655 The Coauthorship Network Analysis of the Norwegian School of Economics
Authors: Ivan Belik, Kurt Jornsten
Abstract:
We construct the coauthorship network based on the scientific collaboration between the faculty members at the Norwegian School of Economics (NHH) and based on their international academic publication experience. The network structure is based on the NHH faculties’ publications recognized by the ISI Web of Science for the period 1950 – Spring, 2014. The given network covers the publication activities of the NHH faculty members (over six departments) based on the information retrieved from the ISI Web of Science in Spring, 2014. In this paper we analyse the constructed coauthorship network in different aspects of the theory of social networks analysis.Keywords: coauthorship networks, social networks analysis, Norwegian School of Economics, ISI
Procedia PDF Downloads 43227654 Optimization of the Control Scheme for Human Extremity Exoskeleton
Authors: Yang Li, Xiaorong Guan, Cheng Xu
Abstract:
In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results.Keywords: human extremity exoskeleton, interaction force control scheme, simulation study, fuzzy self-adaptive pi controller, man-machine coordinated walking, bear payload
Procedia PDF Downloads 36227653 On Phase Based Stereo Matching and Its Related Issues
Authors: András Rövid, Takeshi Hashimoto
Abstract:
The paper focuses on the problem of the point correspondence matching in stereo images. The proposed matching algorithm is based on the combination of simpler methods such as normalized sum of squared differences (NSSD) and a more complex phase correlation based approach, by considering the noise and other factors, as well. The speed of NSSD and the preciseness of the phase correlation together yield an efficient approach to find the best candidate point with sub-pixel accuracy in stereo image pairs. The task of the NSSD in this case is to approach the candidate pixel roughly. Afterwards the location of the candidate is refined by an enhanced phase correlation based method which in contrast to the NSSD has to run only once for each selected pixel.Keywords: stereo matching, sub-pixel accuracy, phase correlation, SVD, NSSD
Procedia PDF Downloads 46827652 Optimum Dispatching Rule in Solar Ingot-Wafer Manufacturing System
Authors: Wheyming Song, Hung-Hsiang Lin, Scott Lian
Abstract:
In this research, we investigate the optimal dispatching rule for machines and manpower allocation in the solar ingot-wafer systems. The performance of the method is measured by the sales profit for each dollar paid to the operators in a one week at steady-state. The decision variables are identification-number of machines and operators when each job is required to be served in each process. We propose a rule which is a function of operator’s ability, corresponding salary, and standing location while in the factory. The rule is named ‘Multi-nominal distribution dispatch rule’. The proposed rule performs better than many traditional rules including generic algorithm and particle swarm optimization. Simulation results show that the proposed Multi-nominal distribution dispatch rule improvement on the sales profit dramatically.Keywords: dispatching, solar ingot, simulation, flexsim
Procedia PDF Downloads 30127651 Food Supply Chain Optimization: Achieving Cost Effectiveness Using Predictive Analytics
Authors: Jayant Kumar, Aarcha Jayachandran Sasikala, Barry Adrian Shepherd
Abstract:
Public Distribution System is a flagship welfare programme of the Government of India with both historical and political significance. Targeted at lower sections of society,it is one of the largest supply chain networks in the world. There has been several studies by academics and planning commission about the effectiveness of the system. Our study focuses on applying predictive analytics to aid the central body to keep track of the problem of breach of service level agreement between the two echelons of food supply chain. Each shop breach is leading to a potential additional inventory carrying cost. Thus, through this study, we aim to show that aided with such analytics, the network can be made more cost effective. The methods we illustrate in this study are applicable to other commercial supply chains as well.Keywords: PDS, analytics, cost effectiveness, Karnataka, inventory cost, service level JEL classification: C53
Procedia PDF Downloads 53327650 Evaluation of Bucket Utility Truck In-Use Driving Performance and Electrified Power Take-Off Operation
Authors: Robert Prohaska, Arnaud Konan, Kenneth Kelly, Adam Ragatz, Adam Duran
Abstract:
In an effort to evaluate the in-use performance of electrified Power Take-off (PTO) usage on bucket utility trucks operating under real-world conditions, data from 20 medium- and heavy-duty vehicles operating in California, USA were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team. In this paper, duty-cycle statistical analyses of class 5, medium-duty quick response trucks and class 8, heavy-duty material handler trucks are performed to examine and characterize vehicle dynamics trends and relationships based on collected in-use field data. With more than 100,000 kilometers of driving data collected over 880+ operating days, researchers have developed a robust methodology for identifying PTO operation from in-field vehicle data. Researchers apply this unique methodology to evaluate the performance and utilization of the conventional and electric PTO systems. Researchers also created custom representative drive-cycles for each vehicle configuration and performed modeling and simulation activities to evaluate the potential fuel and emissions savings for hybridization of the tractive driveline on these vehicles. The results of these analyses statistically and objectively define the vehicle dynamic and kinematic requirements for each vehicle configuration as well as show the potential for further system optimization through driveline hybridization. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relates specifically to medium- and heavy-duty utility vehicles operating under real-world conditions.Keywords: drive cycle, heavy-duty (HD), hybrid, medium-duty (MD), PTO, utility
Procedia PDF Downloads 39627649 Study of University Course Scheduling for Crowd Gathering Risk Prevention and Control in the Context of Routine Epidemic Prevention
Authors: Yuzhen Hu, Sirui Wang
Abstract:
As a training base for intellectual talents, universities have a large number of students. Teaching is a primary activity in universities, and during the teaching process, a large number of people gather both inside and outside the teaching buildings, posing a strong risk of close contact. The class schedule is the fundamental basis for teaching activities in universities and plays a crucial role in the management of teaching order. Different class schedules can lead to varying degrees of indoor gatherings and trajectories of class attendees. In recent years, highly contagious diseases have frequently occurred worldwide, and how to reduce the risk of infection has always been a hot issue related to public safety. "Reducing gatherings" is one of the core measures in epidemic prevention and control, and it can be controlled through scientific scheduling in specific environments. Therefore, the scientific prevention and control goal can be achieved by considering the reduction of the risk of excessive gathering of people during the course schedule arrangement. Firstly, we address the issue of personnel gathering in various pathways on campus, with the goal of minimizing congestion and maximizing teaching effectiveness, establishing a nonlinear mathematical model. Next, we design an improved genetic algorithm, incorporating real-time evacuation operations based on tracking search and multidimensional positive gradient cross-mutation operations, considering the characteristics of outdoor crowd evacuation. Finally, we apply undergraduate course data from a university in Harbin to conduct a case study. It compares and analyzes the effects of algorithm improvement and optimization of gathering situations and explores the impact of path blocking on the degree of gathering of individuals on other pathways.Keywords: the university timetabling problem, risk prevention, genetic algorithm, risk control
Procedia PDF Downloads 9027648 An Investigation of Project-Based Learning: A Case Study of Tourism Students
Authors: Benjaporn Yaemjamuang
Abstract:
The purposes of this study were to investigate the success of project-based learning and to evaluate the performance and level of satisfaction of tourism students who participated in the study. This paper drew upon a data collection from a senior tourism students survey conducted in Rajamangala University during summer 2013. The purposive sampling was utilized to obtain the sample which included 45 tourism students. The pretest and posttest method was utilized. The findings revealed that the majority of respondents had gained higher knowledge after the posttest significantly. The respondents’ knowledge increased about 53.33 percent from pretest to posttest. Also, the findings revealed the top three highest level of satisfaction as follows: 1) the role of teacher and students, 2) the research activities of the project-based learning, 3) the learning methods of the project-based learning. Moreover, the mean score of all categories was 3.98 with a standard deviation of 0.88 which indicated that the average level of satisfaction was high.Keywords: performance, project-based learning, satisfaction, tourism
Procedia PDF Downloads 29227647 Solar Energy Generation Based Urban Development: A Case of Jodhpur City
Authors: A. Kumar, V. Devadas
Abstract:
India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.Keywords: city, consumption, energy, generation
Procedia PDF Downloads 12927646 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 14327645 Weight Comparison of Oil and Dry Type Distribution Transformers
Authors: Murat Toren, Mehmet Çelebi
Abstract:
Reducing the weight of transformers while providing good performance, cost reduction and increased efficiency is important. Weight is one of the most significant factors in all electrical machines, and as such, many transformer design parameters are related to weight calculations. This study presents a comparison of the weight of oil type transformers and dry type transformer weight. Oil type transformers are mainly used in industry; however, dry type transformers are becoming more widespread in recent years. MATLAB is typically used for designing transformers and design parameters (rated voltages, core loss, etc.) along with design in ANSYS Maxwell. Similar to other studies, this study presented that the dry type transformer option is limited. Moreover, the commonly-used 50 kVA distribution transformers in the industry are oil type and dry type transformers are designed and considered in terms of weight. Currently, the preference for low-cost oil-type transformers would change if costs for dry-type transformer were more competitive. The aim of this study was to compare the weight of transformers, which is a substantial cost factor, and to provide an evaluation about increasing the use of dry type transformers.Keywords: weight, optimization, oil-type transformers, dry-type transformers
Procedia PDF Downloads 35427644 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation
Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong
Abstract:
Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation
Procedia PDF Downloads 190