Search results for: protected space
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4192

Search results for: protected space

1882 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: color space, neural network, random forest, skin detection, statistical feature

Procedia PDF Downloads 455
1881 Enhancement in the Absorption Efficiency of GaAs/InAs Nanowire Solar Cells through a Decrease in Light Reflection

Authors: Latef M. Ali, Farah A. Abed, Zheen L. Mohammed

Abstract:

In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV. it explore the design and optimization of high-efficiency solar cells on low-reflective absorption efficiency of GaAs/InAs using simulation software tool. The changes in the core and shell diameters profoundly affects the generation and recombination process, thus affecting the conversion efficiency of solar cells.

Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, FDTD simulation

Procedia PDF Downloads 46
1880 Consumer Cognitive Models of Vaccine Attitudes: Behavioral Informed Strategies Promoting Vaccination Policy in Greece

Authors: Halkiopoulos Constantinos, Koutsopoulou Ioanna, Gkintoni Evgenia, Antonopoulou Hera

Abstract:

Immunization appears to be an essential part of health care service in times of pandemics such as covid-19 and aims not only to protect the health of the population but also the health and sustainability of the economies of the countries affected. It is reported that more than 3.44 billion doses have been administered so far, which accounts for 45 doses for 100 people. Vaccination programs in various countries have been promoted and accepted by people differently and therefore they proceeded in different ways and speed; most countries directing them towards people with vulnerable chronic or recent health statuses. Large scale restriction measures or lockdown, personal protection measures such as masks and gloves and a decrease in leisure and sports activities were also implemented around the world as part of the protection health strategies against the covid-19 pandemic. This research aims to present an analysis based on variations on people’s attitudes towards vaccination based on demographic, social and epidemiological characteristics, and health status on the one hand and perception of health, health satisfaction, pain, and quality of life on the other hand. 1500 Greek e-consumers participated in the research, mainly through social media who took part in an online-based survey voluntarily. The questionnaires included demographic, social and medical characteristics of the participants, and questions asking people’s willingness to be vaccinated and their opinion on whether there should be a vaccine against covid-19. Other stressor factors were also reported in the questionnaires and participants’ loss of someone close due to covid-19, or staying at home quarantine due to being infected from covid-19. WHOQUOL-BREF and GLOBAL PSYCHOTRAUMA SCREEN- GPS were used with kind permission from WHO and from the International Society for Traumatic Stress Studies in this study. Attitudes towards vaccination varied significantly related to aging, level of education, health status and consumer behavior. Health professionals’ attitudes also varied in relation to age, level of education, profession, health status and consumer needs. Vaccines have been the most common technological aid of human civilization so far in the fight against viruses. The results of this study can be used for health managers and digital marketers of pharmaceutical companies and also other staff involved in vaccination programs and for designing health policy immunization strategies during pandemics in order to achieve positive attitudes towards vaccination and larger populations being vaccinated in shorter periods of time after the break out of pandemic. Health staff needs to be trained, aided and supervised to go through with vaccination programs and to be protected through vaccination programs themselves. Feedback in each country’s vaccination program, short backs, deficiencies and delays should be addressed and worked out.

Keywords: consumer behavior, cognitive models, vaccination policy, pandemic, Covid-19, Greece

Procedia PDF Downloads 180
1879 A Qualitative Investigation into Street Art in an Indonesian City

Authors: Michelle Mansfield

Abstract:

Introduction: This paper uses the work of Deleuze and Guattari to consider the street art practice of youth in the Indonesian city of Yogyakarta, a hub of arts and culture in Central Java. Around the world young people have taken to city streets to populate the new informal exhibition spaces outside the galleries of official art institutions. However, rarely is the focus outside the urban metropolis of the ‘Global North.' This paper looks at these practices in a ‘Global South’ Asian context. Space and place are concepts central to understanding youth cultural expression as it emerges on the streets. Deleuze and Guattari’s notion of assemblage enriches understanding of this complex spatial and creative relationship. Yogyakarta street art combines global patterns and motifs with local meanings, symbolism, and language to express local youth voices that convey a unique sense of place on the world stage. Street art has developed as a global urban youth art movement and is theorised as a way in which marginalised young people reclaim urban space for themselves. Methodologies: This study utilised a variety of qualitative methodologies to collect and analyse data. This project took a multi-method approach to data collection, incorporating the qualitative social research methods of ethnography, nongkrong (deep hanging out), participatory action research, online research, in-depth interviews and focus group discussions. Both interviews and focus groups employed photo-elicitation methodology to stimulate rich data gathering. To analyse collected data, rhizoanalytic approaches incorporating discourse analysis and visual analysis were utilised. Street art practice is a fluid and shifting phenomenon, adding to the complexity of inquiry sites. A qualitative approach to data collection and analysis was the most appropriate way to map the components of the street art assemblage and to draw out complexities of this youth cultural practice in Yogyakarta. Major Findings: The rhizoanalytic approach devised for this study proved a useful way of examining in the street art assemblage. It illustrated the ways in which the street art assemblage is constructed. Especially the interaction of inspiration, materials, creative techniques, audiences, and spaces operate in the creations of artworks. The study also exposed the generational tensions between the senior arts practitioners, the established art world, and the young artists. Conclusion: In summary, within the spatial processes of the city, street art is inextricably linked with its audience, its striving artistic community and everyday life in the smooth rather than the striated worlds of the state and the official art world. In this way, the anarchic rhizomatic art practice of nomadic urban street crews can be described not only as ‘becoming-artist’ but as constituting ‘nomos’, a way of arranging elements which are not dependent on a structured, hierarchical organisation practice. The site, streets, crews, neighbourhood and the passers by can all be examined with the concept of assemblage. The assemblage effectively brings into focus the complexity, dynamism, and flows of desire that is a feature of street art practice by young people in Yogyakarta.

Keywords: assemblage, Indonesia, street art, youth

Procedia PDF Downloads 177
1878 Recognizing Human Actions by Multi-Layer Growing Grid Architecture

Authors: Z. Gharaee

Abstract:

Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.

Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance

Procedia PDF Downloads 154
1877 Using Artificial Vision Techniques for Dust Detection on Photovoltaic Panels

Authors: Gustavo Funes, Eduardo Peters, Jose Delpiano

Abstract:

It is widely known that photovoltaic technology has been massively distributed over the last decade despite its low-efficiency ratio. Dust deposition reduces this efficiency even more, lowering the energy production and module lifespan. In this work, we developed an artificial vision algorithm based on CIELAB color space to identify dust over panels in an autonomous way. We performed several experiments photographing three different types of panels, 30W, 340W and 410W. Those panels were soiled artificially with uniform and non-uniform distributed dust. The algorithm proposed uses statistical tools to provide a simulation with a 100% soiled panel and then performs a comparison to get the percentage of dirt in the experimental data set. The simulation uses a seed that is obtained by taking a dust sample from the maximum amount of dust from the dataset. The final result is the dirt percentage and the possible distribution of dust over the panel. Dust deposition is a key factor for plant owners to determine cleaning cycles or identify nonuniform depositions that could lead to module failure and hot spots.

Keywords: dust detection, photovoltaic, artificial vision, soiling

Procedia PDF Downloads 43
1876 Investigating the Effect of Artificial Intelligence on the Improvement of Green Supply Chain in Industry

Authors: Sepinoud Hamedi

Abstract:

Over the past few decades, companies have appeared developing concerns in connection to the natural affect of their fabricating exercises. Green supply chain administration has been considered by the producers as a attainable choice to decrease the natural affect of operations whereas at the same time moving forward their operational execution. Contemporaneously the coming of digitalization and globalization within the supply chain space has driven to a developing acknowledgment of the importance of data preparing methodologies, such as enormous information analytics and fake insights innovations, in improving and optimizing supply chain execution. Also, supply chain collaboration in part intervenes the relationship between manufactured innovation and supply chain execution Ponders appear that the use of BDA-AI advances includes a significant impact on natural handle integration and green supply chain collaboration conjointly underlines that both natural handle integration and green supply chain collaboration have a critical affect on natural execution. Correspondingly savvy supply chain contributes to green execution through overseeing green connections and setting up green operations.

Keywords: green supply chain, artificial intelligence, manufacturers, technology, environmental

Procedia PDF Downloads 65
1875 Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth

Authors: Ting (Grace) Lin, Jianhong (Cecilia) Xia, Todd Robinson

Abstract:

Accessibility analysis, examining people’s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom® API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework.

Keywords: dynamic accessibility, hot spot, transport research, TomTom® API

Procedia PDF Downloads 381
1874 A Review of Encryption Algorithms Used in Cloud Computing

Authors: Derick M. Rakgoale, Topside E. Mathonsi, Vusumuzi Malele

Abstract:

Cloud computing offers distributed online and on-demand computational services from anywhere in the world. Cloud computing services have grown immensely over the past years, especially in the past year due to the Coronavirus pandemic. Cloud computing has changed the working environment and introduced work from work phenomenon, which enabled the adoption of technologies to fulfill the new workings, including cloud services offerings. The increased cloud computing adoption has come with new challenges regarding data privacy and its integrity in the cloud environment. Previously advanced encryption algorithms failed to reduce the memory space required for cloud computing performance, thus increasing the computational cost. This paper reviews the existing encryption algorithms used in cloud computing. In the future, artificial neural networks (ANN) algorithm design will be presented as a security solution to ensure data integrity, confidentiality, privacy, and availability of user data in cloud computing. Moreover, MATLAB will be used to evaluate the proposed solution, and simulation results will be presented.

Keywords: cloud computing, data integrity, confidentiality, privacy, availability

Procedia PDF Downloads 126
1873 Machine Learning Driven Analysis of Kepler Objects of Interest to Identify Exoplanets

Authors: Akshat Kumar, Vidushi

Abstract:

This paper identifies 27 KOIs, 26 of which are currently classified as candidates and one as false positives that have a high probability of being confirmed. For this purpose, 11 machine learning algorithms were implemented on the cumulative kepler dataset sourced from the NASA exoplanet archive; it was observed that the best-performing model was HistGradientBoosting and XGBoost with a test accuracy of 93.5%, and the lowest-performing model was Gaussian NB with a test accuracy of 54%, to test model performance F1, cross-validation score and RUC curve was calculated. Based on the learned models, the significant characteristics for confirm exoplanets were identified, putting emphasis on the object’s transit and stellar properties; these characteristics were namely koi_count, koi_prad, koi_period, koi_dor, koi_ror, and koi_smass, which were later considered to filter out the potential KOIs. The paper also calculates the Earth similarity index based on the planetary radius and equilibrium temperature for each KOI identified to aid in their classification.

Keywords: Kepler objects of interest, exoplanets, space exploration, machine learning, earth similarity index, transit photometry

Procedia PDF Downloads 69
1872 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy

Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed

Abstract:

The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.

Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy

Procedia PDF Downloads 537
1871 Colada Sweet Like Mercy: Gender Stereotyping in Twitter Conversations by Big Brother Naija 2019 Viewers

Authors: Mary-Magdalene N. Chumbow

Abstract:

This study explores how a reality TV show which aired in Nigeria in 2019 (Big Brother Naija - BBN), played a role in enhancing gender-biased conversations among its viewers and social media followers. Thematic analysis is employed here to study Twitter conversations among BBN 2019 followers, which ensued after the show had stopped airing. The study reveals that the show influenced the way viewers and fans engaged with each other, as well as with the show’s participants, on Twitter, and argues that, despite having aired for a short period of time, BBN 2019 was able to draw people together and provide a community where viewers could engage with each other online. Though the show aired on TV, the viewers found a digital space where they could air their views, react to what was happening on the show, as well as simply catch up on action that they probably missed. Within these digital communities, viewers expressed their attractions, disgust and identities, most of these having a form of reference to sexuality and gender identities and roles, as were also portrayed by the show’s producers both on TV and on social media.

Keywords: commodification of bodies, gender stereotypes, Big Brother Naija, social media

Procedia PDF Downloads 127
1870 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes

Authors: Hyun-Woo Cho

Abstract:

The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.

Keywords: process data, data mining, process operation, real-time monitoring

Procedia PDF Downloads 633
1869 R Software for Parameter Estimation of Spatio-Temporal Model

Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.

Keywords: GSTAR Model, MAPE, OLS method, oil production, R software

Procedia PDF Downloads 237
1868 Design and Implementation of Pseudorandom Number Generator Using Android Sensors

Authors: Mochamad Beta Auditama, Yusuf Kurniawan

Abstract:

A smartphone or tablet require a strong randomness to establish secure encrypted communication, encrypt files, etc. Therefore, random number generation is one of the main keys to provide secrecy. Android devices are equipped with hardware-based sensors, such as accelerometer, gyroscope, etc. Each of these sensors provides a stochastic process which has a potential to be used as an extra randomness source, in addition to /dev/random and /dev/urandom pseudorandom number generators. Android sensors can provide randomness automatically. To obtain randomness from Android sensors, each one of Android sensors shall be used to construct an entropy source. After all entropy sources are constructed, output from these entropy sources are combined to provide more entropy. Then, a deterministic process is used to produces a sequence of random bits from the combined output. All of these processes are done in accordance with NIST SP 800-22 and the series of NIST SP 800-90. The operation conditions are done 1) on Android user-space, and 2) the Android device is placed motionless on a desk.

Keywords: Android hardware-based sensor, deterministic process, entropy source, random number generation/generators

Procedia PDF Downloads 367
1867 Transforming Ganges to be a Living River through Waste Water Management

Authors: P. M. Natarajan, Shambhu Kallolikar, S. Ganesh

Abstract:

By size and volume of water, Ganges River basin is the biggest among the fourteen major river basins in India. By Hindu’s faith, it is the main ‘holy river’ in this nation. But, of late, the pollution load, both domestic and industrial sources are deteriorating the surface and groundwater as well as land resources and hence the environment of the Ganges River basin is under threat. Seeing this scenario, the Indian government began to reclaim this river by two Ganges Action Plans I and II since 1986 by spending Rs. 2,747.52 crores ($457.92 million). But the result was no improvement in the water quality of the river and groundwater and environment even after almost three decades of reclamation, and hence now the New Indian Government is taking extra care to rejuvenate this river and allotted Rs. 2,037 cores ($339.50 million) in 2014 and Rs. 20,000 crores ($3,333.33 million) in 2015. The reasons for the poor water quality and stinking environment even after three decades of reclamation of the river are either no treatment/partial treatment of the sewage. Hence, now the authors are suggesting a tertiary level treatment standard of sewages of all sources and origins of the Ganges River basin and recycling the entire treated water for nondomestic uses. At 20million litres per day (MLD) capacity of each sewage treatment plant (STP), this basin needs about 2020 plants to treat the entire sewage load. Cost of the STPs is Rs. 3,43,400 million ($5,723.33 million) and the annual maintenance cost is Rs. 15,352 million ($255.87 million). The advantages of the proposed exercise are: we can produce a volume of 1,769.52 million m3 of biogas. Since biogas is energy, can be used as a fuel, for any heating purpose, such as cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat. It is possible to generate about 3,539.04 million kilowatt electricity per annum from the biogas generated in the process of wastewater treatment in Ganges basin. The income generation from electricity works out to Rs 10,617.12million ($176.95million). This power can be used to bridge the supply and demand gap of energy in the power hungry villages where 300million people are without electricity in India even today, and to run these STPs as well. The 664.18 million tonnes of sludge generated by the treatment plants per annum can be used in agriculture as manure with suitable amendments. By arresting the pollution load the 187.42 cubic kilometer (km3) of groundwater potential of the Ganges River basin could be protected from deterioration. Since we can recycle the sewage for non-domestic purposes, about 14.75km3 of fresh water per annum can be conserved for future use. The total value of the water saving per annum is Rs.22,11,916million ($36,865.27million) and each citizen of Ganges River basin can save Rs. 4,423.83/ ($73.73) per annum and Rs. 12.12 ($0.202) per day by recycling the treated water for nondomestic uses. Further the environment of this basin could be kept clean by arresting the foul smell as well as the 3% of greenhouse gages emission from the stinking waterways and land. These are the ways to reclaim the waterways of Ganges River basin from deterioration.

Keywords: Holy Ganges River, lifeline of India, wastewater treatment and management, making Ganges permanently holy

Procedia PDF Downloads 279
1866 Visualization of Energy Waves via Airy Functions in Time-Domain

Authors: E. Sener, O. Isik, E. Eroglu, U. Sahin

Abstract:

The main idea is to solve the system of Maxwell’s equations in accordance with the causality principle to get the energy quantities via Airy functions in a hollow rectangular waveguide. We used the evolutionary approach to electromagnetics that is an analytical time-domain method. The boundary-value problem for the system of Maxwell’s equations is reformulated in transverse and longitudinal coordinates. A self-adjoint operator is obtained and the complete set of Eigen vectors of the operator initiates an orthonormal basis of the solution space. Hence, the sought electromagnetic field can be presented in terms of this basis. Within the presentation, the scalar coefficients are governed by Klein-Gordon equation. Ultimately, in this study, time-domain waveguide problem is solved analytically in accordance with the causality principle. Moreover, the graphical results are visualized for the case when the energy and surplus of the energy for the time-domain waveguide modes are represented via airy functions.

Keywords: airy functions, Klein-Gordon Equation, Maxwell’s equations, Surplus of energy, wave boundary operators

Procedia PDF Downloads 366
1865 Peculiarities of Absorption near the Edge of the Fundamental Band of Irradiated InAs-InP Solid Solutions

Authors: Nodar Kekelidze, David Kekelidze, Elza Khutsishvili, Bela Kvirkvelia

Abstract:

The semiconductor devices are irreplaceable elements for investigations in Space (artificial Earth satellite, interplanetary space craft, probes, rockets) and for investigation of elementary particles on accelerators, for atomic power stations, nuclear reactors, robots operating on heavily radiation contaminated territories (Chernobyl, Fukushima). Unfortunately, the most important parameters of semiconductors dramatically worsen under irradiation. So creation of radiation-resistant semiconductor materials for opto and microelectronic devices is actual problem, as well as investigation of complicated processes developed in irradiated solid states. Homogeneous single crystals of InP-InAs solid solutions were grown with zone melting method. There has been studied the dependence of the optical absorption coefficient vs photon energy near fundamental absorption edge. This dependence changes dramatically with irradiation. The experiments were performed on InP, InAs and InP-InAs solid solutions before and after irradiation with electrons and fast neutrons. The investigations of optical properties were carried out on infrared spectrophotometer in temperature range of 10K-300K and 1mkm-50mkm spectral area. Radiation fluencies of fast neutrons was equal to 2·1018neutron/cm2 and electrons with 3MeV, 50MeV up to fluxes of 6·1017electron/cm2. Under irradiation, there has been revealed the exponential type of the dependence of the optical absorption coefficient vs photon energy with energy deficiency. The indicated phenomenon takes place at high and low temperatures as well at impurity different concentration and practically in all cases of irradiation by various energy electrons and fast neutrons. We have developed the common mechanism of this phenomenon for unirradiated materials and implemented the quantitative calculations of distinctive parameter; this is in a satisfactory agreement with experimental data. For the irradiated crystals picture get complicated. In the work, the corresponding analysis is carried out. It has been shown, that in the case of InP, irradiated with electrons (Ф=1·1017el/cm2), the curve of optical absorption is shifted to lower energies. This is caused by appearance of the tails of density of states in forbidden band due to local fluctuations of ionized impurity (defect) concentration. Situation is more complicated in the case of InAs and for solid solutions with composition near to InAs when besides noticeable phenomenon there takes place Burstein effect caused by increase of electrons concentration as a result of irradiation. We have shown, that in certain conditions it is possible the prevalence of Burstein effect. This causes the opposite effect: the shift of the optical absorption edge to higher energies. So in given solid solutions there take place two different opposite directed processes. By selection of solid solutions composition and doping impurity we obtained such InP-InAs, solid solution in which under radiation mutual compensation of optical absorption curves displacement occurs. Obtained result let create on the base of InP-InAs, solid solution radiation-resistant optical materials. Conclusion: It was established the nature of optical absorption near fundamental edge in semiconductor materials and it was created radiation-resistant optical material.

Keywords: InAs-InP, electrons concentration, irradiation, solid solutions

Procedia PDF Downloads 192
1864 An Analysis of Machine Translation: Instagram Translation vs Human Translation on the Perspective Translation Quality

Authors: Aulia Fitri

Abstract:

This aims to seek which part of the linguistics with the common mistakes occurred between Instagram translation and human translation. Instagram is a social media account that is widely used by people in the world. Everyone with the Instagram account can consume the captions and pictures that are shared by their friends, celebrity, and public figures across countries. Instagram provides the machine translation under its caption space that will assist users to understand the language of their non-native. The researcher takes samples from an Indonesian public figure whereas the account is followed by many followers. The public figure tries to help her followers from other countries understand her posts by putting up the English version after the Indonesian version. However, the research on Instagram account has not been done yet even though the account is widely used by the worldwide society. There are 20 samples that will be analysed on the perspective of translation quality and linguistics tools. As the MT, Instagram tends to give a literal translation without regarding the topic meant. On the other hand, the human translation tends to exaggerate the translation which leads a different meaning in English. This is an interesting study to discuss when the human nature and robotic-system influence the translation result.

Keywords: human translation, machine translation (MT), translation quality, linguistic tool

Procedia PDF Downloads 314
1863 Inverse Problem Method for Microwave Intrabody Medical Imaging

Authors: J. Chamorro-Servent, S. Tassani, M. A. Gonzalez-Ballester, L. J. Roca, J. Romeu, O. Camara

Abstract:

Electromagnetic and microwave imaging (MWI) have been used in medical imaging in the last years, being the most common applications of breast cancer and stroke detection or monitoring. In those applications, the subject or zone to observe is surrounded by a number of antennas, and the Nyquist criterium can be satisfied. Additionally, the space between the antennas (transmitting and receiving the electromagnetic fields) and the zone to study can be prepared in a homogeneous scenario. However, this may differ in other cases as could be intracardiac catheters, stomach monitoring devices, pelvic organ systems, liver ablation monitoring devices, or uterine fibroids’ ablation systems. In this work, we analyzed different MWI algorithms to find the most suitable method for dealing with an intrabody scenario. Due to the space limitations usually confronted on those applications, the device would have a cylindrical configuration of a maximum of eight transmitters and eight receiver antennas. This together with the positioning of the supposed device inside a body tract impose additional constraints in order to choose a reconstruction method; for instance, it inhabitants the use of well-known algorithms such as filtered backpropagation for diffraction tomography (due to the unusual configuration with probes enclosed by the imaging region). Finally, the difficulty of simulating a realistic non-homogeneous background inside the body (due to the incomplete knowledge of the dielectric properties of other tissues between the antennas’ position and the zone to observe), also prevents the use of Born and Rytov algorithms due to their limitations with a heterogeneous background. Instead, we decided to use a time-reversed algorithm (mostly used in geophysics) due to its characteristics of ignoring heterogeneities in the background medium, and of focusing its generated field onto the scatters. Therefore, a 2D time-reversed finite difference time domain was developed based on the time-reversed approach for microwave breast cancer detection. Simultaneously an in-silico testbed was also developed to compare ground-truth dielectric properties with corresponding microwave imaging reconstruction. Forward and inverse problems were computed varying: the frequency used related to a small zone to observe (7, 7.5 and 8 GHz); a small polyp diameter (5, 7 and 10 mm); two polyp positions with respect to the closest antenna (aligned or disaligned); and the (transmitters-to-receivers) antenna combination used for the reconstruction (1-1, 8-1, 8-8 or 8-3). Results indicate that when using the existent time-reversed method for breast cancer here for the different combinations of transmitters and receivers, we found false positives due to the high degrees of freedom and unusual configuration (and the possible violation of Nyquist criterium). Those false positives founded in 8-1 and 8-8 combinations, highly reduced with the 1-1 and 8-3 combination, being the 8-3 configuration de most suitable (three neighboring receivers at each time). The 8-3 configuration creates a region-of-interest reduced problem, decreasing the ill-posedness of the inverse problem. To conclude, the proposed algorithm solves the main limitations of the described intrabody application, successfully detecting the angular position of targets inside the body tract.

Keywords: FDTD, time-reversed, medical imaging, microwave imaging

Procedia PDF Downloads 118
1862 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 341
1861 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 397
1860 X-Ray Crystallographic, Hirshfeld Surface Analysis and Docking Study of Phthalyl Sulfacetamide

Authors: Sanjay M. Tailor, Urmila H. Patel

Abstract:

Phthalyl Sulfacetamide belongs to well-known member of antimicrobial sulfonamide family. It is a potent antitumor drug. Structural characteristics of 4-amino-N-(2quinoxalinyl) benzene-sulfonamides (Phthalyl Sulfacetamide), C14H12N4O2S has been studied by method of X-ray crystallography. The compound crystallizes in monoclinic space group P21/n with unit cell parameters a= 7.9841 Ǻ, b= 12.8208 Ǻ, c= 16.6607 Ǻ, α= 90˚, β= 93.23˚, γ= 90˚and Z=4. The X-ray based three-dimensional structure analysis has been carried out by direct methods and refined to an R-value of 0.0419. The crystal structure is stabilized by intermolecular N-H…N, N-H…O and π-π interactions. The Hirshfeld surfaces and consequently the fingerprint analysis have been performed to study the nature of interactions and their quantitative contributions towards the crystal packing. An analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions, which are the key elements in building different supramolecular architectures. Docking is used for virtual screening for the prediction of the strongest binders based on various scoring functions. Docking studies are carried out on Phthalyl Sulfacetamide for better activity, which is important for the development of a new class of inhibitors.

Keywords: phthalyl sulfacetamide, crystal structure, hirshfeld surface analysis, docking

Procedia PDF Downloads 341
1859 Dragonflies (Odonata) Reflect Climate Warming Driven Changes in High Mountain Invertebrates Populations

Authors: Nikola Góral, Piotr Mikołajczuk, Paweł Buczyński

Abstract:

Much scientific research in the last 20 years has focused on the influence of global warming on the distribution and phenology of living organisms. Three potential responses to climate change are predicted: individual species may become extinct, adapt to new conditions in their existing range or change their range by migrating to places where climatic conditions are more favourable. It means not only migration to areas in other latitudes, but also different altitudes. In the case of dragonflies (Odonata), monitoring in Western Europe has shown that in response to global warming, dragonflies tend to change their range to a more northern one. The strongest response to global warming is observed in arctic and alpine species, as well as in species capable of migrating over long distances. The aim of the research was to assess whether the fauna of aquatic insects in high-mountain habitats has changed as a result of climate change and, if so, how big and what type these changes are. Dragonflies were chosen as a model organism because of their fast reaction to changes in the environment: they have high migration abilities and short life cycle. The state of the populations of boreal-mountain species and the extent to which lowland species entered high altitudes was assessed. The research was carried out on 20 sites in Western Sudetes, Southern Poland. They were located at an altitude of between 850 and 1250 m. The selected sites were representative of many types of valuable alpine habitats (subalpine raised bog, transitional spring bog, habitats associated with rivers and mountain streams). Several sites of anthropogenic origin were also selected. Thanks to this selection, a wide characterization of the fauna of the Karkonosze was made and it was compared whether the studied processes proceeded differently, depending on whether the habitat is primary or secondary. Both imagines and larvae were examined (by taking hydrobiological samples with a kick-net), and exuviae were also collected. Individual species dragonflies were characterized in terms of their reproductive, territorial and foraging behaviour. During each inspection, the basic physicochemical parameters of the water were measured. The population of the high-mountain dragonfly Somatochlora alpestris turned out to be in a good condition. This species was noted at several sites. Some of those sites were situated relatively low (995 m AMSL), which proves that the thermal conditions at the lower altitudes might be still optimal for this species. The protected by polish law species Somatochlora arctica, Aeshna subarctica and Leucorrhinia albifrons, as well as strongly associated with bogs Leucorrhinia dubia and Aeshna juncea bogs were observed. However, they were more frequent and more numerous in habitats of anthropogenic origin, which may suggest minor changes in the habitat preferences of dragonflies. The subject requires further research and observations over a longer time scale.

Keywords: alpine species, bioindication, global warming, habitat preferences, population dynamics

Procedia PDF Downloads 144
1858 Snake Locomotion: From Sinusoidal Curves and Periodic Spiral Formations to the Design of a Polymorphic Surface

Authors: Ennios Eros Giogos, Nefeli Katsarou, Giota Mantziorou, Elena Panou, Nikolaos Kourniatis, Socratis Giannoudis

Abstract:

In the context of the postgraduate course Productive Design, Department of Interior Architecture of the University of West Attica in Athens, under the guidance of Professors Nikolaos Koyrniatis and Socratis Giannoudis, kinetic mechanisms with parametric models were examined for their further application in the design of objects. In the first phase, the students studied a motion mechanism that they chose from daily experience and then analyzed its geometric structure in relation to the geometric transformations that exist. In the second phase, the students tried to design it through a parametric model in Grasshopper3d for Rhino algorithmic processor and plan the design of its application in an everyday object. For the project presented, our team began by studying the movement of living beings, specifically the snake. By studying the snake and the role that the environment has in its movement, four basic typologies were recognized: serpentine, concertina, sidewinding and rectilinear locomotion, as well as its ability to perform spiral formations. Most typologies are characterized by ripples, a series of sinusoidal curves. For the application of the snake movement in a polymorphic space divider, the use of a coil-type joint was studied. In the Grasshopper program, the simulation of the desired motion for the polymorphic surface was tested by applying a coil on a sinusoidal curve and a spiral curve. It was important throughout the process that the points corresponding to the nodes of the real object remain constant in number, as well as the distances between them and the elasticity of the construction had to be achieved through a modular movement of the coil and not some elastic element (material) at the nodes. Using mesh (repeating coil), the whole construction is transformed into a supporting body and combines functionality with aesthetics. The set of elements functions as a vertical spatial network, where each element participates in its coherence and stability. Depending on the positions of the elements in terms of the level of support, different perspectives are created in terms of the visual perception of the adjacent space. For the implementation of the model on the scale (1:3), (0.50m.x2.00m.), the load-bearing structure that was studied has aluminum rods for the basic pillars Φ6mm and Φ 2.50 mm, for the secondary columns. Filling elements and nodes are of similar material and were made of MDF surfaces. During the design process, four trapezoidal patterns were picketed, which function as filling elements, while in order to support their assembly, a different engraving facet was done. The nodes have holes that can be pierced by the rods, while their connection point with the patterns has a half-carved recess. The patterns have a corresponding recess. The nodes are of two different types depending on the column that passes through them. The patterns and knots were designed to be cut and engraved using a Laser Cutter and attached to the knots using glue. The parameters participate in the design as mechanisms that generate complex forms and structures through the repetition of constantly changing versions of the parts that compose the object.

Keywords: polymorphic, locomotion, sinusoidal curves, parametric

Procedia PDF Downloads 100
1857 Screens Design and Application for Sustainable Buildings

Authors: Fida Isam Abdulhafiz

Abstract:

Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.

Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education

Procedia PDF Downloads 289
1856 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter

Authors: Yi Huang, Clemens Guehmann

Abstract:

In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.

Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model

Procedia PDF Downloads 279
1855 Pioneering Conservation of Aquatic Ecosystems under Australian Law

Authors: Gina M. Newton

Abstract:

Australia’s Environment Protection and Biodiversity Conservation Act (EPBC Act) is the premiere, national law under which species and 'ecological communities' (i.e., like ecosystems) can be formally recognised and 'listed' as threatened across all jurisdictions. The listing process involves assessment against a range of criteria (similar to the IUCN process) to demonstrate conservation status (i.e., vulnerable, endangered, critically endangered, etc.) based on the best available science. Over the past decade in Australia, there’s been a transition from almost solely terrestrial to the first aquatic threatened ecological community (TEC or ecosystem) listings (e.g., River Murray, Macquarie Marshes, Coastal Saltmarsh, Salt-wedge Estuaries). All constitute large areas, with some including multiple state jurisdictions. Development of these conservation and listing advices has enabled, for the first time, a more forensic analysis of three key factors across a range of aquatic and coastal ecosystems: -the contribution of invasive species to conservation status, -how to demonstrate and attribute decline in 'ecological integrity' to conservation status, and, -identification of related priority conservation actions for management. There is increasing global recognition of the disproportionate degree of biodiversity loss within aquatic ecosystems. In Australia, legislative protection at Commonwealth or State levels remains one of the strongest conservation measures. Such laws have associated compliance mechanisms for breaches to the protected status. They also trigger the need for environment impact statements during applications for major developments (which may be denied). However, not all jurisdictions have such laws in place. There remains much opposition to the listing of freshwater systems – for example, the River Murray (Australia's largest river) and Macquarie Marshes (an internationally significant wetland) were both disallowed by parliament four months after formal listing. This was mainly due to a change of government, dissent from a major industry sector, and a 'loophole' in the law. In Australia, at least in the immediate to medium-term time frames, invasive species (aliens, native pests, pathogens, etc.) appear to be the number one biotic threat to the biodiversity and ecological function and integrity of our aquatic ecosystems. Consequently, this should be considered a current priority for research, conservation, and management actions. Another key outcome from this analysis was the recognition that drawing together multiple lines of evidence to form a 'conservation narrative' is a more useful approach to assigning conservation status. This also helps to addresses a glaring gap in long-term ecological data sets in Australia, which often precludes a more empirical data-driven approach. An important lesson also emerged – the recognition that while conservation must be underpinned by the best available scientific evidence, it remains a 'social and policy' goal rather than a 'scientific' goal. Communication, engagement, and 'politics' necessarily play a significant role in achieving conservation goals and need to be managed and resourced accordingly.

Keywords: aquatic ecosystem conservation, conservation law, ecological integrity, invasive species

Procedia PDF Downloads 128
1854 Preparation of New Organoclays and Applications for Adsorption of Telon Dyes in Aqueous Solutions

Authors: Benamar Makhoukhi

Abstract:

Clay ion-exchange using bismidazolium salts (MBIM) could provide organophilic clays materials that allow effective retention of polluting dyes. The present investigations deal with bentonite (Bt) modification using (ortho, meta and para) bisimidazolium cations and attempts to remove a synthetic textile dyes, such as (Telon-Orange, Telon-Red and Telon-Blue) by adsorption, from aqueous solutions. The surface modification of MBIM–Bt was examined using infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Adsorption tests applied to Telon dyes revealed a significant increase of the maximum adsorption capacity from ca. 21-28 to 88-108 mg.g-1 after intercalation. The highest adsorption level was noticed for Telon-Orange dye on the p-MBIM–Bt, presumably due higher interlayer space and better diffusion. The pseudo-first order rate equation was able to provide the best description of adsorption kinetics data for all three dyestuffs. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The results show that MBIM–Bt could be employed as low-cost material for the removal of Telon dyes from effluents.

Keywords: Bentonite, Organoclay, Bisimidazolium, Dyes, Isotherms, Adsorption

Procedia PDF Downloads 441
1853 Street Art Lenses: A Glimpse into the Street Artists’ Identity and Socio-Political Perspective in Brussels

Authors: José Francisco Urrutia Reyes, Judith Espinosa Real

Abstract:

This paper is meant to re-examine the role of street art in the contemporary world. By studying this form of art in Brussels, it can be explained how murals show the socio-political reality of a given community and influence on its interaction. Through the definitions of street art, murals and street artists, and analysing their role in Brussels, it is possible to understand how this counter culture movement serves as an engine of social development, as it interacts with its surroundings sending a clear message to a wider audience. Street art impacts on its environment because it interacts with the people who occupies the day-to-day public space. This has proven to be effective in the arouse of social consciousness, up to the point of being adopted by the government of Brussels to promote social movements such as the AIDS-HIV campaign along with the Plate-Forme Prévention Sida. It can be concluded that street art has evolved since its vandalic beginnings, to become a form of art that has not lost it counter official status, but now has a critical vision that can promote social awakening. Street art is now a global trend that uses visual inputs to create a positive impact.

Keywords: street art, Brussels, social impact, political perspective

Procedia PDF Downloads 356