Search results for: statistical machine translation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7120

Search results for: statistical machine translation

4840 Impact of Changes in Travel Behavior Triggered by the Covid-19 Pandemic on Tourist Ininfrastructure. Water Reservoirs of the Vltava Cascade (Czechia) Case Study

Authors: Jiří Vágner, Dana Fialová

Abstract:

The Covid-19 pandemic and its effects have triggered significant changes in travel behavior. On the contrary to a deep decline in international tourism, domestic tourism has recovered. It has not fully replaced the total volume of national tourism so far. However, from a regional point of view, and especially according to the type of destinations, regional targeting has changed significantly compared to the previous period. Urban destinations, which used to be the domain of foreign tourists, have been relatively orphaned, in contrast to destinations tied to natural attractions, which have seen seasonal increases. Even here, at a lower hierarchical geographic level, we can observe the differentiation resulting from the existing localization and infrastructure. The case study is focused on the three largest water reservoirs of the Vltava Cascade in Czechia– Lipno, Orlík, and Slapy. Based on a detailed field survey, in the periods before and during the pandemic, as well as available statistical data (Tourdata; Czech Statistical Office, Czech Cadaster and Ordnance Survey), different trends in the exploitation of these destinations with regard to existing or planned infrastructure are documented, analyzed and explained. This gives us the opportunity to discuss on concrete examples of generally known phenomena that are usually neglected in tourism: slum, brownfield, greenfield. Changes in travel behavior – especially the focus on spending leisure time individually in naturally attractive destinations – can affect the use of sites, which can be defined as a tourist or recreational slum, brownfield, but also as a tourist greenfield development. Sociocultural changes and perception of destinations by tourists and other actors represent, besides environmental changes, major trends in current tourism.

Keywords: Covid-19 pandemic, czechia, sociocultural and environmental impacts, tourist infrastructure, travel behavior, the Vltava Cascade water reservoirs

Procedia PDF Downloads 146
4839 Effectiveness of Impairment Specified Muscle Strengthening Programme in a Group of Disabled Athletes

Authors: A. L. I. Prasanna, E. Liyanage, S. A. Rajaratne, K. P. A. P. Kariyawasam, A. A. J. Rajaratne

Abstract:

Maintaining or improving the muscle strength of the injured body part is essential to optimize performance among disabled athletes. General conditioning and strengthening exercises might be ineffective if not sufficiently intense enough or targeted for each participant’s specific impairment. Specific strengthening programme, targeted to the affected body part, are essential to improve the strength of impaired muscles and increase in strength will help reducing the impact of disability. Methods: The muscle strength of hip, knee and ankle joints was assessed in a group of randomly selected disabled athletes, using the Medical Research Council (MRC) grading. Those having muscle strength of grade 4 or less were selected for this study (24 in number) and were given and a custom made exercise program designed to strengthen their hip, knee or ankle joint musculature, according to the muscle or group of muscles affected. Effectiveness of the strengthening program was assessed after a period of 3 months. Results: Statistical analysis was done using the Minitab 16 statistical software. A Mann-Whitney U test was used to compare the strength of muscle group before and after exercise programme. A significant difference was observed after the three month strengthening program for knee flexors (Left and Right) (P =0.0889, 0.0312) hip flexors (left and right) (P=0.0312, 0.0466), hip extensors (Left and Right) (P=0.0478, 0.0513), ankle plantar flexors (Left and Right) (P=0.0466, 0.0423) and right ankle dorsiflexors (P= 0.0337). No significant difference of strength was observed after the strengthening program in the knee extensors (left and right), hip abductors (left and right) and left ankle dorsiflexors. Conclusion: Impairment specific exercise programme appear to be beneficial for disabled athletes to significantly improve the muscle strength of the affected joints.

Keywords: muscle strengthening programme, disabled athletes, physiotherapy, rehabilitation sciences

Procedia PDF Downloads 357
4838 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings

Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir

Abstract:

Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.

Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine

Procedia PDF Downloads 162
4837 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 131
4836 Creating Energy Sustainability in an Enterprise

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.

Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure

Procedia PDF Downloads 111
4835 Dependence of the Photoelectric Exponent on the Source Spectrum of the CT

Authors: Rezvan Ravanfar Haghighi, V. C. Vani, Suresh Perumal, Sabyasachi Chatterjee, Pratik Kumar

Abstract:

X-ray attenuation coefficient [µ(E)] of any substance, for energy (E), is a sum of the contributions from the Compton scattering [ μCom(E)] and photoelectric effect [µPh(E)]. In terms of the, electron density (ρe) and the effective atomic number (Zeff) we have µCom(E) is proportional to [(ρe)fKN(E)] while µPh(E) is proportional to [(ρeZeffx)/Ey] with fKN(E) being the Klein-Nishina formula, with x and y being the exponents for photoelectric effect. By taking the sample's HU at two different excitation voltages (V=V1, V2) of the CT machine, we can solve for X=ρe, Y=ρeZeffx from these two independent equations, as is attempted in DECT inversion. Since µCom(E) and µPh(E) are both energy dependent, the coefficients of inversion are also dependent on (a) the source spectrum S(E,V) and (b) the detector efficiency D(E) of the CT machine. In the present paper we tabulate these coefficients of inversion for different practical manifestations of S(E,V) and D(E). The HU(V) values from the CT follow: <µ(V)>=<µw(V)>[1+HU(V)/1000] where the subscript 'w' refers to water and the averaging process <….> accounts for the source spectrum S(E,V) and the detector efficiency D(E). Linearity of μ(E) with respect to X and Y implies that (a) <µ(V)> is a linear combination of X and Y and (b) for inversion, X and Y can be written as linear combinations of two independent observations <µ(V1)>, <µ(V2)> with V1≠V2. These coefficients of inversion would naturally depend upon S(E, V) and D(E). We numerically investigate this dependence for some practical cases, by taking V = 100 , 140 kVp, as are used for cardiological investigations. The S(E,V) are generated by using the Boone-Seibert source spectrum, being superposed on aluminium filters of different thickness lAl with 7mm≤lAl≤12mm and the D(E) is considered to be that of a typical Si[Li] solid state and GdOS scintilator detector. In the values of X and Y, found by using the calculated inversion coefficients, errors are below 2% for data with solutions of glycerol, sucrose and glucose. For low Zeff materials like propionic acid, Zeffx is overestimated by 20% with X being within1%. For high Zeffx materials like KOH the value of Zeffx is underestimated by 22% while the error in X is + 15%. These imply that the source may have additional filtering than the aluminium filter specified by the manufacturer. Also it is found that the difference in the values of the inversion coefficients for the two types of detectors is negligible. The type of the detector does not affect on the DECT inversion algorithm to find the unknown chemical characteristic of the scanned materials. The effect of the source should be considered as an important factor to calculate the coefficients of inversion.

Keywords: attenuation coefficient, computed tomography, photoelectric effect, source spectrum

Procedia PDF Downloads 400
4834 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 144
4833 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models

Authors: V. Mantey, N. Findlay, I. Maddox

Abstract:

The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.

Keywords: building detection, disaster relief, mask-RCNN, satellite mapping

Procedia PDF Downloads 169
4832 Determination of Anti-Fungal Activity of Cedrus deodara Oil against Oligoporus placentus, Trametes versicolor and Xylaria acuminata on Populus deltoids

Authors: Sauradipta Ganguly, Akhato Sumi, Sanjeet Kumar Hom, Ajan T. Lotha

Abstract:

Populus deltoides is a hardwood used predominantly for the manufacturing of plywood, matchsticks, and paper in India and hence has a higher economical significance. Wood-decaying fungi cause serious damage to Populus deltoides products, as the wood itself is perishable and vulnerable to decaying agents, decreasing their aesthetical value which in return results in significant monetary loss for the wood industries concerned. The aim of the study was to determine the antifungal activity of Cedrus deodara oil against three primary wood-decaying fungi namely white-rot fungi (Trametes versicolor), brown-rot fungi (Oligoporus placentus) and soft-rot fungi (Xylaria acuminata) on Populus deltoides samples under optimum laboratory conditions. The susceptibility of Populus deltoides samples on the fungal attack and the ability of deodar oil to control colonization of the wood rotting fungi on the samples were assessed. Three concentrations of deodar oil were considered for the study as treating solutions, i.e., 4%, 5%, and 6%. The Populus deltoides samples were treated with treating solutions, and the ability of the same to prevent a fungal attack on the samples were assessed using accelerated test in the laboratory at Biochemical Oxygen Demand incubator at temperature (25 ± 2°C) and relative humidity 70 ± 4%. Efficacy test and statistical analysis of deodar oil against Trametes versicolor, Oligoporus placentus, and Xylariaacuminataon P. deltoides samples exhibited light, minor and negligible mycelia growth at 4 %, 5% and 6% concentrations of deodar oil, respectively. Whereas, moderate to heavy attack was observed on the surface of the control samples. Statistical analysis further established that the treatments were statistically significant and had significantly inhibited fungal growth of all the three fungus spp by almost 3 to 5 times.

Keywords: populus deltoides, Trametes versicolor, Oligoporus placentus, Xylaria acuminata, Deodar oil, treatment

Procedia PDF Downloads 125
4831 Dissolution of South African Limestone for Wet Flue Gas Desulphurization

Authors: Lawrence Koech, Ray Everson, Hein Neomagus, Hilary Rutto

Abstract:

Wet Flue gas desulphurization (FGD) systems are commonly used to remove sulphur dioxide from flue gas by contacting it with limestone in aqueous phase which is obtained by dissolution. Dissolution is important as it affects the overall performance of a wet FGD system. In the present study, effects of pH, stirring speed, solid to liquid ratio and acid concentration on the dissolution of limestone using an organic acid (adipic acid) were investigated. This was investigated using the pH stat apparatus. Calcium ions were analyzed at the end of each experiment using Atomic Absorption (AAS) machine.

Keywords: desulphurization, limestone, dissolution, pH stat apparatus

Procedia PDF Downloads 461
4830 DQN for Navigation in Gazebo Simulator

Authors: Xabier Olaz Moratinos

Abstract:

Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.

Keywords: machine learning, DQN, gazebo, navigation

Procedia PDF Downloads 113
4829 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System

Authors: Dong Seop Lee, Byung Sik Kim

Abstract:

In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.

Keywords: disaster information management, unstructured data, optical character recognition, machine learning

Procedia PDF Downloads 129
4828 Analysis of NMDA Receptor 2B Subunit Gene (GRIN2B) mRNA Expression in the Peripheral Blood Mononuclear Cells of Alzheimer's Disease Patients

Authors: Ali̇ Bayram, Semih Dalkilic, Remzi Yigiter

Abstract:

N-methyl-D-aspartate (NMDA) receptor is a subtype of glutamate receptor and plays a pivotal role in learning, memory, neuronal plasticity, neurotoxicity and synaptic mechanisms. Animal experiments were suggested that glutamate-induced excitotoxic injuriy and NMDA receptor blockage lead to amnesia and other neurodegenerative diseases including Alzheimer’s disease (AD), Huntington’s disease, amyotrophic lateral sclerosis. Aim of this study is to investigate association between NMDA receptor coding gene GRIN2B expression level and Alzheimer disease. The study was approved by the local ethics committees, and it was conducted according to the principles of the Declaration of Helsinki and guidelines for the Good Clinical Practice. Peripheral blood was collected 50 patients who diagnosed AD and 49 healthy control individuals. Total RNA was isolated with RNeasy midi kit (Qiagen) according to manufacturer’s instructions. After checked RNA quality and quantity with spectrophotometer, GRIN2B expression levels were detected by quantitative real time PCR (QRT-PCR). Statistical analyses were performed, variance between two groups were compared with Mann Whitney U test in GraphpadInstat algorithm with 95 % confidence interval and p < 0.05. After statistical analyses, we have determined that GRIN2B expression levels were down regulated in AD patients group with respect to control group. But expression level of this gene in each group was showed high variability. İn this study, we have determined that NMDA receptor coding gene GRIN2B expression level was down regulated in AD patients when compared with healthy control individuals. According to our results, we have speculated that GRIN2B expression level was associated with AD. But it is necessary to validate these results with bigger sample size.

Keywords: Alzheimer’s disease, N-methyl-d-aspartate receptor, NR2B, GRIN2B, mRNA expression, RT-PCR

Procedia PDF Downloads 394
4827 Count Data Regression Modeling: An Application to Spontaneous Abortion in India

Authors: Prashant Verma, Prafulla K. Swain, K. K. Singh, Mukti Khetan

Abstract:

Objective: In India, around 20,000 women die every year due to abortion-related complications. In the modelling of count variables, there is sometimes a preponderance of zero counts. This article concerns the estimation of various count regression models to predict the average number of spontaneous abortion among women in the Punjab state of India. It also assesses the factors associated with the number of spontaneous abortions. Materials and methods: The study included 27,173 married women of Punjab obtained from the DLHS-4 survey (2012-13). Poisson regression (PR), Negative binomial (NB) regression, zero hurdle negative binomial (ZHNB), and zero-inflated negative binomial (ZINB) models were employed to predict the average number of spontaneous abortions and to identify the determinants affecting the number of spontaneous abortions. Results: Statistical comparisons among four estimation methods revealed that the ZINB model provides the best prediction for the number of spontaneous abortions. Antenatal care (ANC) place, place of residence, total children born to a woman, woman's education and economic status were found to be the most significant factors affecting the occurrence of spontaneous abortion. Conclusions: The study offers a practical demonstration of techniques designed to handle count variables. Statistical comparisons among four estimation models revealed that the ZINB model provided the best prediction for the number of spontaneous abortions and is recommended to be used to predict the number of spontaneous abortions. The study suggests that women receive institutional Antenatal care to attain limited parity. It also advocates promoting higher education among women in Punjab, India.

Keywords: count data, spontaneous abortion, Poisson model, negative binomial model, zero hurdle negative binomial, zero-inflated negative binomial, regression

Procedia PDF Downloads 155
4826 Recent Developments in Artificial Intelligence and Information Communications Technology

Authors: Dolapo Adeyemo

Abstract:

Technology can be designed specifically for geriatrics and persons with disabilities or ICT accessibility solutions. Both solutions stand to benefit from advances in Artificial intelligence, which are computer systems that perform tasks that require human intelligence. Tasks such as decision making, visual perception, speech recognition, and even language translation are useful in both situation and will provide significant benefits to people with temporarily or permanent disabilities. This research’s goal is to review innovations focused on the use of artificial intelligence that bridges the accessibility gap in technology from a user-centered perspective. A mixed method approach that utilized a comprehensive review of academic literature on the subject combined with semi structure interviews of users, developers, and technology product owners. The internet of things and artificial intelligence technology is creating new opportunities in the assistive technology space and proving accessibility to existing technology. Device now more adaptable to the needs of the user by learning the behavior of users as they interact with the internet. Accessibility to devices have witnessed significant enhancements that continue to benefit people with disabilities. Examples of other advances identified are prosthetic limbs like robotic arms supported by artificial intelligence, route planning software for the visually impaired, and decision support tools for people with disabilities and even clinicians that provide care.

Keywords: ICT, IOT, accessibility solutions, universal design

Procedia PDF Downloads 87
4825 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination

Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo

Abstract:

In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.

Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator

Procedia PDF Downloads 198
4824 Automatic Furrow Detection for Precision Agriculture

Authors: Manpreet Kaur, Cheol-Hong Min

Abstract:

The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.

Keywords: furrow detection, morphological, HSV, Hough transform

Procedia PDF Downloads 231
4823 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 149
4822 Bright Light Effects on the Concentration and Diffuse Attention Reaction Time, Tension, Angry, Fatigue and Alertness among Shift Workers

Authors: Mohammad Imani, JabraeilNasl Seraji, Abolfazl Zakerian

Abstract:

Background: Reaction time is the amount of time it takes to respond to a stimulus. In fact The time that passes between the introduction of a stimulus and the reaction by the subject to that stimulus. The aim of this interventional study is evaluation of bright light effects on concentration and diffuse attention reaction time, tension, angry, fatigue and alertness among shift workers. There are several incentives that can reduce the reaction time or added. Bright light as one of the environmental factors can reduce reaction time. Material &Method: This cross-sectional descriptive study was conducted in 1391, in 88 subjects (44 Fixed morning worker and 44 shift worker ) In a 24 h time (13-16-19-22-1-4-7-10) in an ordinary light situation after a randomly selected sample size calculation, concentration and diffuse attention test (reaction time) has been done. After intervention and using of bright light (4500lux), again reaction time test was done. After analyzing by ElISA method obtained data were analyzed by statistical software SPSS 19 and using T-test and ANOVA statistical analysis. Results: Between average of reaction time tests in ordinary light exposed to fixed morning workers and bright light exposed to shift worker, with 95% CI, (P>%5) there was no significant relationship. After the intervention and the use of bright light (4500 lux),between average of concentration and diffused attention reaction time tests in ordinary light exposure on the fixed morning workers and bright light exposure shift workers with 95% CI, (P<5%) there was significant relationship. Conclusion: In sometimes of 24 h during ordinary light exposure concentration and diffused attention reaction time has changed in shift workers. After intervention, during bright light (4500lux) exposure as a light shower, focused and diffuse attention reaction time, tension ,angry and fatigue decreased.

Keywords: bright light, reaction time, tension, angry, fatigue, alertness

Procedia PDF Downloads 385
4821 Variability of Energy Efficiency with the Application of Technologies Embedded in Locomotives of a Heavy Haul Railway: Case Study of Vitoria Minas Railway, Brazil

Authors: Eric Wilson Santos Cabral, Marta Monteiro Da Costa Cruz, Rodrigo Pirola Pestana, Vivian Andréa Parreira

Abstract:

In the transportation sector in Brazil, there is a great challenge that is the maintenance of profit in the face of the great variation in the price of diesel. This directly affects the variable cost of transport companies. Within the railways, part of the great challenges is to overcome the annual budget, cargo and ore transported, thus reducing costs compared to previous years, becoming more efficient each year. Within this scenario, the railway companies are looking for effective measures, aiming at reducing the ratio of liter of diesel consumed by KTKB (Kilometer Gross Ton multiplied by thousand). This ratio represents the indicator of energy efficiency of some railroads in Brazil and in other countries. In this study, we sought to analyze the behavior of the energy efficiency indicator on two parts: The first, with the application of technologies used in locomotives, such as the start-stop system of the diesel engine and the system of tracking and monitoring of fuel. The second, evaluation of the behavior of the variation of the type of cargo transported (loading mix). The study focused on locomotive technology will be carried out using statistical analysis, behavioral evaluation in different operating conditions, such as maneuvers for trains, service trains and freight trains. The analysis will also cover the evaluation of the loading mix made using statistical analysis of the existing railroad database, comparing the energy efficiency per loading mine and type of product. With the completion of this study, the railway undertakings should be able to better target decision-making in order to achieve substantial reductions in transport costs.

Keywords: railway transport, energy efficiency, railway technology, fuel consumption

Procedia PDF Downloads 304
4820 A Hierarchical Bayesian Calibration of Data-Driven Models for Composite Laminate Consolidation

Authors: Nikolaos Papadimas, Joanna Bennett, Amir Sakhaei, Timothy Dodwell

Abstract:

Composite modeling of consolidation processes is playing an important role in the process and part design by indicating the formation of possible unwanted prior to expensive experimental iterative trial and development programs. Composite materials in their uncured state display complex constitutive behavior, which has received much academic interest, and this with different models proposed. Errors from modeling and statistical which arise from this fitting will propagate through any simulation in which the material model is used. A general hyperelastic polynomial representation was proposed, which can be readily implemented in various nonlinear finite element packages. In our case, FEniCS was chosen. The coefficients are assumed uncertain, and therefore the distribution of parameters learned using Markov Chain Monte Carlo (MCMC) methods. In engineering, the approach often followed is to select a single set of model parameters, which on average, best fits a set of experiments. There are good statistical reasons why this is not a rigorous approach to take. To overcome these challenges, A hierarchical Bayesian framework was proposed in which population distribution of model parameters is inferred from an ensemble of experiments tests. The resulting sampled distribution of hyperparameters is approximated using Maximum Entropy methods so that the distribution of samples can be readily sampled when embedded within a stochastic finite element simulation. The methodology is validated and demonstrated on a set of consolidation experiments of AS4/8852 with various stacking sequences. The resulting distributions are then applied to stochastic finite element simulations of the consolidation of curved parts, leading to a distribution of possible model outputs. With this, the paper, as far as the authors are aware, represents the first stochastic finite element implementation in composite process modelling.

Keywords: data-driven , material consolidation, stochastic finite elements, surrogate models

Procedia PDF Downloads 146
4819 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry

Authors: C. A. Barros, Ana P. Barroso

Abstract:

Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.

Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis

Procedia PDF Downloads 214
4818 SOCS1 Inhibits MDR1 in Mammary Cell Carcinoma Reverses Multidrug Resistance

Authors: Debasish Pradhan, Shaktiprasad Pradhan, Rakesh Kumar Pradhan, Gitanjali Tripathy

Abstract:

Suppressors of cytokine signalling (SOCS1), a newly indentified antiapoptotic molecule is a downstream effector of the receptor tyrosine kinase-Ras signalling pathway. The current study has uncovered that SOCS1 may have wide and imperative capacities, particularly because of its close correlation with malignant tumors. To investigate the impact of SOCS1 on MDR, we analyzed the expression of P-gp and SOCS1 by immunohistochemistry and found there was a positive correlation between them. At that point, we effectively interfered with RNA translation by the contamination of siRNA of SOCS1 into MCF7/ADM breast cancer cell lines through a lentivirus, and the expression of the target gene was significantly inhibited. After RNAi, the drug resistance was reduced altogether and the expression of MDR1 mRNA and P-gp in MCF7/ADM cell lines demonstrated a significant decrease. Likewise, the expression of P53 protein increased in a statistically significant manner (p ≤ 0.01) after RNAi exposure. Moreover, flow cytometry analysis uncovers that cell cycle and anti-apoptotic enhancing capacity of cells changed after RNAi treatment. These outcomes proposed SOCS1 may take part in breast cancer MDR by managing MDR1 and P53 expression, changing cell cycle and enhancing the anti-apoptotic ability.

Keywords: breast cancer, multidrug resistance, SOCS1 gene, MDR1 gene, RNA interference

Procedia PDF Downloads 356
4817 Evaluation of Nuts as a Source of Selenium in Diet

Authors: Renata Markiewicz-Żukowska, Patryk Nowakowski, Sylwia K. Naliwajko, Jakub M. Bołtryk, Katarzyna Socha, Anna Puścion-Jakubik, Jolanta Soroczyńska, Maria H. Borawska

Abstract:

Selenium (Se) is an essential element for human health. As an integral part of glutathione peroxidase, it has antioxidant, anti-inflammatory and anticancer activities. Unfortunately, Se dietary intake is often insufficient, especially in regions where the soil is low in Se. Therefore, in search for good sources of Se, the content of this element in food products should be monitored. Food product can be considered as a source of Se when its standard portion covers above 15% of recommended daily allowance. In the case of nuts, 42g is recognized as the standard portion. The aim of this study was to determine the Se content in nuts and to answer the question of whether the studied nuts can be considered as a source of Se in the diet. The material for the study consisted of 10 types of nuts (12 samples of each one): almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios and walnuts. The nuts were mineralized using microwave technique (Berghof, Germany). The content of Se was determined by atomic absorption spectrometry method with electrothermal atomization in a graphite tube with Zeeman background correction (Hitachi, Japan). The accuracy of the method was verified on certified reference material: Simulated Diet D. The statistical analysis was performed using Statistica v. 13.0 software. Statistical significance was determined at p < 0.05 level. The highest content of Se was found in Brazil nuts (4566.21 ± 3393.9 µg/kg) and the lowest in almonds (36.07 ± 18.8 µg/kg). A standard portion (42g) of almonds, brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios and walnuts covers the recommended daily allowance for Se respectively in: 2, 192, 28, 2, 16, 7, 4, 3, 12, 6%. Brazil nuts, cashews and macadamia nuts can be considered as a good source of Se in diet.

Keywords: atomic absorption spectrometry, diet, nuts, selenium

Procedia PDF Downloads 185
4816 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution

Authors: M. Arun, A. Kannan

Abstract:

Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.

Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design

Procedia PDF Downloads 169
4815 A Three-modal Authentication Method for Industrial Robots

Authors: Luo Jiaoyang, Yu Hongyang

Abstract:

In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.

Keywords: multimodal, kinect, machine learning, distance image

Procedia PDF Downloads 79
4814 Mediation Analysis of the Efficacy of the Nimotuzumab-Cisplatin-Radiation (NCR) Improve Overall Survival (OS): A HPV Negative Oropharyngeal Cancer Patient (HPVNOCP) Cohort

Authors: Akshay Patil

Abstract:

Objective: Mediation analysis identifies causal pathways by testing the relationships between the NCR, the OS, and an intermediate variable that mediates the relationship between the Nimotuzumab-cisplatin-radiation (NCR) and OS. Introduction: In randomized controlled trials, the primary interest is in the mechanisms by which an intervention exerts its effects on the outcomes. Clinicians are often interested in how the intervention works (or why it does not work) through hypothesized causal mechanisms. In this work, we highlight the value of understanding causal mechanisms in randomized trial by applying causal mediation analysis in a randomized trial in oncology. Methods: Data was obtained from a phase III randomized trial (Subgroup of HPVNOCP). NCR is reported to significantly improve the OS of patients locally advanced head and neck cancer patients undergoing definitive chemoradiation. Here, based on trial data, the mediating effect of NCR on patient overall survival was systematically quantified through progression-free survival(PFS), disease free survival (DFS), Loco-regional failure (LRF), and the disease control rate (DCR), Overall response rate (ORR). Effects of potential mediators on the HR for OS with NCR versus cisplatin-radiation (CR) were analyzed by Cox regression models. Statistical analyses were performed using R software Version 3.6.3 (The R Foundation for Statistical Computing) Results: Effects of potential mediator PFS was an association between NCR treatment and OS, with an indirect-effect (IE) 0.76(0.62 – 0.95), which mediated 60.69% of the treatment effect. Taking into account baseline confounders, the overall adjusted hazard ratio of death was 0.64 (95% CI: 0.43 – 0.96; P=0.03). The DFS was also a significant mediator and had an IE 0.77 (95% CI; 0.62-0.93), 58% mediated). Smaller mediation effects (maximum 27%) were observed for LRF with IE 0.88(0.74 – 1.06). Both DCR and ORR mediated 10% and 15%, respectively, of the effect of NCR vs. CR on the OS with IE 0.65 (95% CI; 0.81 – 1.08) and 0.94(95% CI; 0.79 – 1.04). Conclusion: Our findings suggest that PFS and DFS were the most important mediators of the OS with nimotuzumab to weekly cisplatin-radiation in HPVNOCP.

Keywords: mediation analysis, cancer data, survival, NCR, HPV negative oropharyngeal

Procedia PDF Downloads 145
4813 Choosing an Optimal Epsilon for Differentially Private Arrhythmia Analysis

Authors: Arin Ghazarian, Cyril Rakovski

Abstract:

Differential privacy has become the leading technique to protect the privacy of individuals in a database while allowing useful analysis to be done and the results to be shared. It puts a guarantee on the amount of privacy loss in the worst-case scenario. Differential privacy is not a toggle between full privacy and zero privacy. It controls the tradeoff between the accuracy of the results and the privacy loss using a single key parameter called

Keywords: arrhythmia, cardiology, differential privacy, ECG, epsilon, medi-cal data, privacy preserving analytics, statistical databases

Procedia PDF Downloads 153
4812 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections

Authors: A. Sopharak, B. Uyyanonvara, S. Barman

Abstract:

Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.

Keywords: diabetic retinopathy, microaneurysm, naive Bayes classifier, SVM classifier

Procedia PDF Downloads 329
4811 Knowledge, Attitude, and Practice of Physical Activity among Adults in Alimosho Local Government Area

Authors: Elizabeth Adebomi Akinlotan, Olukemi Odukoya

Abstract:

INTRODUCTION: Physical Activity is defined as activity that involves bodily movement which is done as a part of daily activity in the form of working, playing, active transportation such as walking and also as a form of recreational activity. Physical inactivity has been identified as the fourth leading risk factor for global mortality and morbidity causing an estimated 3.2 million deaths globally and 5.5% of total deaths and it remains a pressing public health issue. There is a shift in the major causes of death from communicable to non-communicable diseases in many developed countries and this is fast becoming the case in developing countries. Physical activity is an important determinant of health and has been associated with lower mortality rates as it reduces the risk of developing chronic diseases such as diabetes mellitus, hypertension, stroke, cancer and osteoporosis. It improves musculoskeletal health, controls weight and reduces symptoms of depression. AIM: The aim is to study the knowledge, attitude and practices of physical activity among adults in Alimosho local government area. METHODOLOGY: This was a descriptive cross sectional survey designed to study the knowledge, attitude and practice of physical activity among adults in Alimosho Local Government Area. The study population were 250 adults aged 18-65 who were residents of the area of more than 6 months duration and had no chronic disease condition or physical disability. A multistage sampling method was used to select the respondents and data was collected using interviewer administered questionnaires. The data was analyzed with the use of EPI-info 2007 statistical software. Chi Square was thereafter used to test the association between selected variables. The level of statistical significance was set at 5% (p<0.05). RESULTS: In general, majority (61.6%) of the respondents had a good knowledge of what physical activity entails, 34.0% had fair knowledge and 4.4% had poor knowledge. There was a favorable attitude towards physical activity among the respondents with 82.4% having an overall positive attitude. Below a third of the respondents (26.4%) reported having a high physical activity (METS > 3001) while 40.0% had moderate (601-3000 METS) levels of activity and 33.6% were inactive (<600METS). There is statistical significance between the gender of the respondent and the levels of physical activity (p=0.0007); 75.2% males reached the minimum recommendations while 24.8% were inactive and 55.0% females reached the minimum recommendations while 45.0% were inactive. Results also showed that of 95 respondents who were satisfied with their levels of physical activity, 33.7% were insufficiently active while 66.3% were either minimally active or highly active and of 110 who were unsatisfied with their levels of physical activity, 72.0% were above the minimum recommendations while 38.0% were insufficiently active. CONCLUSION: In contrast to the high level of knowledge and favorable attitude towards physical activity, there was a lower level of practice of high or moderate physical activities. It is recommended that more awareness should be created on the recommended levels of physical activity especially for the vigorous intensity and moderate intensity physical activity.

Keywords: METS, physical activity, physical inactivity, public health

Procedia PDF Downloads 233