Search results for: passive optical network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7004

Search results for: passive optical network

4724 Public Health Informatics: Potential and Challenges for Better Life in Rural Communities

Authors: Shishir Kumar, Chhaya Gangwal, Seema Raj

Abstract:

Public health informatics (PHI) which has seen successful implementation in the developed world, become the buzzword in the developing countries in providing improved healthcare with enhanced access. In rural areas especially, where a huge gap exists between demand and supply of healthcare facilities, PHI is being seen as a major solution. There are factors such as growing network infrastructure and the technological adoption by the health fraternity which provide support to these claims. Public health informatics has opportunities in healthcare by providing opportunities to diagnose patients, provide intra-operative assistance and consultation from a remote site. It also has certain barriers in the awareness, adaptation, network infrastructure, funding and policy related areas. There are certain medico-legal aspects involving all the stakeholders which need to be standardized to enable a working system. This paper aims to analyze the potential and challenges of public health informatics services in rural communities.

Keywords: PHI, e-health, public health, health informatics

Procedia PDF Downloads 376
4723 A Low Cost and Reconfigurable Experimental Platform for Engineering Lab Education

Authors: S. S. Kenny Lee, C. C. Kong, S. K. Ting

Abstract:

Teaching engineering lab provides opportunity for students to practice theories learned through physical experiment in the laboratory. However, building laboratories to accommodate increased number of students are expensive, making it impossible for an educational institution to afford the high expenses. In this paper, we develop a low cost and remote platform to aid teaching undergraduate students. The platform is constructed where the real experiment setting up in laboratory can be reconfigure and accessed remotely, the aim is to increase student’s desire to learn at which they can interact with the physical experiment using network enabled devices at anywhere in the campus. The platform is constructed with Raspberry Pi as a main control board that provides communication between computer interfaces to the actual experiment preset in the laboratory. The interface allows real-time remote viewing and triggering the physical experiment in the laboratory and also provides instructions and learning guide about the experimental.

Keywords: engineering lab, low cost, network, remote platform, reconfigure, real-time

Procedia PDF Downloads 308
4722 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 410
4721 Active Learning: Increase Learning through Engagement

Authors: Jihan Albayati, Kim Abdullah

Abstract:

This poster focuses on the significance of active learning strategies and their usage in the ESL classroom. Active learning is a big shift from traditional lecturing to active student engagement which can enhance and enrich student learning; therefore, engaging students is the core of this approach. Students learn more when they participate in the process of learning such as discussions, debates, analysis, synthesis, or any form of activity that requires student involvement. In order to achieve active learning, teachers can use different instructional strategies that are conducive to learning and the selection of these strategies depends on student learning outcomes. Active learning techniques must be carefully designed and integrated into the classroom to increase critical thinking and student participation. This poster provides a concise definition of active learning and its importance, instructional strategies, active learning techniques and their impact on student engagement. Also, it demonstrates the differences between passive and active learners.

Keywords: active learning, learner engagement, student-centered, teaching strategies

Procedia PDF Downloads 495
4720 Comparison of Pbs/Zns Quantum Dots Synthesis Methods

Authors: Mahbobeh Bozhmehrani, Afshin Farah Bakhsh

Abstract:

Nanoparticles with PbS core of 12 nm and shell of approximately 3 nm were synthesized at PbS:ZnS ratios of 1.01:0.1 using Merca Ptopropionic Acid as stabilizing agent. PbS/ZnS nanoparticles present a dramatically increase of Photoluminescence intensity, confirming the confinement of the PbS core by increasing the Quantum Yield from 0.63 to 0.92 by the addition of the ZnS shell. In this case, the synthesis by microwave method allows obtaining nanoparticles with enhanced optical characteristics than those of nanoparticles synthesized by colloidal method.

Keywords: Pbs/Zns, quantum dots, colloidal method, microwave

Procedia PDF Downloads 286
4719 Magnetotelluric Method Approach for the 3-D Inversion of Geothermal System’s Dissemination in Indonesia

Authors: Pelangi Wiyantika

Abstract:

Sustainable energy is the main concern in According to solve any problems on energy sectors. One of the sustainable energy that has lack of presentation is Geothermal energy which has developed lately as the new promising sustainable energy. Indonesia as country that has been passed by the ring of fire zone has many geothermal sources. This is the good opportunity to elaborate and learn more about geothermal as sustainable and renewable energy. Geothermal systems have special characteristic whom the zone of sources can be detected by measuring the resistivity of the subsurface. There are many methods to measuring the anomaly of the systems. One of the best method is Magnetotelluric approchment. Magnetotelluric is the passive method which the resistivity is obtained by injecting the eddy current of rocks in the subsurface with the sources. The sources of Magnetotelluric method can be obtained from lightning or solar wind which has the frequencies each below 1 Hz and above 1 Hz.

Keywords: geothermal, magnetotelluric, renewable energy, resistivity, sustainable energy

Procedia PDF Downloads 303
4718 An Efficient Emitting Supramolecular Material Derived from Calixarene: Synthesis, Optical and Electrochemical Features

Authors: Serkan Sayin, Songul F. Varol

Abstract:

High attention on the organic light-emitting diodes has been paid since their efficient properties in the flat panel displays, and solid-state lighting was realized. Because of their high efficient electroluminescence, brightness and providing eminent in the emission range, organic light emitting diodes have been preferred a material compared with the other materials consisting of the liquid crystal. Calixarenes obtained from the reaction of p-tert-butyl phenol and formaldehyde in a suitable base have been potentially used in various research area such as catalysis, enzyme immobilization, and applications, ion carrier, sensors, nanoscience, etc. In addition, their tremendous frameworks, as well as their easily functionalization, make them an effective candidate in the applied chemistry. Herein, a calix[4]arene derivative has been synthesized, and its structure has been fully characterized using Fourier Transform Infrared Spectrophotometer (FTIR), proton nuclear magnetic resonance (¹H-NMR), carbon-13 nuclear magnetic resonance (¹³C-NMR), liquid chromatography-mass spectrometry (LC-MS), and elemental analysis techniques. The calixarene derivative has been employed as an emitting layer in the fabrication of the organic light-emitting diodes. The optical and electrochemical features of calixarane-contained organic light-emitting diodes (Clx-OLED) have been also performed. The results showed that Clx-OLED exhibited blue emission and high external quantum efficacy. As a conclusion obtained results attributed that the synthesized calixarane derivative is a promising chromophore with efficient fluorescent quantum yield that provides it an attractive candidate for fabricating effective materials for fluorescent probes and labeling studies. This study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK Grant no. 117Z402).

Keywords: calixarene, OLED, supramolecular chemistry, synthesis

Procedia PDF Downloads 253
4717 The Role of Risk Attitudes and Networks on the Migration Decision: Empirical Evidence from the United States

Authors: Tamanna Rimi

Abstract:

A large body of literature has discussed the determinants of migration decision. However, the potential role of individual risk attitudes on migration decision has so far been overlooked. The research on migration literature has studied how the expected income differential influences migration flows for a risk neutral individual. However, migration takes place when there is no expected income differential or even the variability of income appears as lower than in the current location. This migration puzzle motivates a recent trend in the literature that analyzes how attitudes towards risk influence the decision to migrate. However, the significance of risk attitudes on migration decision has been addressed mostly in a theoretical perspective in the mainstream migration literature. The efficient outcome of labor market and overall economy are largely influenced by migration in many countries. Therefore, attitudes towards risk as a determinant of migration should get more attention in empirical studies. To author’s best knowledge, this is the first study that has examined the relationship between relative risk aversion and migration decision in US market. This paper considers movement across United States as a means of migration. In addition, this paper also explores the network effect due to the increasing size of one’s own ethnic group to a source location on the migration decision and how attitudes towards risk vary with network effect. Two ethnic groups (i.e. Asian and Hispanic) have been considered in this regard. For the empirical estimation, this paper uses two sources of data: 1) U.S. census data for social, economic, and health research, 2010 (IPUMPS) and 2) University of Michigan Health and Retirement Study, 2010 (HRS). In order to measure relative risk aversion, this study uses the ‘Two Sample Two-Stage Instrumental Variable (TS2SIV)’ technique. This is a similar method of Angrist (1990) and Angrist and Kruegers’ (1992) ‘Two Sample Instrumental Variable (TSIV)’ technique. Using a probit model, the empirical investigation yields the following results: (i) risk attitude has a significantly large impact on migration decision where more risk averse people are less likely to migrate; (ii) the impact of risk attitude on migration varies by other demographic characteristics such as age and sex; (iii) people with higher concentration of same ethnic households living in a particular place are expected to migrate less from their current place; (iv) the risk attitudes on migration vary with network effect. The overall findings of this paper relating risk attitude, migration decision and network effect can be a significant contribution addressing the gap between migration theory and empirical study in migration literature.

Keywords: migration, network effect, risk attitude, U.S. market

Procedia PDF Downloads 162
4716 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 50
4715 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design

Authors: H. K. Esfahani, B. Datta

Abstract:

Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.

Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site

Procedia PDF Downloads 231
4714 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading

Authors: Michał Rogala, Jakub Gajewski

Abstract:

As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.

Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure

Procedia PDF Downloads 146
4713 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: distributed control, game theory, multi-agent learning, reinforcement learning

Procedia PDF Downloads 459
4712 Design and Implementation of Flexible Metadata Editing System for Digital Contents

Authors: K. W. Nam, B. J. Kim, S. J. Lee

Abstract:

Along with the development of network infrastructures, such as high-speed Internet and mobile environment, the explosion of multimedia data is expanding the range of multimedia services beyond voice and data services. Amid this flow, research is actively being done on the creation, management, and transmission of metadata on digital content to provide different services to users. This paper proposes a system for the insertion, storage, and retrieval of metadata about digital content. The metadata server with Binary XML was implemented for efficient storage space and retrieval speeds, and the transport data size required for metadata retrieval was simplified. With the proposed system, the metadata could be inserted into the moving objects in the video, and the unnecessary overlap could be minimized by improving the storage structure of the metadata. The proposed system can assemble metadata into one relevant topic, even if it is expressed in different media or in different forms. It is expected that the proposed system will handle complex network types of data.

Keywords: video, multimedia, metadata, editing tool, XML

Procedia PDF Downloads 171
4711 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract:

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Keywords: DDoS detection, EMD, relative entropy, SDN

Procedia PDF Downloads 338
4710 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 201
4709 Assessment of E-Readiness in Libraries of Public Sector Universities Khyber Pakhtunkhwa-Pakistan

Authors: Saeed Ullah Jan

Abstract:

This study has examined the e-readiness in libraries of public sector universities in Khyber Pakhtunkhwa. Efforts were made to evaluate the availability of human resources, electronic infrastructure, and network services and programs in the public sector university libraries. The population of the study was the twenty-seven public sector university libraries of Khyber Pakhtunkhwa. A quantitative approach was adopted, and a questionnaire-based survey was conducted to collect data from the librarian/in charge of public sector university libraries. The collected data were analyzed using Statistical Package for Social Sciences version 22 (SPSS). The mean score of the knowledge component interpreted magnitudes below three which indicates that the respondents are poorly or moderately satisfied regards knowledge of libraries. The satisfaction level of the respondents about the other components, such as electronic infrastructure, network services and programs, and enhancers of the networked world, was rated as average or below. The study suggested that major aspects of existing public-sector university libraries require significant transformation. For this purpose, the government should provide all the required resources and facilities to meet the population's informational and recreational demands. The Information Communication Technology (ICT) infrastructure of public university libraries needs improvement in terms of the availability of computer equipment, databases, network servers, multimedia projectors, digital cameras, uninterruptible power supply, scanners, and backup devices such as hard discs and Digital Video Disc/Compact Disc.

Keywords: ICT-libraries, e-readiness-libraries, e-readiness-university libraries, e-readiness-Pakistan

Procedia PDF Downloads 88
4708 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane

Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua

Abstract:

Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.

Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability

Procedia PDF Downloads 324
4707 Impact of Unbalanced Urban Structure on the Traffic Congestion in Biskra, Algeria

Authors: Khaled Selatnia

Abstract:

Nowadays, the traffic congestion becomes increasingly a chronic problem. Sometimes, the cause is attributed to the recurrent road works that create barriers to the efficient movement. But congestion, which usually occurs in cities, can take diverse forms and magnitudes. The case study of Biskra city in Algeria and the diagnosis of its road network show that throughout all the micro regional system, the road network seems at first quite dense. However, this density although it is important, does not cover all areas. A major flow is concentrated in the axis Sidi Okba – Biskra – Tolga. The largest movement of people in the Wilaya (prefecture) revolves around these three centers and their areas of influence. Centers farthest from the trio are very poorly served. This fact leads us to ask questions about the extent of congestion in Biskra city and its relationship to the imbalance of the urban framework. The objective of this paper is to highlight the impact of the urban fact on the traffic congestion.

Keywords: congestion, urban framework, regional, urban and regional studies

Procedia PDF Downloads 625
4706 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 174
4705 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.

Keywords: bubble diameter, heat flux, neural network, training algorithm

Procedia PDF Downloads 443
4704 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System

Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu

Abstract:

The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.

Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter

Procedia PDF Downloads 252
4703 Monitoring a Membrane Structure Using Non-Destructive Testing

Authors: Gokhan Kilic, Pelin Celik

Abstract:

Structural health monitoring (SHM) is widely used in evaluating the state and health of membrane structures. In the past, in order to collect data and send it to a data collection unit on membrane structures, wire sensors had to be put as part of the SHM process. However, this study recommends using wireless sensors instead of traditional wire ones to construct an economical, useful, and easy-to-install membrane structure health monitoring system. Every wireless sensor uses a software translation program that is connected to the monitoring server. Operational neural networks (ONNs) have recently been developed to solve the shortcomings of convolutional neural networks (CNNs), such as the network's resemblance to the linear neuron model. The results of using ONNs for monitoring to evaluate the structural health of a membrane are presented in this work.

Keywords: wireless sensor network, non-destructive testing, operational neural networks, membrane structures, dynamic monitoring

Procedia PDF Downloads 92
4702 Influence of Footing Offset over Stability of Geosynthetic Reinforced Soil Abutments with Variable Facing under Lateral Excitation

Authors: Ashutosh Verma, Satyendra MIttal

Abstract:

The loss of strength at the facing-reinforcement interface brought on by the seasonal thermal expansion/contraction of the bridge deck has been responsible for several geosynthetic reinforced soil abutment failures over the years. This results in excessive settlement below the bridge seat, which results in bridge bumps along the approach road and shortens abutment's design life. There are surely a wide variety of facing configurations available to designers when choosing the sort of facade. These layouts can generally be categorised into three groups: continuous, full height rigid (FHR) and modular (panels/block). The current work aims to experimentally explore the behavior of these three facing categories using 1g physical model testing under serviceable cyclic lateral displacements. With configurable facing arrangements to represent these three facing categories, a field instrumented GRS abutment prototype was modelled into a N scaled down 1g physical model (N = 5) to reproduce field behavior. Peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) for footing offset (x/H) as 0.1, 0.2, 0.3, 0.4 and 0.5 at 100 cycles have been measured for cyclic lateral displacement of top of facing at loading rate of 1mm/min. Three types of cyclic displacements have been carried out to replicate active condition (CA), passive condition (CP), and active-passive condition (CAP) for each footing offset. The results demonstrated that a significant decrease in the earth pressure over the facing occurs when footing offset increases. It is worth noticing that the highest rate of increment in earth pressure and footing settlement were observed for each facing configuration at the nearest footing offset. Interestingly, for the farthest footing offset, similar responses of each facing type were observed, which indicates that the upon reaching a critical offset point presumably beyond the active region in the backfill, the lateral responses become independent of the stresses from the external footing load. Evidently, the footing load complements the stresses developed due to lateral excitation resulting in significant footing settlements for nearer footing offsets. The modular facing proved inefficient in resisting footing settlement due to significant buckling along the depth of facing. Instead of relative displacement along the depth of facing, continuous facing rotates around the base when it fails, especially for nearer footing offset causing significant depressions in the backfill area surrounding the footing. FHR facing, on the other hand, have been successful in confining the stresses in the soil domain itself reducing the footing settlement. It may be suitably concluded that increasing the footing offset may render stability to the GRS abutment with any facing configuration even for higher cycles of excitation.

Keywords: GRS abutments, 1g physical model, footing offset, cyclic lateral displacement

Procedia PDF Downloads 82
4701 The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor

Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha, Kamila Drzozga

Abstract:

Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase.

Keywords: biosensor, conducting polymer, enzyme, FRET, LTCC

Procedia PDF Downloads 257
4700 Reduced Vibration in a Levitating Motor

Authors: S. Kazadi, A. An, B. Shen

Abstract:

We investigate the fitness of a male and female permanent magnetic levitation support for use as an axle on a rotor for a levitating motor. The support enables passive thrust and axial support for the axle as a result of the unique arrangement of permanent magnets. As the axial and thrust bearing aspects are derived from magnetic repulsion, it is not immediately clear that the repulsion is stiff enough to enable even low power motors. This paper describes the design and performance of two low power motors based on the magnetic levitation support. We find that our low power motors, with rotational speeds of 618 and 833 rpms, exhibit performance free from excess vibrations that might hinder performance. This means that the actuation of the motors is adequately stabilized by the axle and results in motors capable of being utilized despite the levitation support.

Keywords: levitating motor, magnetic levitation support, fitness, axle

Procedia PDF Downloads 370
4699 A Hybrid Approach for Thread Recommendation in MOOC Forums

Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard

Abstract:

Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.

Keywords: association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis

Procedia PDF Downloads 295
4698 Propagation of Cos-Gaussian Beam in Photorefractive Crystal

Authors: A. Keshavarz

Abstract:

A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed.

Keywords: beam propagation, cos-Gaussian beam, numerical simulation, photorefractive crystal

Procedia PDF Downloads 499
4697 Medical Neural Classifier Based on Improved Genetic Algorithm

Authors: Fadzil Ahmad, Noor Ashidi Mat Isa

Abstract:

This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.

Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy

Procedia PDF Downloads 474
4696 Neuro-Connectivity Analysis Using Abide Data in Autism Study

Authors: Dulal Bhaumik, Fei Jie, Runa Bhaumik, Bikas Sinha

Abstract:

Human brain is an amazingly complex network. Aberrant activities in this network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism. fMRI has emerged as an important tool to delineate the neural networks affected by such diseases, particularly autism. In this paper, we propose mixed-effects models together with an appropriate procedure for controlling false discoveries to detect disrupted connectivities in whole brain studies. Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange or ABIDE which includes 361 subjects from 8 medical centers. We believe that our findings have addressed adequately the small sample inference problem, and thus are more reliable for therapeutic target for intervention. In addition, our result can be used for early detection of subjects who are at high risk of developing neurological disorders.

Keywords: ABIDE, autism spectrum disorder, fMRI, mixed-effects model

Procedia PDF Downloads 289
4695 Growth and Development of Autorickshaws in Kolkata Municipal Corporation Area: Enigma to Planners

Authors: Lopamudra Bakshi Basu

Abstract:

Transport is one of the most important characteristic features of Indian cities. The physical and societal requirements determine the selection of a particular transport system along with the uniqueness of road networks. Kolkata has a mixed traffic of which Paratransit system plays a crucial role. It is an indispensable transport system in Kolkata mainly because of its size and service flexibility which has led to a unique network character. The paratransit system, mainly the autorickshaws, is the most favoured mode of transport in the city. Its fast movement and comfortability make it a vital transport system of the city. Since the inception of the autorickshaws in Kolkata in 1981, this mode has gained popularity and presently serves nearly 80 to 90 percent of the total passenger trips. This employment generating mode of transport has increased its number rapidly affecting the city’s traffic. Minimal check on their growth by the authority has led to traffic snarls along many streets of Kolkata. Indiscipline behavior, violation of traffic rules and rash driving make situations even worse. The rise in the number and increasing popularity of the autorickshaws make it an interesting study area. Autorickshaws as a paratransit mode play its role as a leader or a follower. However, it is informal in its planning and operations, which makes it a problem area for the city. The entire research work deals with the growth and expansion of the number of vehicles and the routes within the city. The development of transport system has been interesting in the city, which has been studied. The growth of the paratransit modes in the city has been rapid. The network pattern of the paratransit mode within Kolkata has been analysed.

Keywords: growth, informal, network characteristics, paratransit, service flexibility

Procedia PDF Downloads 239