Search results for: online and distance learning
8484 Improving Music Appreciation and Narrative Abilities of Students with Intellectual Disabilities through a College Service-Learning Model
Authors: Shan-Ken Chien
Abstract:
This research aims to share the application of the Music and Narrative Curriculum developed through a college community service-learning course to a special education classroom in a local secondary school. The development of the Music and Narrative Curriculum stems from the music appreciation courses that the author has taught at the university. The curriculum structure consists of three instructional phases, each with three core literacy. This study will show the implementation of an eighteen-week general music education course, including classroom training on the university campus and four intervention music lessons in a special education classroom. Students who participated in the Music and Narrative Curriculum came from two different parts. One is twenty-five college students enrolling in Music Literacy and Community Service-Learning, and the other one is nine junior high school students with intellectual disabilities (ID) in a special education classroom. This study measures two parts. One is the effectiveness of the Music and Narrative Curriculum in applying four interventions in music lessons in a special education classroom, and the other is measuring college students' service-learning experiences and growth outcomes.Keywords: college service-learning, general music education, music literacy, narrative skills, students with special needs
Procedia PDF Downloads 828483 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast
Authors: Helene Thieblemont, Fariborz Haghighat
Abstract:
Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage
Procedia PDF Downloads 2718482 Investigating the Efficacy of HIV/AIDS Psycho-Education and Behavioural Skills Training in Reducing Sexual Risk Behaviours in a Trucking Population in Nigeria
Authors: Abiodun Musbau Lawal, Benjamin Oladapo Olley
Abstract:
Long Distance Truck Drivers (LDTDs) have been found to be a high-risk group in the spread of HIV/AIDS globally; perhaps, due to their high Sexual Risk Behaviours (SRBs). Interventions for reducing SRBs in trucking population have not been fully exploited. A quasi-experimental control group pretest-posttest design was used to assess the efficacy of psycho-education and behavioural skills training in reducing SRBs among LDTDs. Sixteen drivers rivers were randomly assigned into either experimental or control groups using balloting technique. A questionnaire was used as an instrument for data collection. Repeated measures t-test and independent t-test were used to test hypotheses. The intervention had a significant effect on the SRBs among LDTDs at post-test(t{7}=6.01, p<.01) and at followup (t{7}=6.42, p<.01). No significant difference in sexual risk behaviour of LDTDs at post-test and at follow-up stage. Similarly, intervention had significant effects on sexual risk behaviour at post-test (t {14}=- 4.69, p<.05) and at follow-up (t {14}= -9.56, p < .05) respectively. At post-test and follow-up stages, drivers in experimental group reported reduced SRBs than those in the control group. Drivers in an experimental group reported lower sexual risk behaviour a week after intervention as well as at three months follow-up than those in the control group. It is concluded that HIV/AIDS preventive intervention that provides the necessary informational and behavioural skills content can significantly impact long distance truck drivers sexual risk behaviours.Keywords: HIV/AIDS interventions, long distance truck drivers, Nigeria, sexual risk behaviours
Procedia PDF Downloads 4768481 The Role of Blended Modality in Enhancing Active Learning Strategies in Higher Education: A Case Study of a Hybrid Course of Oral Production and Listening of French
Authors: Tharwat N. Hijjawi
Abstract:
Learning oral skills in an Arabic speaking environment is challenging. A blended course (material, activities, and individual/ group work tasks …) was implemented in a module of level B1 for undergraduate students of French as a foreign language in order to increase their opportunities to practice listening and speaking skills. This research investigates the influence of this modality on enhancing active learning and examines the effectiveness of provided strategies. Moreover, it aims at discovering how it allows teacher to flip the traditional classroom and create a learner-centered framework. Which approaches were integrated to motivate students and urge them to search, analyze, criticize, create and accomplish projects? What was the perception of students? This paper is based on the qualitative findings of a questionnaire and a focus group interview with learners. Despite the doubled time and effort both “teacher” and “student” needed, results revealed that the NTIC allowed a shift into a learning paradigm where learners were the “chiefs” of the process. Tasks and collaborative projects required higher intellectual capacities from them. Learners appreciated this experience and developed new life-long learning competencies at many levels: social, affective, ethical and cognitive. To conclude, they defined themselves as motivated young researchers, motivators and critical thinkers.Keywords: active learning, critical thinking, inverted classroom, learning paradigm, problem-based
Procedia PDF Downloads 2688480 An Experiment with Science Popularization in Rural Schools of Sehore District in Madhya Pradesh, India
Authors: Peeyush Verma, Anil Kumar, Anju Rawlley, Chanchal Mehra
Abstract:
India's school-going population is largely served by an educational system that is, in most rural parts, stuck with methods that emphasize rote learning, endless examinations, and monotonous classroom activities. Rural government schools are generally seen as having poor infrastructure, poor support system and low motivation for teaching as well as learning. It was experienced during the survey of this project that there is lesser motivation of rural boys and girls to attend their schools and still less likely chances to study science, tabooed as “difficult”. An experiment was conducted with the help of Rural Knowledge Network Project through Department of Science and Technology, Govt of India in five remote villages of Sehore District in Madhya Pradesh (India) during 2012-2015. These schools are located about 50-70 Km away from Bhopal, the capital of Madhya Pradesh and can distinctively qualify as average rural schools. Three tier methodology was adapted to unfold the experiment. In first tier randomly selected boys and girls from these schools were taken to a daylong visit to the Regional Science Centre located in Bhopal. In second tier, randomly selected half of those who visited earlier were again taken to the Science Centre to make models of Science. And in third tier, all the boys and girls studying science were exposed to video lectures and study material through web. The results have shown an interesting face towards learning science among youths in rural schools through peer learning or incremental learning. The students who had little or no interest in learning science became good learners and queries started pouring in from the neighbourhood village as well as a few parents requested to take their wards in the project to learn science. The paper presented is a case study of the experiment conducted in five rural schools of Sehore District. It reflects upon the methodology of developing awareness and interest among students and finally engaging them in popularising science through peer-to-peer learning using incremental learning elements. The students, who had a poor perception about science initially, had changed their attitude towards learning science during the project period. The results of this case, however, cannot be generalised unless replicated in the same setting elsewhere.Keywords: popularisation of science, science temper, incremental learning, peer-to-peer learning
Procedia PDF Downloads 3158479 Artificial Intelligence as a Policy Response to Teaching and Learning Issues in Education in Ghana
Authors: Joshua Osondu
Abstract:
This research explores how Artificial Intelligence (AI) can be utilized as a policy response to address teaching and learning (TL) issues in education in Ghana. The dual (AI and human) instructor model is used as a theoretical framework to examine how AI can be employed to improve teaching and learning processes and to equip learners with the necessary skills in the emerging AI society. A qualitative research design was employed to assess the impact of AI on various TL issues, such as teacher workloads, a lack of qualified educators, low academic performance, unequal access to education and educational resources, a lack of participation in learning, and poor access and participation based on gender, place of origin, and disability. The study concludes that AI can be an effective policy response to TL issues in Ghana, as it has the potential to increase students’ participation in learning, increase access to quality education, reduce teacher workloads, and provide more personalized instruction. The findings of this study are significant for filling in the gaps in AI research in Ghana and other developing countries and for motivating the government and educational institutions to implement AI in TL, as this would ensure quality, access, and participation in education and help Ghana industrialize.Keywords: artificial intelligence, teacher, learner, students, policy response
Procedia PDF Downloads 928478 University Students' Perceptions of Effective Teaching
Authors: Christine K. Ormsbee, Jeremy S. Robinson
Abstract:
Teacher quality is important for United States universities. It impacts student achievement, program and degree progress, and even retention. While course instructors are still the primary designers and deliverers of instruction in U.S. higher education classrooms, students have become better and more vocal consumers of instruction. They are capable of identifying what instructors do that facilitates their learning or, conversely, what instructors do that makes learning more difficult. Instructors can use students as resources as they design and implement their courses. Students have become more aware of their own learning preferences and processes and can articulate those. While it is not necessarily possible or likely that an instructor can address the widely varying differences in learning preferences represented by a large class of students, it is possible for them to employ general instructional supports that help students understand clearly the instructor's study expectations, identify critical content, efficiently commit content to memory, and develop new skills. Those learning supports include reading guides, test study guides, and other instructor-developed tasks that organize learning for students, hold them accountable for the content, and prepare them to use that material in simulated and real situations. When U.S. university teaching and learning support staff work with instructors to help them identify areas of their teaching to improve, a key part of that assistance includes talking to the instructor member's students. Students are asked to explain what the instructor does that helps them learn, what the instructor does that impedes their learning, and what they wish the instructor would do. Not surprisingly, students are very specific in what they see as helpful learning supports for them. Moreover, they also identify impediments to their success, viewing those as the instructor creating unnecessary barriers to learning. A qualitative survey was developed to provide undergraduate students the opportunity to identify instructor behaviors and/or practices that they thought helped students learn and those behaviors and practices that were perceived as hindrances to student success. That information is used to help instructors implement more student-focused learning supports that facilitate student achievement. In this session, data shared from the survey will focus on supportive instructor behaviors identified by undergraduate students in an institution located in the southwest United States and those behaviors that students perceive as creating unnecessary barriers to their academic success.Keywords: effective teaching, pedagogy, student engagement, instructional design
Procedia PDF Downloads 858477 Learning outside the Box by Using Memory Techniques Skill: Case Study in Indonesia Memory Sports Council
Authors: Muhammad Fajar Suardi, Fathimatufzzahra, Dela Isnaini Sendra
Abstract:
Learning is an activity that has been used to do, especially for a student or academics. But a handful of people have not been using and maximizing their brains work and some also do not know a good brain work time in capturing the lessons, so that knowledge is absorbed is also less than the maximum. Indonesia Memory Sports Council (IMSC) is an institution which is engaged in the performance of the brain and the development of effective learning methods by using several techniques that can be used in considering the lessons and knowledge to grasp well, including: loci method, substitution method, and chain method. This study aims to determine the techniques and benefits of using the method given in learning and memorization by applying memory techniques taught by Indonesia Memory Sports Council (IMSC) to students and the difference if not using this method. This research uses quantitative research with survey method addressed to students of Indonesian Memory Sports Council (IMSC). The results of this study indicate that learn, understand and remember the lesson using the techniques of memory which is taught in Indonesia Memory Sport Council is very effective and faster to absorb the lesson than learning without using the techniques of memory, and this affects the academic achievement of students in each educational institution.Keywords: chain method, Indonesia memory sports council, loci method, substitution method
Procedia PDF Downloads 2908476 Feasibility Study of Utilization and Development of Wind Energy for Electricity Generation in Panjang Island, Serang, Banten, West Java
Authors: Aryo Bayu Tejokusumo, Ivan Hidayat, C. Steffany Yoland
Abstract:
Wind velocity in Panjang Island, Serang, Banten, West Java, measured 10 m above sea level, is about 8 m/s. This wind velocity is potential for electricity generation using wind power. Using ten of Alstom-Haliade 150-6 W turbines, the placement of wind turbines has 7D for vertical distance and 4D for horizontal distance. Installation of the turbines is 100 m above sea level which is produces 98.64 MW per hour. This wind power generation has ecology impacts (the deaths of birds and bats and land exemption) and human impacts (aesthetics, human’s health, and potential disruption of electromagnetics interference), but it could be neglected totally, because of the position of the wind farm. The investment spent 73,819,710.00 IDR. Payback period is 2.23 years, and rate of return is 45.24%. This electricity generation using wind power in Panjang Island is suitable to install despite the high cost of investment since the profit is also high.Keywords: wind turbine, Panjang island, renewable energy, Indonesia, offshore, power generation
Procedia PDF Downloads 6628475 Project-Based Learning Application: Applying Systems Thinking Concepts to Assure Continuous Improvement
Authors: Kimberley Kennedy
Abstract:
The major findings of this study discuss the importance of understanding and applying Systems thinking concepts to ensure an effective Project-Based Learning environment. A pilot project study of a major pedagogical change was conducted over a five year period with the goal to give students real world, hands-on learning experiences and the opportunity to apply what they had learned over the past two years of their business program. The first two weeks of the fifteen week semester utilized teaching methods of lectures, guest speakers and design thinking workshops to prepare students for the project work. For the remaining thirteen weeks of the semester, the students worked with actual business owners and clients on projects and challenges. The first three years of the five year study focused on student feedback to ensure a quality learning experience and continuous improvement process was developed. The final two years of the study, examined the conceptual understanding and perception of learning and teaching by faculty using Project-Based Learning pedagogy as compared to lectures and more traditional teaching methods was performed. Relevant literature was reviewed and data collected from program faculty participants who completed pre-and post-semester interviews and surveys over a two year period. Systems thinking concepts were applied to better understand the challenges for faculty using Project-Based Learning pedagogy as compared to more traditional teaching methods. Factors such as instructor and student fatigue, motivation, quality of work and enthusiasm were explored to better understand how to provide faculty with effective support and resources when using Project-Based Learning pedagogy as the main teaching method. This study provides value by presenting generalizable, foundational knowledge by offering suggestions for practical solutions to assure student and teacher engagement in Project-Based Learning courses.Keywords: continuous improvement, project-based learning, systems thinking, teacher engagement
Procedia PDF Downloads 1198474 Language Development and Learning about Violence
Authors: Karen V. Lee
Abstract:
The background and significance of this study involves research about a music teacher discovering how language development and learning can help her overcome harmful and lasting consequences from sexual violence. Education about intervention resources from language development that helps her cope with consequences influencing her career as teacher. Basic methodology involves the qualitative method of research as theoretical framework where the author is drawn into a deep storied reflection about political issues surrounding teachers who need to overcome social, psychological, and health risk behaviors from violence. Sub-themes involve available education from learning resources to ensure teachers receive social, emotional, physical, spiritual, and intervention resources that evoke visceral, emotional responses from the audience. Major findings share how language development and learning provide helpful resources to victims of violence. It is hoped the research dramatizes an episodic yet incomplete story that highlights the circumstances surrounding the protagonist’s life. In conclusion, the research has a reflexive storied framework that embraces harmful and lasting consequences from sexual violence. The reflexive story of the sensory experience critically seeks verisimilitude by evoking lifelike and believable feelings from others. Thus, the scholarly importance of using language development and learning for intervention resources can provide transformative aspects that contribute to social change. Overall, the circumstance surrounding the story about sexual violence is not uncommon in society. Language development and learning supports the moral mission to help teachers overcome sexual violence that socially impacts their professional lives as victims.Keywords: intervention, language development and learning, sexual violence, story
Procedia PDF Downloads 3318473 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment
Authors: Elena Puica
Abstract:
This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM
Procedia PDF Downloads 1168472 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: ensembles, false positives, feature selection, one side class algorithm
Procedia PDF Downloads 2928471 Utilising an Online Data Collection Platform for the Development of a Community Engagement Database: A Case Study on Building Inter-Institutional Partnerships at UWC
Authors: P. Daniels, T. Adonis, P. September-Brown, R. Comalie
Abstract:
The community engagement unit at the University of the Western Cape was tasked with establishing a community engagement database. The database would store information of all community engagement projects related to the university. The wealth of knowledge obtained from the various disciplines would be used to facilitate interdisciplinary collaboration within the university, as well as facilitating community university partnership opportunities. The purpose of this qualitative study was to explore electronic data collection through the development of a database. Two types of electronic data collection platforms were used, namely online questionnaire and email. The semi structured questionnaire was used to collect data related to community engagement projects from different faculties and departments at the university. There are many benefits for using an electronic data collection platform, such as reduction of costs and time, ease in reaching large numbers of potential respondents, and the possibility of providing anonymity to participants. Despite all the advantages of using the electronic platform, there were as many challenges, as depicted in our findings. The findings suggest that certain barriers existed by using an electronic platform for data collection, even though it was in an academic environment, where knowledge and resources were in abundance. One of the challenges experienced in this process was the lack of dissemination of information via email to staff within faculties. The actual online software used for the questionnaire had its own limitations, such as only being able to access the questionnaire from the same electronic device. In a few cases, academics only completed the questionnaire after a telephonic prompt or face to face meeting about "Is higher education in South Africa ready to embrace electronic platform in data collection?"Keywords: community engagement, database, data collection, electronic platform, electronic tools, knowledge sharing, university
Procedia PDF Downloads 2648470 Instruct Students Effective Ways to Reach an Advanced Level after Graduation
Authors: Huynh Tan Hoi
Abstract:
Considered as one of the hardest languages in the world, Japanese is still the language that many young people choose to learn. Today, with the development of technology, learning foreign languages in general and Japanese language, in particular, is not an impossible barrier. Learning materials are not only from paper books, songs but also through software programs of smartphones or computers. Especially, students who begin to explore effective skills to study this language need to access modern technologies to improve their learning much better. When using the software, some students may feel embarrassed and challenged, but everything would go smoothly after a few days. After completing the course, students will get more knowledge, achieve a higher knowledge such as N2 or N1 Japanese Language Proficiency Test Certificate. In this research paper, 35 students who are studying at Ho Chi Minh City FPT University were asked to complete the questionnaire at the beginning of July up to August of 2018. Through this research, we realize that with the guidance of lecturers, the necessity of using modern software and some effective methods are indispensable in term of improving quality of teaching and learning process.Keywords: higher knowledge, Japanese, methods, software, students
Procedia PDF Downloads 2278469 Investigating Visual Statistical Learning during Aging Using the Eye-Tracking Method
Authors: Zahra Kazemi Saleh, Bénédicte Poulin-Charronnat, Annie Vinter
Abstract:
This study examines the effects of aging on visual statistical learning, using eye-tracking techniques to investigate this cognitive phenomenon. Visual statistical learning is a fundamental brain function that enables the automatic and implicit recognition, processing, and internalization of environmental patterns over time. Some previous research has suggested the robustness of this learning mechanism throughout the aging process, underscoring its importance in the context of education and rehabilitation for the elderly. The study included three distinct groups of participants, including 21 young adults (Mage: 19.73), 20 young-old adults (Mage: 67.22), and 17 old-old adults (Mage: 79.34). Participants were exposed to a series of 12 arbitrary black shapes organized into 6 pairs, each with different spatial configurations and orientations (horizontal, vertical, and oblique). These pairs were not explicitly revealed to the participants, who were instructed to passively observe 144 grids presented sequentially on the screen for a total duration of 7 min. In the subsequent test phase, participants performed a two-alternative forced-choice task in which they had to identify the most familiar pair from 48 trials, each consisting of a base pair and a non-base pair. Behavioral analysis using t-tests revealed notable findings. The mean score for the first group was significantly above chance, indicating the presence of visual statistical learning. Similarly, the second group also performed significantly above chance, confirming the persistence of visual statistical learning in young-old adults. Conversely, the third group, consisting of old-old adults, showed a mean score that was not significantly above chance. This lack of statistical learning in the old-old adult group suggests a decline in this cognitive ability with age. Preliminary eye-tracking results showed a decrease in the number and duration of fixations during the exposure phase for all groups. The main difference was that older participants focused more often on empty cases than younger participants, likely due to a decline in the ability to ignore irrelevant information, resulting in a decrease in statistical learning performance.Keywords: aging, eye tracking, implicit learning, visual statistical learning
Procedia PDF Downloads 778468 Implementation of the Quality Management System and Development of Organizational Learning: Case of Three Small and Medium-Sized Enterprises in Morocco
Authors: Abdelghani Boudiaf
Abstract:
The profusion of studies relating to the concept of organizational learning shows the importance that has been given to this concept in the management sciences. A few years ago, companies leaned towards ISO 9001 certification; this requires the implementation of the quality management system (QMS). In order for this objective to be achieved, companies must have a set of skills, which pushes them to develop learning through continuous training. The results of empirical research have shown that implementation of the QMS in the company promotes the development of learning. It should also be noted that several types of learning are developed in this sense. Given the nature of skills development is normative in the context of the quality demarche, companies are obliged to qualify and improve the skills of their human resources. Continuous training is the keystone to develop the necessary learning. To carry out continuous training, companies need to be able to identify their real needs by developing training plans based on well-defined engineering. The training process goes obviously through several stages. Initially, training has a general aspect, that is to say, it focuses on topics and actions of a general nature. Subsequently, this is done in a more targeted and more precise way to accompany the evolution of the QMS and also to make the changes decided each time (change of working method, change of practices, change of objectives, change of mentality, etc.). To answer our problematic we opted for the method of qualitative research. It should be noted that the case study method crosses several data collection techniques to explain and understand a phenomenon. Three cases of companies were studied as part of this research work using different data collection techniques related to this method.Keywords: changing mentalities, continuing training, organizational learning, quality management system, skills development
Procedia PDF Downloads 1108467 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 1398466 Numerical Study on the Effect of Obstacle Structure on Two-Phase Detonation Initiation
Authors: Ding Yu, Ge Yang, Wang Hong-Tao
Abstract:
Aiming at the detonation performance and detonation wave propagation distance of liquid fuel detonation engine, the kerosene/oxygen-enriched air mixture is chosen as the research object; its detonation initiation and detonation wave propagation process by mild energy input are numerically studied by using Euler-Lagrange method in the present study. The effects of a semicircular obstacle, rectangular obstacle, and triangular obstacle on the detonation characteristic parameters in the detonation tube are compared and analyzed, and the effect of the angle between obstacle and flame propagation direction on flame propagation characteristics and detonation process when the blocking ratio is constant are studied. The results show that the flame propagation velocity decreases with the increase of the angle in the range of 0-90°, and when the angle is 0° which corresponds to the semicircle obstacle gets the highest detonation wave propagation velocity. With the increase of the angle in the range of 0-90°, DDT (Deflagration to detonation transition) distance decreases first and then increases.Keywords: deflagration to detonation transition, numerical simulation, obstacle structure, turbulent flame
Procedia PDF Downloads 828465 The Effectiveness of E-Training on the Attitude and Skill Competencies of Vocational High School Teachers during Covid-19 Pandemic in Indonesia
Authors: Sabli, Eddy Rismunandar, Akhirudin, Nana Halim, Zulfikar, Nining Dwirosanti, Wila Ningsih, Pipih Siti Sofiah, Danik Dania Asadayanti, Dewi Eka Arini Algozi, Gita Mahardika Pamuji, Ajun, Mangasa Aritonang, Nanang Rukmana, Arief Rachman Wonodhipo, Victor Imanuel Nahumury, Lili Husada, Wawan Saepul Irwan, Al Mukhlas Fikri
Abstract:
Covid-19 pandemic has widely impacted the lives. An adaptive strategy must be quickly formulated to maintain the quality of education, especially by vocational school which technical skill competencies are highly needed. This study aimed to evaluate the effectiveness of e-training on the attitude and skill competencies of vocational high school teachers in Indonesia. A total of 720 Indonesian vocational high school teachers with various programs, including hospitality, administration, online business and marketing, culinary arts, fashion, cashier, tourism, haircut, and accounting participated e-training for a month. The training used electronic learning management system to provide materials (modules, presentation slides, and tutorial videos), tasks, and evaluations. Tutorial class was carried out by video conference meeting. Attitude and skill competencies were evaluated before and after the training. Meanwhile, the teachers also gave satisfactory feedback on the quality of the organizer and tutors. Data analysis used paired sample t-test and Anova with Tukey’s post hoc test. The results showed that e-training significantly increased the score of attitude and skill competencies of the teachers (p <0,05). Moreover, the remarkable increase was found among hospitality (57,5%), cashier (50,1%), and online business and marketing (48,7%) teachers. However, the effect among fashion, tourism and haircut teachers was less obvious. In addition, the satisfactory score on the quality of the organizer and tutors were 88,9 (very good), and 93,5 (excellence), respectively. The study concludes that a well-organized e-training could increase the attitude and skill competencies of Indonesian vocational high school teachers during Covid-19 pandemic.Keywords: E-training, skill, teacher, vocational high school
Procedia PDF Downloads 1518464 The Impacts of Cultural Event on Networking: Liverpool's Cultural Sector in the Aftermath of 2008
Authors: Yi-De Liu
Abstract:
The aim of this paper is to discuss how the construct of networking and social capital can be used to understand the effect events can have on the cultural sector. Based on case study, this research sought the views of those working in the cultural sector on Liverpool’s year as the European Capital of Culture (ECOC). Methodologically, this study involves literature review to prompt theoretical sensitivity, the collection of primary data via online survey (n= 42) and follow-up telephone interviews (n= 8) to explore the emerging findings in more detail. The findings point to a number of ways in which the ECOC constitutes a boost for networking and its effects on city’s cultural sector, including organisational learning, aspiration and leadership. The contributions of this study are two-fold: (1) Evaluating the long-term effects on network formation in the cultural sector following major event; (2) conceptualising the impact assessment of organisational social capital for future ECOC or similar events.Keywords: network, social capital, cultural impact, european capital of culture
Procedia PDF Downloads 2048463 A Learning Effects Research Applied a Mobile Guide System with Augmented Reality for Education Center
Authors: Y. L. Chang, Y. H. Huang
Abstract:
This study designed a mobile guide system that integrates the design principles of guidance and interpretation with augmented reality (AR) as an auxiliary tool for National Taiwan Science Education Center guidance and explored the learning performance of participants who were divided into two visiting groups: AR-guided mode and non-guided mode (without carrying any auxiliary devices). The study included 96 college students as participants and employed a quasi-experimental research design. This study evaluated the learning performance of education center students aided with different guided modes, including their flow experience, activity involvement, learning effects, as well as their attitude and acceptance of using the guide systems. The results showed that (a) the AR guide promoted visitors’ flow experience; (b) the AR-guidance activity involvement and flow experience having a significant positive effect; (c) most of the visitors of mobile guide system with AR elicited a positive response and acceptance attitude. These results confirm the necessity of human–computer–context interaction. Future research can continue exploring the advantages of enhanced learning effectiveness, activity involvement, and flow experience through application of the results of this study.Keywords: augmented reality, mobile guide system, informal learning, flow experience, activity involvement
Procedia PDF Downloads 2318462 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 338461 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 2658460 Morphometric Study of Human Anterior and Posterior Meniscofemoral Ligaments of the Knee Joint on Thiel Embalmed Cadavers
Authors: Mohammad Alobaidy, David Nicoll, Tracey Wilkinson
Abstract:
Background: Many patients suffer postoperative knee stability after total knee arthroplasty (joint replacement) involving posterior cruciate ligament (PCL) sacrificing or retaining, but is not clear whether the meniscofemoral ligaments (MFLs) are retained during these procedures; their function in terms of knee stability is not well established in the literature. Purpose: Macroscopic, detailed, morphometric investigation of the anterior and posterior MFLs of the knee joint was undertaken to assist understanding of knee stability after total knee arthroplasty and ligament reconstruction. Methods: Dissection of eighty Thiel embalmed knees from 19 male and 21 female cadavers was conducted, mean age 77 (range 47-99 years). The origin and insertion of the anterior and posterior MFLs were measured using high accuracy, calibrated, digital Vernier calipers at 0.01mm. Results: The means were: anterior meniscofemoral ligament (aMFL) length 28.4 ± 2.7mm; posterior meniscofemoral ligament (pMFL) length 29 ± 3.7mm; aMFL femoral width 6.4 ± 1.7mm, mid-distance ligament width 4 ± 1.1mm, meniscal ligament width 3.9 ± 1.2mm; pMFL femoral width 5.6 ± 1.5mm, mid-distance ligament width 4.1 ± 1.1mm, meniscal ligament width 4.1 ± 1.3mm. Some of the male measurements were larger than female, with significant differences in the length of the aMFL femoral length p<0.01 and pMFL femoral length p<0.007, and width of the pMFL mid-distance p<0.04. Conclusion: This study may help explore the role of the meniscofemoral ligaments in knee stability after total knee arthroplasty with a posterior cruciate ligament retaining prosthesis. Anatomical information for Thiel embalmed knees may aid orthopaedic surgeons in ligament reconstruction.Keywords: anterior and posterior meniscofemoral ligaments, morphometric analysis, Thiel embalmed knees, knee arthroplasty
Procedia PDF Downloads 3778459 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 1558458 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1538457 Face Tracking and Recognition Using Deep Learning Approach
Authors: Degale Desta, Cheng Jian
Abstract:
The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.Keywords: deep learning, face recognition, identification, fast-RCNN
Procedia PDF Downloads 1408456 The Effect of Cooperative Learning on Academic Achievement of Grade Nine Students in Mathematics: The Case of Mettu Secondary and Preparatory School
Authors: Diriba Gemechu, Lamessa Abebe
Abstract:
The aim of this study was to examine the effect of cooperative learning method on student’s academic achievement and on the achievement level over a usual method in teaching different topics of mathematics. The study also examines the perceptions of students towards cooperative learning. Cooperative learning is the instructional strategy in which pairs or small groups of students with different levels of ability work together to accomplish a shared goal. The aim of this cooperation is for students to maximize their own and each other learning, with members striving for joint benefit. The teacher’s role changes from wise on the wise to guide on the side. Cooperative learning due to its influential aspects is the most prevalent teaching-learning technique in the modern world. Therefore the study was conducted in order to examine the effect of cooperative learning on the academic achievement of grade 9 students in Mathematics in case of Mettu secondary school. Two sample sections are randomly selected by which one section served randomly as an experimental and the other as a comparison group. Data gathering instruments are achievement tests and questionnaires. A treatment of STAD method of cooperative learning was provided to the experimental group while the usual method is used in the comparison group. The experiment lasted for one semester. To determine the effect of cooperative learning on the student’s academic achievement, the significance of difference between the scores of groups at 0.05 levels was tested by applying t test. The effect size was calculated to see the strength of the treatment. The student’s perceptions about the method were tested by percentiles of the questionnaires. During data analysis, each group was divided into high and low achievers on basis of their previous Mathematics result. Data analysis revealed that both the experimental and comparison groups were almost equal in Mathematics at the beginning of the experiment. The experimental group out scored significantly than comparison group on posttest. Additionally, the comparison of mean posttest scores of high achievers indicates significant difference between the two groups. The same is true for low achiever students of both groups on posttest. Hence, the result of the study indicates the effectiveness of the method for Mathematics topics as compared to usual method of teaching.Keywords: academic achievement, comparison group, cooperative learning, experimental group
Procedia PDF Downloads 2468455 Virtual Player for Learning by Observation to Assist Karate Training
Authors: Kazumoto Tanaka
Abstract:
It is well known that sport skill learning is facilitated by video observation of players’ actions in sports. The optimal viewpoint for the observation of actions depends on sport scenes. On the other hand, it is impossible to change viewpoint for the observation in general, because most videos are filmed from fixed points. The study has tackled the problem and focused on karate match as a first step. The study developed a method for observing karate player’s actions from any point of view by using 3D-CG model (i.e. virtual player) obtained from video images, and verified the effectiveness of the method on karate match.Keywords: computer graphics, karate training, learning by observation, motion capture, virtual player
Procedia PDF Downloads 275