Search results for: network capacity
6374 Code Evaluation on Web-Shear Capacity of Presstressed Hollow-Core Slabs
Authors: Min-Kook Park, Deuck Hang Lee, Hyun Mo Yang, Jae Hyun Kim, Kang Su Kim
Abstract:
Prestressed hollow-core slabs (HCS) are structurally optimized precast units with light-weight hollowed-sections and very economical due to the mass production by a unique production method. They have been thus widely used in the precast concrete constructions in many countries all around the world. It is, however, difficult to provide shear reinforcement in HCS units produced by the extrusion method, and thus all the shear forces should be resisted solely by concrete webs in the HCS units. This means that, for the HCS units, it is very important to estimate the contribution of web concrete to the shear resistance accurately. In design codes, however, the shear strengths for HCS units are estimated by the same equations that are used for typical prestressed concrete members, which were determined from the calibrations to experimental results of conventional prestressed concrete members other than HCS units. In this study, therefore, shear test results of HCS members with a wide range of influential variables were collected, and the shear strength equations in design codes were thoroughly examined by comparing to the experimental results in the shear database of HCS members. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).Keywords: hollow-core, web-shear, precast concrete, prestress, capacity
Procedia PDF Downloads 5066373 Study on Hysteresis in Sustainable Two-Layer Circular Tube under a Lateral Compression Load
Authors: Ami Nomura, Ken Imanishi, Yukinori Taniguchi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki
Abstract:
Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device
Procedia PDF Downloads 3616372 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain
Abstract:
Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality
Procedia PDF Downloads 1936371 Obtaining Nutritive Powder from Peel of Mangifera Indica L. (Mango) as a Food Additive
Authors: Chajira Garrote, Laura Arango, Lourdes Merino
Abstract:
This research explains how to obtain nutritious powder from a variety of ripe mango peels Hilacha (Mangifera indica L.) to use it as a food additive. Also, this study intends to use efficiently the by-products resulting from the operations of mango pulp manufacturing process by processing companies with the aim of giving them an added value. The physical and chemical characteristics of the mango peels and the benefits that may help humans, were studied. Unit operations are explained for the processing of mango peels and the production of nutritive powder as a food additive. Emphasis is placed on the preliminary operations applied to the raw material and on the drying method, which is very important in this project to obtain the suitable characteristics of the nutritive powder. Once the powder was obtained, it was subjected to laboratory tests to determine its functional properties: water retention capacity (WRC) and oil retention capacity (ORC), also a sensory analysis for the powder was performed to determine the product profile. The nutritive powder from the ripe mango peels reported excellent WRC and ORC values: 7.236 g of water / g B.S. and 1.796 g water / g B.S. respectively and the sensory analysis defined a complete profile of color, odor and texture of the nutritive powder, which is suitable to use it in the food industry.Keywords: mango, peel, powder, nutritive, functional properties, sensory analysis
Procedia PDF Downloads 3566370 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 3696369 Identification and Correlation of Structural Parameters and Gas Accumulation Capacity of Shales From Poland
Authors: Anna Pajdak, Mateusz Kudasik, Aleksandra Gajda, Katarzyna Kozieł
Abstract:
Shales are a type of fine-grained sedimentary rocks, which are composed of small grains of several to several dozen μm in size and consist of a variable mixture of clay minerals, quartz, feldspars, carbonates, sulphides, amorphous material and organic matter. The study involved an analysis of the basic physical properties of shale rocks from several research wells in Poland. The structural, sorption and seepage parameters of these rocks were determined. The total porosity of granular rock samples reached several percent, including the share of closed pores up to half a percent. The volume and distribution of pores, which are of significant importance in the context of the mechanisms of methane binding to the rock matrix and methods of stimulating its desorption and the possibility of CO₂ storage, were determined. The BET surface area of the samples ranged from a few to a dozen or so m²/g, and the share of micropores was dominant. In order to determine the interaction of rocks with gases, the sorption capacity in relation to CO₂ and CH₄ was determined at a pressure of 0-1.4 MPa. Sorption capacities, sorption isotherms and diffusion coefficients were also determined. Studies of competitive sorption of CO₂/CH₄ on shales showed a preference for CO₂ sorption over CH₄, and the selectivity of CO₂/CH₄ sorption decreased with increasing pressure. In addition to the pore structure, the adsorption capacity of gases in shale rocks is significantly influenced by the carbon content in their organic matter. The sorbed gas can constitute from 20% to 80% of the total gas contained in the shales. With the increasing depth of shale gas occurrence, the share of free gas to sorbed gas increases, among others, due to the increase in temperature and surrounding pressure. Determining the share of free gas to sorbed gas in shale, depending on the depth of its deposition, is one of the key elements of recognizing the gas/sorption exchange processes of CO₂/CH₄, which are the basis of CO₂-ESGR technology. The main objective of the work was to identify the correlation between different forms of gas occurrence in rocks and the parameters describing the pore space of shales.Keywords: shale, CH₄, CO₂, shale gas, CO₂ -ESGR, pores structure
Procedia PDF Downloads 136368 Study of ANFIS and ARIMA Model for Weather Forecasting
Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu
Abstract:
In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB
Procedia PDF Downloads 4196367 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”
Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy
Abstract:
Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared togetherKeywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network
Procedia PDF Downloads 4466366 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather
Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa
Abstract:
A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.Keywords: adverse space weather, DST index, geomagnetically induced currents, KP index, reactive power
Procedia PDF Downloads 1146365 A Double Differential Chaos Shift Keying Scheme for Ultra-Wideband Chaotic Communication Technology Applied in Low-Rate Wireless Personal Area Network
Authors: Ghobad Gorji, Hasan Golabi
Abstract:
The goal of this paper is to describe the design of an ultra-wideband (UWB) system that is optimized for the low-rate wireless personal area network application. To this aim, we propose a system based on direct chaotic communication (DCC) technology. Based on this system, a 2-GHz wide chaotic signal is directly generated into the lower band of the UWB spectrum, i.e., 3.1–5.1 GHz. For this system, two simple modulation schemes, namely chaotic on-off keying (COOK) and differential chaos shift keying (DCSK), were studied before, and their performance was evaluated. We propose a modulation scheme, namely Double DCSK, to improve the performance of UWB DCC. Different characteristics of these systems, with Monte Carlo simulations based on the Additive White Gaussian Noise (AWGN) and the IEEE 802.15.4a standard channel models, are compared.Keywords: UWB, DCC, IEEE 802.15.4a, COOK, DCSK
Procedia PDF Downloads 746364 Building Bricks Made of Fly-Ash Mixed with Sand or Ceramic Dust: Synthesis and a Comparative Study
Authors: Md. R. Shattique, Md. T. Zaki, Md. G. Kibria
Abstract:
Fly-ash bricks give a comprehensive solution towards recycling of fly-ash and since there is no requirement of firing to produce them, they are also eco-friendly bricks; little or no carbon-dioxide is emitted during their entire production cycle. As bricks are the most essential and widely utilized building materials in the construction industry, the significance of developing an alternate eco-friendly brick is substantial in modern times. In this paper, manufacturing and potential utilization of Fly-ash made building bricks have been studied and was found to be a prospective substitute for fired clay bricks that contribute greatly to polluting the environment. Also, a comparison between sand made and ceramic dust made Fly-ash bricks have been carried out experimentally. The ceramic dust made bricks seem to show higher compressive strength at lower unit volume weight compared to sand made Fly-ash bricks. Moreover, the water absorption capacity of ceramic dust Fly-ash bricks was lower than sand made bricks. Then finally a statistical comparison between fired clay bricks and fly-ash bricks were carried out. All the requirements for good quality building bricks are matched by the fly-ash bricks. All the facts from this study pointed out that these bricks give a new opportunity for being an alternate building material.Keywords: coal fly-ash, ceramic dust, burnt clay bricks, sand, gypsum, absorption capacity, unit volume weight, compressive strength
Procedia PDF Downloads 4226363 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing
Procedia PDF Downloads 3126362 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics
Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network
Procedia PDF Downloads 226361 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao
Abstract:
Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive
Procedia PDF Downloads 1746360 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity
Procedia PDF Downloads 1516359 Harnessing Clinical Trial Capacity to Mitigate Zoonotic Diseases: The Role of Expert Scientists in Ethiopia
Authors: Senait Belay Adugna, Mirutse Giday, Tsegahun Manyazewal
Abstract:
Background: The emergence and resurgence of zoonotic diseases have continued to be a major threat to global health and the economy. Developing countries are particularly vulnerable due to agricultural expansions and the domestication of animals by humans. Scientifically sound clinical trials are important to find better ways to prevent, diagnose, and treat zoonotic diseases, while there is a lack of evidence to inform the clinical trials’ capacity and practice in countries highly affected by the diseases. This study aimed to investigate researchers’ perceptions and experiences in conducting clinical trials on zoonotic diseases in Ethiopia. Methods: This study employed a descriptive, qualitative study design. It included major academic and research institutions in Ethiopia that had active engagements in veterinary and public health research. It included the National Veterinary Institute, the National Animal Health Diagnostic and Investigation Center, the College of Veterinary Medicine at Addis Ababa University, the Ethiopian Public Health Institute, the Armauer Hansen Research Institute, and the College of Health Sciences at Addis Ababa University. In-depth interviews were conducted with 14 senior researcher investigators in the institutions who hold a proven exhibit primarily leading research activities or research units. Data were collected from October 2019 to April 2020. Data analysis was undertaken using open code 4.03 for qualitative data analysis. Results: Five major themes, with 18 sub-themes, emerged from the in-depth interview in connection. These were: challenges in the prevention, control, and treatment of zoonotic diseases; One Health approach to mitigate zoonotic diseases; personal and institutional experiences in conducting clinical trials on zoonotic diseases; barriers in conducting clinical trials towards zoonotic diseases; and strategies that promote conducting clinical trials on zoonotic diseases. Conducting clinical trials on zoonotic diseases in Ethiopia is hampered by a lack of clearly articulated ethics and regulatory frameworks, trial experts, financial resources, and good governance. Conclusions: In Ethiopia, conducting clinical trials on zoonotic diseases deserves due attention. Strengthening institutional and human resources capacity is a precondition to harnessing effective implementation of clinical trials on zoonotic diseases in the country. In Ethiopia, where skilled human resource is scarce, the One Health approach has the potential to form multidisciplinary teams to systematically improve clinical trials capacity and outcomes in the country.Keywords: Ethiopia, clinical triak, zoonoses, disease
Procedia PDF Downloads 936358 Imparting Second Language Skill through M-Learning
Authors: Subramaniam Chandran, A. Geetha
Abstract:
This paper addresses three issues: how to prepare instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do the m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in preparatory program for bachelor’s degree. This program is designed for the disadvantage learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.Keywords: English language skill, disadvantaged learners, distance education, m-learning
Procedia PDF Downloads 6666357 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 2656356 Why is the Recurrence Rate of Residual or Recurrent Disease Following Endoscopic Mucosal Resection (EMR) of the Oesophageal Dysplasia’s and T1 Tumours Higher in the Greater Midlands Cancer Network?
Authors: Harshadkumar Rajgor, Jeff Butterworth
Abstract:
Background: Barretts oesophagus increases the risk of developing oesophageal adenocarcinoma. Over the last 40 years, there has been a 6 fold increase in the incidence of oesophageal adenocarcinoma in the western world and the incidence rates are increasing at a greater rate than cancers of the colon, breast and lung. Endoscopic mucosal resection (EMR) is a relatively new technique being used by 2 centres in the greater midlands cancer network. EMR can be used for curative or staging purposes, for high-grade dysplasia’s and T1 tumours of the oesophagus. EMR is also suitable for those who are deemed high risk for oesophagectomy. EMR has a recurrence rate of 21% according to the Wiesbaden data. Method: A retrospective study of prospectively collected data was carried out involving 24 patients who had EMR for curative or staging purposes. Complications of residual or recurrent disease following EMR that required further treatment were investigated. Results: In 54% of cases residual or recurrent disease was suspected. 96% of patients were given clear and concise information regarding their diagnosis of high-grade dysplasia or T1 tumours. All 24 patients consulted the same specialist healthcare team. Conclusion: EMR is a safe and effective treatment for patients who have high-grade dysplasia and T1NO tumours. In 54% of cases residual or recurrent disease was suspected. Initially, only single resections were undertaken. Multiple resections are now being carried out to reduce the risk of recurrence. Complications from EMR remain low in this series and consisted of a single episode of post procedural bleeding.Keywords: endoscopic mucosal resection, oesophageal dysplasia, T1 tumours, cancer network
Procedia PDF Downloads 3176355 Quality Assessment Of Instant Breakfast Cereals From Yellow Maize (Zea mays), Sesame (Sesamum indicium), And Mushroom (Pleurotusostreatus) Flour Blends
Authors: Mbaeyi-Nwaoha, Ifeoma Elizabeth, Orngu, Africa Orngu
Abstract:
Composite flours were processed from blends of yellow maize (Zea mays), sesame seed (Sesamum indicum) and oyster mushroom (Pleurotus ostreatus) powder in the ratio of 80:20:0; 75:20:5; 70:20:10; 65:20:10 and 60:20:20, respectively to produce the breakfast cereal coded as YSB, SMB, TMB, PMB and OMB with YSB as the control. The breakfast cereals were produced by hydration and toasting of yellow maize and sesame to 160oC for 25 minutes and blended together with oven dried and packaged oyster mushroom. The developed products (flours and breakfast cereals) were analyzed for proximate composition, vitamins, minerals, anti-nutrients, phytochemicals, functional, microbial and sensory properties. Results for the flours showed: proximate composition (%): moisture (2.59-7.27), ash (1.29-7.57), crude fat (0.98-14.91), fibre (1.03-16.02), protein (10.13-35.29), carbohydrate (75.48-38.18) and energy (295.18-410.75kcal). Vitamins ranged as: vitamin A (0.14-9.03 ug/100g), vitamin B1 (0.14-0.38), vitamin B2 (0.07-0.15), vitamin B3(0.89-4.88) and Vitamin C (0.03-4.24). Minerals (mg/100g) were reported thus: calcium (8.01-372.02), potassium (1.40-1.85), magnesium (12.09-13.15), iron (1.23-5.25) and zinc (0.85-2.20). The results for anti-nutrients and phytochemical ranged from: tannin (1.50-1.61mg/g), Phytate (0.40-0.71mg/g), Oxalate(1.81-2.02mg/g), Flavonoid (0.21-1.27%) and phenolic (1.12-2.01%). Functional properties showed: bulk density (0.51-0.77g/ml), water absorption capacity (266.0-301.5%), swelling capacity (136.0-354.0%), least Gelation (0.55-1.45g/g) and reconstitution index (35.20-69.60%). The total viable count ranged from 6.4× 102to1.0× 103cfu/g while the total mold count was from 1.0× 10to 3.0× 10 cfu/g. For the breakfast cereals, proximate composition (%) ranged thus: moisture (4.07-7.08), ash (3.09-2.28), crude fat(16.04-12.83), crude fibre(4.30-8.22), protein(16.14-22.54), carbohydrate(56.34-47.04) and energy (434.34-393.83Kcal).Vitamin A (7.99-5.98 ug/100g), vitamin B1(0.08-0.42mg/100g), vitamin B2(0.06-0.15 mg/100g), vitamin B3(1.91-4.52 mg/100g) and Vitamin C(3.55-3.32 mg/100g) were reported while Minerals (mg/100g) were: calcium (75.31-58.02), potassium (0.65-4.01), magnesium(12.25-12.62), iron (1.21-4.15) and zinc (0.40-1.32). The anti-nutrients and phytochemical revealed the range (mg/g) as: tannin (1.12-1.21), phytate (0.69-0.53), oxalate (1.21-0.43), flavonoid (0.23-1.22%) and phenolic (0.23-1.23%). The bulk density (0.77-0.63g/ml), water absorption capacity (156.5-126.0%), swelling capacity (309.5-249.5%), least gelation (1.10-0.75g/g) and reconstitution index (49.95-39.95%) were recorded. From the total viable count, it ranged from 3.3× 102to4.2× 102cfu/g but no mold growth was detected. Sensory scores revealed that the breakfast cereals were acceptable to the panelist with oyster mushroom supplementation up to 10%.Keywords: oyster mushroom (Pleurotus ostreatus), sesame seed (Sesamum indicum), yellow maize (Zea mays, instant breakfast cereals
Procedia PDF Downloads 2036354 An Experimental Study on the Thermal Properties of Concrete Aggregates in Relation to Their Mineral Composition
Authors: Kyung Suk Cho, Heung Youl Kim
Abstract:
The analysis of the petrologic characteristics and thermal properties of crushed aggregates for concrete such as granite, gneiss, dolomite, shale and andesite found that rock-forming minerals decided the thermal properties of the aggregates. The thermal expansion coefficients of aggregates containing lots of quartz increased rapidly at 573 degrees due to quartz transition. The mass of aggregate containing carbonate minerals decreased rapidly at 750 degrees due to decarboxylation, while its specific heat capacity increased relatively. The mass of aggregates containing hydrated silicate minerals decreased more significantly, and their specific heat capacities were greater when compared with aggregates containing feldspar or quartz. It is deduced that the hydroxyl group (OH) in hydrated silicate dissolved as its bond became loose at high temperatures. Aggregates containing mafic minerals turned red at high temperatures due to oxidation response. Moreover, the comparison of cooling methods showed that rapid cooling using water resulted in more reduction in aggregate mass than slow cooling at room temperatures. In order to observe the fire resistance performance of concrete composed of the identical but coarse aggregate, mass loss and compressive strength reduction factor at 200, 400, 600 and 800 degrees were measured. It was found from the analysis of granite and gneiss that the difference in thermal expansion coefficients between cement paste and aggregates caused by quartz transit at 573 degrees resulted in thermal stress inside the concrete and thus triggered concrete cracking. The ferromagnesian hydrated silicate in andesite and shale caused greater reduction in both initial stiffness and mass compared with other aggregates. However, the thermal expansion coefficient of andesite and shale was similar to that of cement paste. Since they were low in thermal conductivity and high in specific heat capacity, concrete cracking was relatively less severe. Being slow in heat transfer, they were judged to be materials of high heat capacity.Keywords: crush-aggregates, fire resistance, thermal expansion, heat transfer
Procedia PDF Downloads 2286353 Scientific Recommender Systems Based on Neural Topic Model
Authors: Smail Boussaadi, Hassina Aliane
Abstract:
With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model
Procedia PDF Downloads 986352 Study on the Influence of ‘Sports Module’ Teaching on High School Students’ Physical Quality
Authors: Xiaoming Zeng, Xiaozan Wang, Qinping Xu, Shaoxian Wang
Abstract:
Research Purpose: In 2017, the high school physical education and health curriculum standard advocates modular teaching. This study aims to explore the impact of ‘sports module’ teaching on the physical quality of high school students. Research methods: 800 senior high school students (400 in the experimental group and 400 in the control group) were randomly divided into two groups. The experimental group carried out modular teaching of physical education, and the control group carried out conventional teaching mode for one semester. Before and after the experiment, the physical fitness of the subjects was tested, including vital capacity, 50 meters, standing long jump, sitting forward bending. Results: After the experiment, the vital capacity (t = -4.007, p < 0.01), 50 meters (t = 2.638, p < 0.01) and standing long jump (t = -4.067, p < 0.01) of the experimental group were significantly improved. High school sports modular teaching has special characteristics. It attaches great importance to the independent development of students' personality. Students can choose their favorite modules to develop various skills and actively participate in various sports activities in the classroom. The density and intensity of sports are greatly improved. Students' speed (50m run), cardiopulmonary endurance (vital capacity), sensitivity, and strength (standing long jump) scores are greatly improved and obviously improved in nature. But at the same time, it was found that the students' sitting forward flexion did not show significant improvement, which was caused by the lack of relevant equipment in school and the students' inattention to stretching after exercise or not doing regular exercise to promote flexibility. Conclusion: (1) ‘Sports module’ teaching can effectively improve the physical quality of high school students. It is mainly manifested in cardiopulmonary function, speed, and explosive power. (2) In the future, ‘sports module’ teaching should give full play to its advantages and add courses to improve students' flexibility.Keywords: module teaching, physical quality, senior high school student, sports
Procedia PDF Downloads 1176351 The MicroRNA-2110 Suppressed Cell Proliferation and Migration Capacity in Hepatocellular Carcinoma Cells
Authors: Pelin Balcik Ercin
Abstract:
Introduction: ZEB transcription factor family member ZEB2, has a role in epithelial to mesenchymal transition during development and metastasis. The altered circulating extracellular miRNAs expression is observed in diseases, and extracellular miRNAs have an important role in cancer cell microenvironment. In ChIP-Seq study, the expression of miR-2110 was found to be regulated by ZEB2. In this study, the effects of miR2110 on cell proliferation and migration of hepatocellular carcinoma (HCC) cells were examined. Material and Methods: SNU398 cells transfected with mimic miR2110 (20nM) (HMI0375, Sigma-Aldrich) and negative control miR (HMC0002, Sigma-Aldrich). MicroRNA isolation was accomplished with miRVANA isolation kit according to manufacturer instructions. cDNA synthesis was performed expression, respectively, and calibrated with Ct of controls. The real-time quantitative PCR (RT-qPCR) reaction was performed using the TaqMan Fast Advanced Master Mix (Thermo Sci.). Ct values of miR2110 were normalized to miR-186-5p and miR16-5p for the intracellular gene. Cell proliferation analysis was analyzed with the xCELLigence RTCA System. Wound healing assay was analyzed with the ImageJ program and relative fold change calculated. Results: The mimic-miR-2110 transfected SNU398 cells nearly nine-fold (log2) more miR-2110 expressed compared to negative control transfected cells. The mimic-miR-2110 transfected HCC cell proliferation significantly inhibited compared to the negative control cells. Furthermore, miR-2110-SNU398 cell migration capacity was relatively four-fold decreased compared to negative control-miR-SNU398 cells. Conclusion: Our results suggest the miR-2110 inhibited cell proliferation and also miR-2110 negatively affect cell migration compared to control groups in HCC cells. These data suggest the complexity of microRNA EMT transcription factors regulation. These initial results are pointed out the predictive biomarker capacity of miR-2110 in HCC.Keywords: epithelial to mesenchymal transition, EMT, hepatocellular carcinoma cells, micro-RNA-2110, ZEB2
Procedia PDF Downloads 1256350 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 3826349 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 1746348 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury
Abstract:
Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.Keywords: beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO
Procedia PDF Downloads 2586347 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System
Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini
Abstract:
In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor
Procedia PDF Downloads 1466346 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing
Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule
Abstract:
Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing
Procedia PDF Downloads 1396345 Increasing System Adequacy Using Integration of Pumped Storage: Renewable Energy to Reduce Thermal Power Generations Towards RE100 Target, Thailand
Authors: Mathuravech Thanaphon, Thephasit Nat
Abstract:
The Electricity Generating Authority of Thailand (EGAT) is focusing on expanding its pumped storage hydropower (PSH) capacity to increase the reliability of the system during peak demand and allow for greater integration of renewables. To achieve this requirement, Thailand will have to double its current renewable electricity production. To address the challenges of balancing supply and demand in the grid with increasing levels of RE penetration, as well as rising peak demand, EGAT has already been studying the potential for additional PSH capacity for several years to enable an increased share of RE and replace existing fossil fuel-fired generation. In addition, the role that pumped-storage hydropower would play in fulfilling multiple grid functions and renewable integration. The proposed sites for new PSH would help increase the reliability of power generation in Thailand. However, most of the electricity generation will come from RE, chiefly wind and photovoltaic, and significant additional Energy Storage capacity will be needed. In this paper, the impact of integrating the PSH system on the adequacy of renewable rich power generating systems to reduce the thermal power generating units is investigated. The variations of system adequacy indices are analyzed for different PSH-renewables capacities and storage levels. Power Development Plan 2018 rev.1 (PDP2018 rev.1), which is modified by integrating a six-new PSH system and RE planning and development aftermath in 2030, is the very challenge. The system adequacy indices through power generation are obtained using Multi-Objective Genetic Algorithm (MOGA) Optimization. MOGA is a probabilistic heuristic and stochastic algorithm that is able to find the global minima, which have the advantage that the fitness function does not necessarily require the gradient. In this sense, the method is more flexible in solving reliability optimization problems for a composite power system. The optimization with hourly time step takes years of planning horizon much larger than the weekly horizon that usually sets the scheduling studies. The objective function is to be optimized to maximize RE energy generation, minimize energy imbalances, and minimize thermal power generation using MATLAB. The PDP2018 rev.1 was set to be simulated based on its planned capacity stepping into 2030 and 2050. Therefore, the four main scenario analyses are conducted as the target of renewables share: 1) Business-As-Usual (BAU), 2) National Targets (30% RE in 2030), 3) Carbon Neutrality Targets (50% RE in 2050), and 5) 100% RE or full-decarbonization. According to the results, the generating system adequacy is significantly affected by both PSH-RE and Thermal units. When a PSH is integrated, it can provide hourly capacity to the power system as well as better allocate renewable energy generation to reduce thermal generations and improve system reliability. These results show that a significant level of reliability improvement can be obtained by PSH, especially in renewable-rich power systems.Keywords: pumped storage hydropower, renewable energy integration, system adequacy, power development planning, RE100, multi-objective genetic algorithm
Procedia PDF Downloads 57