Search results for: materials engineering
7161 Literacy in First and Second Language: Implication for Language Education
Authors: Inuwa Danladi Bawa
Abstract:
One of the challenges of African states in the development of education in the past and the present is the problem of literacy. Literacy in the first language is seen as a strong base for the development of second language; they are mostly the language of education. Language development is an offshoot of language planning; so the need to develop literacy in both first and second language affects language education and predicts the extent of achievement of the entire education sector. The need to balance literacy acquisition in first language for good conditioning the acquisition of second language is paramount. Likely constraints that includes; non-standardization, underdeveloped and undeveloped first languages are among many. Solutions to some of these include the development of materials and use of the stages and levels of literacy acquisition. This is with believed that a child writes well in second language if he has literacy in the first language.Keywords: first language, second language, literacy, english language, linguistics
Procedia PDF Downloads 4537160 Temperature-Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat Vs. Open Flame
Authors: Caighley Logan
Abstract:
The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FT-IR), and X-Ray Fluorescence (XRF), the data collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (8.5ft x 8ft) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p=<0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.Keywords: forensic anthropology, thermal alterations, porcine bone, FTIR, XRF
Procedia PDF Downloads 857159 Multiple Plant-Based Cell Suspension as a Bio-Ink for 3D Bioprinting Applications in Food Technology
Authors: Yusuf Hesham Mohamed
Abstract:
Introduction: Three-dimensional printing technology includes multiple procedures that fabricate three-dimensional objects through consecutively layering two-dimensional cross-sections on top of each other. 3D bioprinting is a promising field of 3D printing, which fabricates tissues and organs by accurately controlling the proper arrangement of diverse biological components. 3D bioprinting uses software and prints biological materials and their supporting components layer-by-layer on a substrate or in a tissue culture plate to produce complex live tissues and organs. 3D food printing is an emerging field of 3D bioprinting in which the 3D printed products are food products that are cheap, require less effort to produce, and have more desirable traits. The Aim of the Study is the development of an affordable 3D bioprinter by altering a locally made CNC instrument with an open-source platform to suit the 3D bio-printer purposes. Later, we went through applying the prototype in several applications regarding food technology and drug testing, including the organ-On-Chip. Materials and Methods: An off-the-shelf 3D printer was modified by designing and fabricating the syringe unit, which was designed on the basis of the Milli-fluidics system. Sodium alginate and gelatin hydrogels were prepared, followed by leaf cell suspension preparation from narrow sections of Fragaria’s viable leaves. The desired 3D structure was modeled, and 3D printing preparations took place. Cell-free and cell-laden hydrogels were printed at room temperature under sterile conditions. Post printing curing process was performed. The printed structure was further studied. Results: Positive results have been achieved using the altered 3D bioprinter where a 3D hydrogel construct of two layers made of the combination of sodium alginate to gelatin (15%: 0.5%) has been printed. DLP 3D printer was used to design the syringe component with a transparent PLA-Pro resin for the creation of a microfluidics system having two channels altered to the double extruder. The hydrogel extruder’s design was based on peristaltic pumps, which utilized a stepper motor. The design and fabrication were made using DIY-3D printed parts. Hard plastic PLA was the material utilized for printing. SEM was used to carry out the porous 3D construct imaging. Multiple physical and chemical tests were performed in order to ensure that the cell line was suitable for hosting. Fragaria plant was developed by suspending Fragaria’s cells from its leaves using the 3D bioprinter. Conclusion: 3D bioprinting is considered to be an emerging scientific field that can facilitate and improve many scientific tests and studies. Thus, having a 3D bioprinter in labs is considered to be an essential requirement. 3D bioprinters are very expensive; however, the fabrication of a 3D printer into a 3D bioprinter can lower the cost of the bioprinter. The 3D bioprinter implemented made use of peristaltic pumps instead of syringe-based pumps in order to extend the ability to print multiple types of materials and cells.Keywords: scaffold, eco on chip, 3D bioprinter, DLP printer
Procedia PDF Downloads 1197158 Biodegradable Poly-ε-Caprolactone-Based Siloxane Polymer
Authors: Maria E. Fortună, Elena Ungureanu, Răzvan Rotaru, Valeria Harabagiu
Abstract:
Polymers are used in a variety of areas due to their unique mechanical and chemical properties. Natural polymers are biodegradable, whereas synthetic polymers are rarely biodegradable but can be modified. As a result, by combining the benefits of natural and synthetic polymers, composite materials that are biodegradable can be obtained with potential for biomedical and environmental applications. However, because of their strong resistance to degradation, it may be difficult to eliminate waste. As a result, interest in developing biodegradable polymers has risen significantly. This research involves obtaining and characterizing two biodegradable poly-ε-caprolactone-polydimethylsiloxane copolymers. A comparison study was conducted using an aminopropyl-terminated polydimethylsiloxane macroinitiator with two distinct molecular weights. The copolymers were obtained by ring-opening polymerization of poly (ɛ-caprolactone) in the presence of aminopropyl-terminated polydimethylsiloxane as initiator and comonomers and stannous 2-ethylhexanoate as a catalyst. The materials were characterized using a number of techniques, including NMR, FTIR, EDX, SEM, AFM, and DSC. Additionally, the water contact angle and water vapor sorption capacity were assessed. Furthermore, the copolymers were examined for environmental susceptibility by conducting biological tests on tomato plants (Lypercosium esculentum), with an accent on biological stability and metabolism. Subsequent to the copolymer's degradation, the dynamics of nitrogen experience evolutionary alterations, validating the progression of the process accompanied by the liberation of organic nitrogen. The biological tests performed (germination index, average seedling height, green and dry biomass) on Lypercosium esculentum, San Marzano variety tomato plants in direct contact with the copolymer indicated normal growth and development, suggesting a minimal toxic effect and, by extension, compatibility of the copolymer with the environment. The total chlorophyll concentration of plant leaves in contact with copolymers was determined, considering the pigment's critical role in photosynthesis and, implicitly, plant metabolism and physiological state.Keywords: biodegradable, biological stability, copolymers, polydimethylsiloxane
Procedia PDF Downloads 237157 Comparison with Mechanical Behaviors of Mastication in Teeth Movement Cases
Authors: Jae-Yong Park, Yeo-Kyeong Lee, Hee-Sun Kim
Abstract:
Purpose: This study aims at investigating the mechanical behaviors of mastication, according to various teeth movement. There are three masticatory cases which are general case and 2 cases of teeth movement. General case includes the common arrange of all teeth and 2 cases of teeth movement are that one is the half movement location case of molar teeth in no. 14 tooth seat after extraction of no. 14 tooth and the other is no. 14 tooth seat location case of molar teeth after extraction in the same case before. Materials and Methods: In order to analyze these cases, 3 dimensional finite element (FE) model of the skull were generated based on computed tomography images, 964 dicom files of 38 year old male having normal occlusion status. An FE model in general occlusal case was used to develop CAE procedure. This procedure was applied to FE models in other occlusal cases. The displacement controls according to loading condition were applied effectively to simulate occlusal behaviors in all cases. From the FE analyses, von Mises stress distribution of skull and teeth was observed. The von Mises stress, effective stress, had been widely used to determine the absolute stress value, regardless of stress direction and yield characteristics of materials. Results: High stress was distributed over the periodontal area of mandible under molar teeth when the mandible was transmitted to the coronal-apical direction in the general occlusal case. According to the stress propagation from teeth to cranium, stress distribution decreased as the distribution propagated from molar teeth to infratemporal crest of the greater wing of the sphenoid bone and lateral pterygoid plate in general case. In 2 cases of teeth movement, there were observed that high stresses were distributed over the periodontal area of mandible under teeth where they are located under the moved molar teeth in cranium. Conclusion: The predictions of the mechanical behaviors of general case and 2 cases of teeth movement during the masticatory process were investigated including qualitative validation. The displacement controls as the loading condition were applied effectively to simulate occlusal behaviors in 2 cases of teeth movement of molar teeth.Keywords: cranium, finite element analysis, mandible, masticatory action, occlusal force
Procedia PDF Downloads 3927156 Intelligent Drug Delivery Systems
Authors: Shideh Mohseni Movahed, Mansoureh Safari
Abstract:
Intelligent drug delivery systems (IDDS) are innovative technological innovations and clinical way to advance current treatments. These systems differ in technique of therapeutic administration, intricacy, materials and patient compliance to address numerous clinical conditions that require different pharmacological therapies. IDDS capable of releasing an active molecule at the proper site and at a amount that adjusts in response to the progression of the disease or to certain functions/biorhythms of the organism is particularly appealing. In this paper, we describe the most recent advances in the development of intelligent drug delivery systems.Keywords: drug delivery systems, IDDS, medicine, health
Procedia PDF Downloads 2247155 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips
Authors: Wei Chen
Abstract:
3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology
Procedia PDF Downloads 787154 An Experimental Modeling of Steel Surfaces Wear in Injection of Plastic Materials with SGF
Authors: L. Capitanu, V. Floresci, L. L. Badita
Abstract:
Starting from the idea that the greatest pressure and velocity of composite melted is in the die nozzle, was an experimental nozzle with wear samples of sizes and weights which can be measured with precision as good. For a larger accuracy of measurements, we used a method for radiometric measuring, extremely accurate. Different nitriding steels have been studied as nitriding treatments, as well as some special steels and alloyed steels. Besides these, there have been preliminary attempts made to describe and checking corrosive action of thermoplastics on metals.Keywords: plastics, composites with short glass fibres, moulding, wear, experimental modelling, glass fibres content influence
Procedia PDF Downloads 2667153 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry
Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker
Abstract:
Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control
Procedia PDF Downloads 1787152 The Instruction of Imagination: A Theory of Language as a Social Communication Technology
Authors: Daniel Dor
Abstract:
The research presents a new general theory of language as a socially-constructed communication technology, designed by cultural evolution for a very specific function: the instruction of imagination. As opposed to all the other systems of intentional communication, which provide materials for the interlocutors to experience, language allows speakers to instruct their interlocutors in the process of imagining the intended meaning-instead of experiencing it. It is thus the only system that bridges the experiential gaps between speakers. This is the key to its enormous success.Keywords: experience, general theory of language, imagination, language as technology, social essence of language
Procedia PDF Downloads 5867151 Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement
Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha
Abstract:
Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism.Keywords: brake inertia dynamometer, copper fabric, non-asbestos organic (NAO) friction materials, thermal conductivity enhancement
Procedia PDF Downloads 1327150 Digital Transformation in Fashion System Design: Tools and Opportunities
Authors: Margherita Tufarelli, Leonardo Giliberti, Elena Pucci
Abstract:
The fashion industry's interest in virtuality is linked, on the one hand, to the emotional and immersive possibilities of digital resources and the resulting languages and, on the other, to the greater efficiency that can be achieved throughout the value chain. The interaction between digital innovation and deep-rooted manufacturing traditions today translates into a paradigm shift for the entire fashion industry where, for example, the traditional values of industrial secrecy and know-how give way to experimentation in an open as well as participatory way, and the complete emancipation of virtual reality from actual 'reality'. The contribution aims to investigate the theme of digitisation in the Italian fashion industry, analysing its opportunities and the criticalities that have hindered its diffusion. There are two reasons why the most common approach in the fashion sector is still analogue: (i) the fashion product lives in close contact with the human body, so the sensory perception of materials plays a central role in both the use and the design of the product, but current technology is not able to restore the sense of touch; (ii) volumes are obtained by stitching flat surfaces that once assembled, given the flexibility of the material, can assume almost infinite configurations. Managing the fit and styling of virtual garments involves a wide range of factors, including mechanical simulation, collision detection, and user interface techniques for garment creation. After briefly reviewing some of the salient historical milestones in the resolution of problems related to the digital simulation of deformable materials and the user interface for the procedures for the realisation of the clothing system, the paper will describe the operation and possibilities offered today by the latest generation of specialised software. Parametric avatars and digital sartorial approach; drawing tools optimised for pattern making; materials both from the point of view of simulated physical behaviour and of aesthetic performance, tools for checking wearability, renderings, but also tools and procedures useful to companies both for dialogue with prototyping software and machinery and for managing the archive and the variants to be made. The article demonstrates how developments in technology and digital procedures now make it possible to intervene in different stages of design in the fashion industry. An integrated and additive process in which the constructed 3D models are usable both in the prototyping and communication of physical products and in the possible exclusively digital uses of 3D models in the new generation of virtual spaces. Mastering such tools requires the acquisition of specific digital skills and, at the same time, traditional skills for the design of the clothing system, but the benefits are manifold and applicable to different business dimensions. We are only at the beginning of the global digital transformation: the emergence of new professional figures and design dynamics leaves room for imagination, but in addition to applying digital tools to traditional procedures, traditional fashion know-how needs to be transferred into emerging digital practices to ensure the continuity of the technical-cultural heritage beyond the transformation.Keywords: digital fashion, digital technology and couture, digital fashion communication, 3D garment simulation
Procedia PDF Downloads 727149 Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis
Authors: Yoshio Kurosawa
Abstract:
The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.Keywords: vibration, noise, road noise, statistical energy analysis
Procedia PDF Downloads 3517148 Porosity and Ultraviolet Protection Ability of Woven Fabrics
Authors: Polona Dobnik Dubrovski, Abhijit Majumdar
Abstract:
The increasing awareness of negative effects of ultraviolet radiation and regular, effective protection are actual themes in many countries. Woven fabrics as clothing items can provide convenient personal protection however not all fabrics offer sufficient UV protection. Porous structure of the material has a great effect on UPF. The paper is focused on an overview of porosity in woven fabrics, including the determination of porosity parameters on the basis of an ideal geometrical model of porous structure. Our experiment was focused on 100% cotton woven fabrics in a grey state with the same yarn fineness (14 tex) and different thread densities (to achieve relative fabric density between 59 % and 87 %) and different type of weaves (plain, 4-end twill, 5-end satin). The results of the research dealing with the modelling of UPF and the influence of volume and open porosity of tested samples on UPF are exposed. The results show that open porosity should be lower than 12 % to achieve good UV protection according to AS/NZ standard of tested samples. The results also indicate that there is no direct correlation between volume porosity and UPF, moreover, volume porosity namely depends on the type of weave and affects UPF as well. Plain fabrics did not offer any UV protection, while twill and satin fabrics offered good UV protection when volume porosity was less than 64 % and 66 %, respectively.Keywords: fabric engineering, UV radiation, porous materials, woven fabric construction, modelling
Procedia PDF Downloads 2687147 Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS
Authors: A. Fettahoglu
Abstract:
Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size.Keywords: generalized Maxwell model, finite element method, prony series, time step size, viscoelasticity
Procedia PDF Downloads 3697146 Rheolaser: Light Scattering Characterization of Viscoelastic Properties of Hair Cosmetics That Are Related to Performance and Stability of the Respective Colloidal Soft Materials
Authors: Heitor Oliveira, Gabriele De-Waal, Juergen Schmenger, Lynsey Godfrey, Tibor Kovacs
Abstract:
Rheolaser MASTER™ makes use of multiple scattering of light, caused by scattering objects in a continuous medium (such as droplets and particles in colloids), to characterize the viscoelasticity of soft materials. It offers an alternative to conventional rheometers to characterize viscoelasticity of products such as hair cosmetics. Up to six simultaneous measurements at controlled temperature can be carried out simultaneously (10-15 min), and the method requires only minor sample preparation work. Conversely to conventional rheometer based methods, no mechanical stress is applied to the material during the measurements. Therefore, the properties of the exact same sample can be monitored over time, like in aging and stability studies. We determined the elastic index (EI) of water/emulsion mixtures (1 ≤ fat alcohols (FA) ≤ 5 wt%) and emulsion/gel-network mixtures (8 ≤ FA ≤ 17 wt%) and compared with the elastic/sorage mudulus (G’) for the respective samples using a TA conventional rheometer with flat plates geometry. As expected, it was found that log(EI) vs log(G’) presents a linear behavior. Moreover, log(EI) increased in a linear fashion with solids level in the entire range of compositions (1 ≤ FA ≤ 17 wt%), while rheometer measurements were limited to samples down to 4 wt% solids level. Alternatively, a concentric cilinder geometry would be required for more diluted samples (FA > 4 wt%) and rheometer results from different sample holder geometries are not comparable. The plot of the rheolaser output parameters solid-liquid balance (SLB) vs EI were suitable to monitor product aging processes. These data could quantitatively describe some observations such as formation of lumps over aging time. Moreover, this method allowed to identify that the different specifications of a key raw material (RM < 0.4 wt%) in the respective gel-network (GN) product has minor impact on product viscoelastic properties and it is not consumer perceivable after a short aging time. Broadening of a RM spec range typically has a positive impact on cost savings. Last but not least, the photon path length (λ*)—proportional to droplet size and inversely proportional to volume fraction of scattering objects, accordingly to the Mie theory—and the EI were suitable to characterize product destabilization processes (e.g., coalescence and creaming) and to predict product stability about eight times faster than our standard methods. Using these parameters we could successfully identify formulation and process parameters that resulted in unstable products. In conclusion, Rheolaser allows quick and reliable characterization of viscoelastic properties of hair cosmetics that are related to their performance and stability. It operates in a broad range of product compositions and has applications spanning from the formulation of our hair cosmetics to fast release criteria in our production sites. Last but not least, this powerful tool has positive impact on R&D development time—faster delivery of new products to the market—and consequently on cost savings.Keywords: colloids, hair cosmetics, light scattering, performance and stability, soft materials, viscoelastic properties
Procedia PDF Downloads 1727145 Energy Reclamation in Micro Cavitating Flow
Authors: Morteza Ghorbani, Reza Ghorbani
Abstract:
Cavitation phenomenon has attracted much attention in the mechanical and biomedical technologies. Despite the simplicity and mostly low cost of the devices generating cavitation bubbles, the physics behind the generation and collapse of these bubbles particularly in micro/nano scale has still not well understood. In the chemical industry, micro/nano bubble generation is expected to be applicable to the development of porous materials such as microcellular plastic foams. Moreover, it was demonstrated that the presence of micro/nano bubbles on a surface reduced the adsorption of proteins. Thus, the micro/nano bubbles could act as antifouling agents. Micro and nano bubbles were also employed in water purification, froth floatation, even in sonofusion, which was not completely validated. Small bubbles could also be generated using micro scale hydrodynamic cavitation. In this study, compared to the studies available in the literature, we are proposing a novel approach in micro scale utilizing the energy produced during the interaction of the spray affected by the hydrodynamic cavitating flow and a thin aluminum plate. With a decrease in the size, cavitation effects become significant. It is clearly shown that with the aid of hydrodynamic cavitation generated inside the micro/mini-channels in addition to the optimization of the distance between the tip of the microchannel configuration and the solid surface, surface temperatures can be increased up to 50C under the conditions of this study. The temperature rise on the surfaces near the collapsing small bubbles was exploited for energy harvesting in small scale, in such a way that miniature, cost-effective, and environmentally friendly energy-harvesting devices can be developed. Such devices will not require any external power and moving parts in contrast to common energy-harvesting devices, such as those involving piezoelectric materials and micro engine. Energy harvesting from thermal energy has been widely exploited to achieve energy savings and clean technologies. We are proposing a cost effective and environmentally friendly solution for the growing individual energy needs thanks to the energy application of cavitating flows. The necessary power for consumer devices, such as cell phones and laptops, can be provided using this approach. Thus, this approach has the potential for solving personal energy needs in an inexpensive and environmentally friendly manner and can trigger a shift of paradigm in energy harvesting.Keywords: cavitation, energy, harvesting, micro scale
Procedia PDF Downloads 1917144 Properties of Magnesium-Based Hydrogen Storage Alloy Added with Palladium and Titanium Hydride
Authors: Jun Ying Lin, Tzu Hsiang Yen, Cha'o Kuang Chen
Abstract:
Nowadays, the great majority believe that there is great potentiality in hydrogen storage alloy storing hydrogen by physical and chemical absorption. However, the hydrogen storage alloy is limited by high operation temperature. Scientists find that adding transition elements can improve the properties of hydrogen storage alloy. In this research, outstanding improvements of kinetic and thermal properties are given by the addition of Palladium and Titanium hydride to Magnesium-based hydrogen storage alloy. Magnesium-based alloy is the main material, into which TiH2 / Pd are added separately. Following that, materials are milled by a Planetary Ball Miller at 650 rpm. TGA/DSC and PCT measure the capacity, spending time and temperature of abs/des-orption. Additionally, SEM and XRD analyze the structures and components of material. It is clearly shown that Pd is beneficial to kinetic properties. 2MgH2-0.1Pd has the highest capacity of all the alloys listed, approximately 5.5 wt%. Secondly, there are not any new Ti-related compounds found from XRD analysis. Thus, TiH2, considered as the catalyst, leads to the condition of 2MgH2-TiH2 and 2MgH2-TiH2-0.1Pd efficiently absorbing hydrogen in low temperature. 2MgH2-TiH2 can reach roughly 3.0 wt% in 82.4 minutes at 50°C and 8 minutes at 100°C, while2MgH2-TiH2-0.1Pd can reach 2.0 wt% in 400 minutes at 50°C and in 48 minutes at 100°C. The lowest temperature of 2MgH2-0.1Pd and 2MgH2-TiH2 is similar (320°C), otherwise the lowest temperature of 2MgH2-TiH2-0.1Pd decrease by 20°C. From XRD, it can be observed that PdTi2 and Pd3Ti are produced by mechanical alloying when adding Pd as well as TiH2 into MgH2. Due to the synergistic effects between Pd and TiH2, 2MgH2-TiH2-0.1Pd owns the lowest dehydrogenation temperature. Furthermore, the Pressure-Composition-Temperature (PCT) curve of 2MgH2-TiH2-0.1Pd is measured at different temperature, 370°C, 350°C, 320°C and 300°C separately. The plateau pressure is given form the PCT curves above. In accordance to different plateau pressures, enthalpy and entropy in the Van’t Hoff equation can be solved. In 2MgH2-TiH2-0.1Pd, the enthalpy is 74.9 KJ/mol and the entropy is 122.9 J/mol. Activation means that hydrogen storage alloy undergoes repeat abs/des-orpting processes. It plays an important role in the abs/des-orption. Activation shortens the abs/des-orption time because of the increase in surface area. From SEM, it is clear that the grain size and surface become smaller and rougherKeywords: hydrogen storage materials, magnesium hydride, abs-/des-orption performance, Plateau pressure
Procedia PDF Downloads 2677143 Using Fly Ash as a Reinforcement to Increase Wear Resistance of Pure Magnesium
Authors: E. Karakulak, R. Yamanoğlu, M. Zeren
Abstract:
In the current study, fly ash obtained from a thermal power plant was used as reinforcement in pure magnesium. The composite materials with different fly ash contents were produced with powder metallurgical methods. Powder mixtures were sintered at 540oC under 30 MPa pressure for 15 minutes in a vacuum assisted hot press. Results showed that increasing ash content continuously increases hardness of the composite. On the other hand, minimum wear damage was obtained at 2 wt. % ash content. Addition of higher level of fly ash results with formation of cracks in the matrix and increases wear damage of the material.Keywords: Mg composite, fly ash, wear, powder metallurgy
Procedia PDF Downloads 3637142 Desing of Woven Fabric with Increased Sound Transmission Loss Property
Authors: U. Gunal, H. I. Turgut, H. Gurler, S. Kaya
Abstract:
There are many ever-increasing and newly emerging problems with rapid population growth in the world. With the increase in people's quality of life in our daily life, acoustic comfort has become an important feature in the textile industry. In order to meet all these expectations in people's comfort areas and survive in challenging competitive conditions in the market without compromising the customer product quality expectations of textile manufacturers, it has become a necessity to bring functionality to the products. It is inevitable to research and develop materials and processes that will bring these functionalities to textile products. The noise we encounter almost everywhere in our daily life, in the street, at home and work, is one of the problems which textile industry is working on. It brings with it many health problems, both mentally and physically. Therefore, noise control studies become more of an issue. Besides, materials used in noise control are not sufficient to reduce the effect of the noise level. The fabrics used in acoustic studies in the textile industry do not show sufficient performance according to their weight and high cost. Thus, acoustic textile products can not be used in daily life. In the thesis study, the attributions used in the noise control and building acoustics studies in the literature were analyzed, and the product with the highest damping value that a textile material will have was designed, manufactured, and tested. Optimum values were obtained by using different material samples that may affect the performance of the acoustic material. Acoustic measurement methods should be applied to verify the acoustic performances shown by the parameters and the designed three-dimensional structure at different values. In the measurements made in the study, the device designed for determining the acoustic performance of the material for both the impedance tube according to the relevant standards and the different noise types in the study was used. In addition, sound records of noise types encountered in daily life are taken and applied to the acoustic absorbent fabric with the aid of the device, and the feasibility of the results and the commercial ability of the product are examined. MATLAB numerical computing programming language and libraries were used in the frequency and sound power analyses made in the study.Keywords: acoustic, egg crate, fabric, textile
Procedia PDF Downloads 1087141 Free Fibular Flaps in Management of Sternal Dehiscence
Authors: H. N. Alyaseen, S. E. Alalawi, T. Cordoba, É. Delisle, C. Cordoba, A. Odobescu
Abstract:
Sternal dehiscence is defined as the persistent separation of sternal bones that are often complicated with mediastinitis. Etiologies that lead to sternal dehiscence vary, with cardiovascular and thoracic surgeries being the most common. Early diagnosis in susceptible patients is crucial to the management of such cases, as they are associated with high mortality rates. A recent meta-analysis of more than four hundred thousand patients concluded that deep sternal wound infections were the leading cause of mortality and morbidity in patients undergoing cardiac procedures. Long-term complications associated with sternal dehiscence include increased hospitalizations, cardiac infarctions, and renal and respiratory failures. Numerous osteosynthesis methods have been described in the literature. Surgical materials offer enough rigidity to support the sternum and can be flexible enough to allow physiological breathing movements of the chest; however, these materials fall short when managing patients with extensive bone loss, osteopenia, or general poor bone quality, for such cases, flaps offer a better closure system. Early utilization of flaps yields better survival rates compared to delayed closure or to patients treated with sternal rewiring and closed drainage. The utilization of pectoralis major flaps, rectus abdominus, and latissimus muscle flaps have all been described in the literature as great alternatives. Flap selection depends on a variety of factors, mainly the size of the sternal defect, infection, and the availability of local tissues. Free fibular flaps are commonly harvested flaps utilized in reconstruction around the body. In cases regarding sternal reconstruction with free fibular flaps, the literature exclusively discussed the flap applied vertically to the chest wall. We present a different technique applying the free fibular triple barrel flap oriented in a transverse manner, in parallel to the ribs. In our experience, this method could have enhanced results and improved prognosis as it contributes to the normal circumferential shape of the chest wall.Keywords: sternal dehiscence, management, free fibular flaps, novel surgical techniques
Procedia PDF Downloads 947140 Carbon Nanotube Field Effect Transistor - a Review
Authors: P. Geetha, R. S. D. Wahida Banu
Abstract:
The crowning advances in Silicon based electronic technology have dominated the computation world for the past decades. The captivating performance of Si devices lies in sustainable scaling down of the physical dimensions, by that increasing device density and improved performance. But, the fundamental limitations due to physical, technological, economical, and manufacture features restrict further miniaturization of Si based devices. The pit falls are due to scaling down of the devices such as process variation, short channel effects, high leakage currents, and reliability concerns. To fix the above-said problems, it is needed either to follow a new concept that will manage the current hitches or to support the available concept with different materials. The new concept is to design spintronics, quantum computation or two terminal molecular devices. Otherwise, presently used well known three terminal devices can be modified with different materials that suits to address the scaling down difficulties. The first approach will occupy in the far future since it needs considerable effort; the second path is a bright light towards the travel. Modelling paves way to know not only the current-voltage characteristics but also the performance of new devices. So, it is desirable to model a new device of suitable gate control and project the its abilities towards capability of handling high current, high power, high frequency, short delay, and high velocity with excellent electronic and optical properties. Carbon nanotube became a thriving material to replace silicon in nano devices. A well-planned optimized utilization of the carbon material leads to many more advantages. The unique nature of this organic material allows the recent developments in almost all fields of applications from an automobile industry to medical science, especially in electronics field-on which the automation industry depends. More research works were being done in this area. This paper reviews the carbon nanotube field effect transistor with various gate configurations, number of channel element, CNT wall configurations and different modelling techniques.Keywords: array of channels, carbon nanotube field effect transistor, double gate transistor, gate wrap around transistor, modelling, multi-walled CNT, single-walled CNT
Procedia PDF Downloads 3267139 Prefabrication Technology as an Option for Accelerated Sustainable Social Housing Delivery in South Africa
Authors: Madifedile Thasi, Azola Mayeza
Abstract:
In South Africa, provision of housing to the growing population has been described as one of the greatest challenges facing the government. Between 1994 to 2015, more than 2.5 million housing units were provided by the government for the poorest households and the low-income earners under the Reconstruction and Development Programme (RDP). Yet, the latest census figure revealed that about 2.1 million households still live in shacks and informal dwellings. Human settlements patterns remain dysfunctional across in South Africa because of rapid urbanisation. The housing backlog is growing at a rate of 178 000 units a year. The aforementioned predicament calls the need for innovative approaches to address the issue in a sustainable way and this need not be overemphasized. Aside from the issue of cost, the delivery of more housing units comes with environmental and sustainability issues. The prefabrication building technology has resulted into accelerated housing delivery to a satisfactory level in some countries such as Nigeria and Malaysia that are facing similar issue. It is therefore expected to be a foremost option to address the social housing backlog in South Africa and within the country housing sustainability agenda. This paper appraises the factors responsible for the limited implementation of prefabrication technology in South African housing projects. The objective is to recommend the method and materials that can be best sustained in the country in terms of local availability, cost effectiveness and environmental friendliness. It presents empirical data to support the hypothesis that a wider implementation of prefabrication technology in the social housing projects will be of significant benefit, by providing fast turnaround, cost-effective and sustainable solution that will dent the housing backlog, as well as improving the quality of the social housings. It was found that only 17 000 units of the RDP housings provided were constructed using alternative building technologies. Furthermore, there are variety of prefabricated technologies in the market but mostly have limited production capacity, minimal manufacturing capacity and most materials are imported, which leads to unavailability of the technology for large scale delivery and utilization despite its obvious advantages.Keywords: prefabrication technology, sustainable social housings, South Africa, housing delivery
Procedia PDF Downloads 2087138 Application of Heritage Clay Roof Tiles in Malaysia’s Government Buildings: Conservation Challenges
Authors: Mohd Sabere Sulaiman, Masyitah Abd Aziz, Norsiah Hassan, Jamilah Halina Abdul Halim, Mohd Saipul Asrafi Haron
Abstract:
The use of clay roof tiles was spread out through Asia and Europe, including Malaysia, since the early 17th Century. Most of the common type of clay roof tiles are used in a flat and rectangular shape, measurement, styles, and characteristics through each tradition and interest, including responsive to the climate. Various types of heritage clay roof tiles were used in Malaysia’s Government Buildings dated 1865, 1919, 1936, and so forth, which mostly were imported from India, France, and Italy. Until now, these heritage clay roof tiles are still found throughout Malaysia, including the ‘Interlocking’ clay roof tile type. This study is to investigate and overview the existence of heritage clay roof tiles used in Malaysia; the ‘interlocking’ type with ‘lip’ and ‘hooks’, through literature reviews as desktop study besides carried out a preliminary observation on various sites and interviews. From the literatures, the last production and used of the local heritage clay roof tiles in Malaysia dated in mid 1900s in Batu Arang, Selangor. The brick factory was abandoned since early 2000s. Although the modern ‘Interlocking’ type were produced to duplicate its form, pattern, and size of the original one, they still facing the problem to blend and merged, which end up dismantling the original version, or replacing one to one condition and even replaced overall with the modern materials. This is quite contradicting with the basic principles of building conservation and had become a challenge. Initial findings from the preliminary observation on site in various state in Malaysia shows some evidence that the heritage clay roof tiles are still intact and been used. Some of them might change to modern roof materials such as metal deck, probably due to easy maintenance and cheaper. Also, some are still struggling to maintain and retain its looks and authenticity of the roof while facing the increasing of material cost. Those improper alteration and changes made is due to lack of knowledge among the owner and end user. Various aspect needs to be considered in order to sustain its usage and its original looks by looking at the proper maintenance aspects of the heritage clay roof tiles to prolong the building life for future generation preferences.Keywords: challenges, clay, interlocking, maintenance
Procedia PDF Downloads 967137 Improving Carbon Fiber Structural Battery Performance with Polymer Interface
Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint
Abstract:
This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries
Procedia PDF Downloads 1097136 Development of a Harvest Mechanism for the Kahramanmaraş Chili Pepper
Authors: O. E. Akay, E. Güzel, M. T. Özcan
Abstract:
The pepper has quite a rich variety. The development of a single harvesting machine for all kinds of peppers is a difficult research topic. By development of harvesting mechanisms, we could be able to facilitate the pepper harvesting problems. In this study, an experimental harvesting machine was designed for chili pepper. Four-bar mechanism was used for the design of the prototype harvesting machine. At the result of harvest trials, 80% of peppers were harvested and 8% foreign materials were collected. These results have provided some tips on how to apply to large-scale pepper Four-bar mechanism of the harvest machine.Keywords: kinematic simulation, four bar linkage, harvest mechanization, pepper harvest
Procedia PDF Downloads 3467135 Comparative Studies on Thin Film of ZnO Deposited by Spray Pyrolysis and Sputtering Technique
Authors: Musa Momoh, A. U. Moreh, A. M. Bayawa, Sanusi Abdullahi, I. Atiku
Abstract:
In this study, thin films of ZnO were synthesized by two techniques namely RF sputtering and spray pyrolysis. The films were deposited on corning glass. The primary materials used are 99.99% pure. The optical and structural properties of the samples were studied. It has been noted that the samples deposited by Spray pyrolysis have and average transmittance, refractive index and extinction coefficient as 80-90%, 1.33-1.44 and 13.11-27.52 respectively. Those deposited by sputtering method are 34-80%, 1.51-1.52 and 3.15-3.28. The XRD patterns of the samples show that they are polycrystalline.Keywords: zinc oxide, spray pyrolysis, rf sputtering, optical properties, electrical properties
Procedia PDF Downloads 2677134 Engineering Practice in Nigerian University: A Microcosm of Engineering Development and Practice in Developing Countries
Authors: Sunday Olufemi Adesogan
Abstract:
There is a strong link between engineering and development. Engineering as a profession is a call to service by the society. Perhaps next to soldiers, engineers are the most patriotic professionals. However, unlike soldiers, they remain servants of society at all times and in all circumstances. Despite their role to the society, engineering profession seems not to be enjoying the respect due to it probably because of failures associated with some engineering projects. This paper focuses on the need to improve on engineering practices for developments in developing countries using Engineering practice in Nigerian Universities as a tool for argument. Purposeful Survey, interview and focus group discussion were carried out among one hundred and twenty (120) reputable firms in Nigeria. The topic was approached through a few projects that the firms have been involved in from the planning stage, some to completion and beyond into the stage of maintenance and monitoring. It is revealed that some factors which are not determined by the engineers themselves impeded progress and full success of engineering practice in developing countries. The key culprit is corruption whose eradication will put the nation on the solid path of effective engineering development and poverty alleviation.Keywords: development, engineering, practices, sustainable
Procedia PDF Downloads 3337133 Critical Success Factors Influencing Construction Project Performance for Different Objectives: Procurement Phase
Authors: Samart Homthong, Wutthipong Moungnoi
Abstract:
Critical success factors (CSFs) and the criteria to measure project success have received much attention over the decades and are among the most widely researched topics in the context of project management. However, although there have been extensive studies on the subject by different researchers, to date, there has been little agreement on the CSFs. The aim of this study is to identify the CSFs that influence the performance of construction projects, and determine their relative importance for different objectives across five stages in the project life cycle. A considerable literature review was conducted that resulted in the identification of 179 individual factors. These factors were then grouped into nine major categories. A questionnaire survey was used to collect data from three groups of respondents: client representatives, consultants, and contractors. Out of 164 questionnaires distributed, 93 were returned, yielding a response rate of 56.7%. Using the mean score, relative importance index, and weighted average method, the top 10 critical factors for each category were identified. The agreement of survey respondents on those categorised factors were analysed using Spearman’s rank correlation. A one-way analysis of variance was then performed to determine whether the mean scores among the various groups of respondents were statistically significant. The findings indicate the most CSFs in each category in procurement phase are: proper procurement programming of materials (time), stability in the price of materials (cost), and determining quality in the construction (quality). They are then followed by safety equipment acquisition and maintenance (health and safety), budgeting allowed in a contractual arrangement for implementing environmental management activities (environment), completeness of drawing documents (productivity), accurate measurement and pricing of bill of quantities (risk management), adequate communication among the project team (human resource), and adequate cost control measures (client satisfaction). An understanding of CSFs would help all interested parties in the construction industry to improve project performance. Furthermore, the results of this study would help construction professionals and practitioners take proactive measures for effective project management.Keywords: critical success factors, procurement phase, project life cycle, project performance
Procedia PDF Downloads 1837132 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems
Authors: Prasad Pokkunuri
Abstract:
Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids
Procedia PDF Downloads 292