Search results for: market prediction
3295 Possibility of Prediction of Death in SARS-Cov-2 Patients Using Coagulogram Analysis
Authors: Omonov Jahongir Mahmatkulovic
Abstract:
Purpose: To study the significance of D-dimer (DD), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen coagulation parameters (Fg) in predicting the course, severity and prognosis of COVID-19. Source and method of research: From September 15, 2021, to November 5, 2021, 93 patients aged 25 to 60 with suspected COVID-19, who are under inpatient treatment at the multidisciplinary clinic of the Tashkent Medical Academy, were retrospectively examined. DD, PT, APTT, and Fg were studied in dynamics and studied changes. Results: Coagulation disorders occurred in the early stages of COVID-19 infection with an increase in DD in 54 (58%) patients and an increase in Fg in 93 (100%) patients. DD and Fg levels are associated with the clinical classification. Of the 33 patients who died, 21 had an increase in DD in the first laboratory study, 27 had an increase in DD in the second and third laboratory studies, and 15 had an increase in PT in the third test. The results of the ROC analysis of mortality showed that the AUC DD was three times 0.721, 0.801, and 0.844, respectively; PT was 0.703, 0.845, and 0.972. (P<0:01). Conclusion”: Coagulation dysfunction is more common in patients with severe and critical conditions. DD and PT can be used as important predictors of mortality from COVID-19.Keywords: Covid19, DD, PT, Coagulogram analysis, APTT
Procedia PDF Downloads 1073294 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach
Authors: Ju-Young Hwang, Hyo-Gyoung Kwak
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis
Procedia PDF Downloads 4143293 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks
Procedia PDF Downloads 2823292 Design Approach for the Development of Format-Flexible Packaging Machines
Authors: G. Götz, P. Stich, J. Backhaus, G. Reinhart
Abstract:
The rising demand for format-flexible packaging machines is caused by current market changes. Increasing the formatflexibility is a new goal for the packaging machine manufacturers’ product development process. There are no methodical or designorientated tools for a comprehensive consideration of this target. This paper defines the term format-flexibility in the context of packaging machines and shows the state-of-the-art for improving the changeover of production machines. The requirements for a new approach and the concept itself will be introduced, and the method elements will be explained. Finally, the use of the concept and the result of the development of a format-flexible packaging machine will be shown.Keywords: packaging machine, format-flexibility, changeover, design method
Procedia PDF Downloads 4343291 Hydraulic Studies on Core Components of PFBR
Authors: G. K. Pandey, D. Ramadasu, I. Banerjee, V. Vinod, G. Padmakumar, V. Prakash, K. K. Rajan
Abstract:
Detailed thermal hydraulic investigations are very essential for safe and reliable functioning of liquid metal cooled fast breeder reactors. These investigations are further more important for components with complex profile, since there is no direct correlation available in literature to evaluate the hydraulic characteristics of such components directly. In those cases available correlations for similar profile or geometries may lead to significant uncertainty in the outcome. Hence experimental approach can be adopted to evaluate these hydraulic characteristics more precisely for better prediction in reactor core components. Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool type reactor is under advanced stage of construction at Kalpakkam, India. Several components of this reactor core require hydraulic investigation before its usage in the reactor. These hydraulic investigations on full scale models, carried out by experimental approaches using water as simulant fluid are discussed in the paper.Keywords: fast breeder reactor, cavitation, pressure drop, reactor components
Procedia PDF Downloads 4633290 Water Quality Trading with Equitable Total Maximum Daily Loads
Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani, A. Feizi Ashtiani
Abstract:
Waste load allocation (WLA) strategies usually intend to find economical policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.Keywords: waste load allocation (WLA), water quality trading (WQT), total maximum daily loads (TMDLs), Haraz River, multi objective particle swarm optimization (MOPSO), equity
Procedia PDF Downloads 3943289 Far-Field Noise Prediction of Tandem Cylinders Using Incompressible Large Eddy Simulation
Authors: Jesus Ruano, Francesc Xavier Trias, Asensi Oliva
Abstract:
A three-dimensional incompressible Large Eddy Simulation (LES) is performed to compute the hydrodynamic field around a pair of tandem cylinders. Symmetry-preserving schemes will be used during this simulation in conjunction with Finite Volume Method (FVM) to obtain the hydrodynamic field around the selected geometry. A set of results consisting of pressure and velocity and the combination of them will be stored at different surfaces near the cylinders as the initial input for the second part of the study. A post-processing of the obtained results based on Ffowcs-Williams and Hawkings (FWH) equation with a Fourier Transform of the acoustic sources will be used to compute noise at several probes located far away from the region where the hydrodynamics are computed. Directivities as well as spectral profile of the obtained acoustic field will be analyzed.Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, long-span bodies
Procedia PDF Downloads 3763288 Commodifying Things Past: Comparative Study of Heritage Tourism Practices in Montenegro and Serbia
Authors: Jovana Vukcevic, Sanja Pekovic, Djurdjica Perovic, Tatjana Stanovcic
Abstract:
This paper presents a critical inquiry into the role of uncomfortable heritage in nation branding with the particular focus on the specificities of the politics of memory, forgetting and revisionism in the post-communist post-Yugoslavia. It addresses legacies of unwanted, ambivalent or unacknowledged past and different strategies employed by the former-Yugoslav states and private actors in “rebranding” their heritage, ensuring its preservation, but re-contextualizing the narrative of the past through contemporary tourism practices. It questions the interplay between nostalgia, heritage and market, and the role of heritage in polishing the history of totalitarian and authoritarian regimes in the Balkans. It argues that in post-socialist Yugoslavia, the necessity to limit correlations with former ideology and the use of the commercial brush in shaping a marketable version of the past instigated the emergence of the profit-oriented heritage practices. Building on that argument, the paper addresses these issues as “commodification” and “disneyfication” of Balkans’ ambivalent heritage, contributing to the analysis of changing forms of memorialisation and heritagization practices in Europe. It questions the process of ‘coming to terms with the past’ through marketable forms of heritage tourism, fetching the boundary between market-driven nostalgia and state-imposed heritage policies. In order to analyse plurality of ways of dealing with controversial, ambivalent and unwanted heritage of dictatorships in the Balkans, the paper considers two prominent examples of heritage commodification in Serbia and Montenegro, and the re-appropriations of those narratives for the nation branding purposes. The first one is the story of the Tito’s Blue Train, the landmark of the socialist past and the symbol of Yugoslavia which has nowadays being used for birthday parties and marriage celebrations, while the second emphasises the unusual business arrangement turning the fortress Mamula, former concentration camp through the Second World War, into a luxurious Mediterranean resort. Questioning how the ‘uneasy’ past was acknowledged and embedded into the official heritage institutions and tourism practices, study examines the changing relation towards the legacies of dictatorships, inviting us to rethink the economic models of the things past. Analysis of these processes should contribute to better understanding of the new mnemonics strategies and (converging?) ways of ‘doing’ past in Europe.Keywords: commodification, heritage tourism, totalitarianism, Serbia, Montenegro
Procedia PDF Downloads 2523287 Design and Development of E-Commerce Web Application for Shopping Management System
Authors: Siddarth A., Bhoomika K.
Abstract:
Campuskart is a web-based platform that enables college students to buy and sell various items related to electronics, books, project materials, and electronic gadgets at reasonable prices. The application offers students the opportunity to resell their items at valuable and worthwhile prices, while also providing customers with the chance to purchase items at a lower price than the market price. The forthcoming paper will outline the various processes involved in developing the web application, including the design process, methodology, and overall functioning of the system. It will offer a comprehensive overview of how the platform operates and how it can benefit college students looking for affordable and convenient options for buying and selling various items.Keywords: campuskart, web development, data structures, studentfriendlywebsite
Procedia PDF Downloads 723286 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity
Authors: N. P. Yadav, Deepti Verma
Abstract:
This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.Keywords: buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid
Procedia PDF Downloads 4173285 Studying the Impact of Agricultural Producers Support Policy in Export Market
Authors: Yazdani Saeed, Rafiei Hamed, Nekoofar Farahnaz
Abstract:
Governments Policies play a major role in national and international Markets. Pistachio is one of the most important non-oil export commodity of Iran. Therefore, in this study the relation between the producer support policies and the export of Pistachio was examined. An econometric model (VAR) was applied to test the study hypothesis. According to the estimated coefficient in VAR model, lag of producer support index has a significant and negative effect on variation of Pistachio’s export in short term. In other word, in short term, export advantage index is dependent on the amount of producers support in previous period.Keywords: producer support, export advantage, pistachio, Iran
Procedia PDF Downloads 483284 Performance Analysis of N-Tier Grid Protocol for Resource Constrained Wireless Sensor Networks
Authors: Jai Prakash Prasad, Suresh Chandra Mohan
Abstract:
Modern wireless sensor networks (WSN) consist of small size, low cost devices which are networked through tight wireless communications. WSN fundamentally offers cooperation, coordination among sensor networks. Potential applications of wireless sensor networks are in healthcare, natural disaster prediction, data security, environmental monitoring, home appliances, entertainment etc. The design, development and deployment of WSN based on application requirements. The WSN design performance is optimized to improve network lifetime. The sensor node resources constrain such as energy and bandwidth imposes the limitation on efficient resource utilization and sensor node management. The proposed N-Tier GRID routing protocol focuses on the design of energy efficient large scale wireless sensor network for improved performance than the existing protocol.Keywords: energy efficient, network lifetime, sensor networks, wireless communication
Procedia PDF Downloads 4693283 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 993282 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.Keywords: settlement, Subway Line, FLAC3D, ANFIS Method
Procedia PDF Downloads 2333281 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression
Authors: N. Alhazmi
Abstract:
Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity
Procedia PDF Downloads 2223280 Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations
Authors: Mohamed M. Abo Elazm, Ali I. Shehata, Mohamed M. Khairat Dawood
Abstract:
A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect.Keywords: heat transfer, swirling effect, CFD, inclination angle, concentric tube heat exchange
Procedia PDF Downloads 3213279 Geographical Location and the Global Airline Industry: A Delphi Study into the Future of Home Base Requirements
Authors: Darren J. Ellis
Abstract:
This paper investigates the key industry-level consequences and future prospects for the global airline industry of the requirement for airlines to have a home base. This industry context results in geographical location playing a central role in determining how and where international airlines can operate, and the extent to which their international networks can develop. Data from a five stage mixed-methods Delphi study into the global airline industry’s likely future trajectory conducted in 2013 and 2014 are utilized to better understand the likelihood and consequences of home base requirements changing in future. Expert views and forecasts were collected to gauge core industry trends over a ten year timeframe. Attempts to change or bypass this industry requirement have not been successful to date outside of the European single air market. Europe remains the only prominent exception to the general rule in this regard. Most of the industry is founded on air space sovereignty, the nationality rule, and the bilateral system of traffic rights. Europe’s exceptionalism has seen it evolve into a single air market with characteristics similar to a nation-state, rather than to become a force for wider industry change and regional multilateralism. Europe has indeed become a key actor in global aviation, but Europe seems to now be part of the industry’s status quo, not a vehicle for substantially wider multilateralism around the world. The findings from this research indicate that the bilateral system is not viewed by most study experts as disappearing or substantially weakening in the foreseeable future. However, regional multilateralism was also viewed as progressively taking hold in the industry in future, demonstrating that for most industry experts the two are not seen as mutually exclusive but rather as being able to co-exist with each other. This reality ensures that geographical location will continue to play an important role in the global airline industry in future and that, home base requirements will not disappear any time soon either. Even moves in some aviation jurisdictions to dilute nationality requirements for airlines, and instead replace ownership and control restrictions with principal place of business tests, do not ultimately free airlines from their home base. Likewise, an expansion of what constitutes home base to include a regional grouping of countries – again, a currently uncommon reality in global aviation – does not fundamentally weaken the continued relevance of geographical location to the global industry’s future growth and development realities and prospects.Keywords: airline industry, air space sovereignty, geographical location, home base
Procedia PDF Downloads 1363278 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 2513277 Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype
Authors: Tine Cencič, Marko Hočevar, Brane Širok
Abstract:
An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods.Keywords: cavitation erosion, turbine, cavitation measurement, fluid dynamics
Procedia PDF Downloads 4163276 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation
Authors: R. J. Chang
Abstract:
A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise
Procedia PDF Downloads 4903275 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot
Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi
Abstract:
To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients
Procedia PDF Downloads 913274 Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion
Authors: Zerarka Hizia, Akchiche Mustapha, Prunier Florent
Abstract:
The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope.Keywords: landslide, second order work, precipitation, inclinometers
Procedia PDF Downloads 1793273 Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN
Authors: Musa H. Arslan, Murat Ceylan, Tayfun Koyuncu
Abstract:
In this study, an artificial intelligence-based (ANN based) analytical method has been developed for analyzing earthquake performances of the reinforced concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code- 2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%.Keywords: artificial intelligence, earthquake, performance, reinforced concrete
Procedia PDF Downloads 4633272 Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200
Authors: Carla M. Machado, André A. Silva, Armando Bastos, Telmo G. Santos, J. Pamies Teixeira
Abstract:
Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts.Keywords: advanced high strength steel, Bauschinger effect, sheet metal forming, springback
Procedia PDF Downloads 2273271 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data
Authors: Andrea Ghermandi
Abstract:
Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds
Procedia PDF Downloads 1803270 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 843269 Optimization Model for Support Decision for Maximizing Production of Mixed Fruit Tree Farms
Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal
Abstract:
We consider a linear programming model to help farmers to decide if it is convinient to choose among three kinds of export fruits for their future investment. We consider area, investment, water, productivitiy minimal unit, and harvest restrictions and a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability and initia investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market.Keywords: mixed integer problem, fruit production, support decision model, fruit tree farms
Procedia PDF Downloads 4573268 Role of Macro and Technical Indicators in Equity Risk Premium Prediction: A Principal Component Analysis Approach
Authors: Naveed Ul Hassan, Bilal Aziz, Maryam Mushtaq, Imran Ameen Khan
Abstract:
Equity risk premium (ERP) is the stock return in excess of risk free return. Even though it is an essential topic of finance but still there is no common consensus upon its forecasting. For forecasting ERP, apart from the macroeconomic variables attention is devoted to technical indicators as well. For this purpose, set of 14 technical and 14 macro-economic variables is selected and all forecasts are generated based on a standard predictive regression framework, where ERP is regressed on a constant and a lag of a macroeconomic variable or technical indicator. The comparative results showed that technical indicators provide better indications about ERP estimates as compared to macro-economic variables. The relative strength of ERP predictability is also investigated by using National Bureau of Economic Research (NBER) data of business cycle expansion and recessions and found that ERP predictability is more than twice for recessions as compared to expansions.Keywords: equity risk premium, forecasting, macroeconomic indicators, technical indicators
Procedia PDF Downloads 3063267 Features of Formation and Development of Possessory Risk Management Systems of Organization in the Russian Economy
Authors: Mikhail V. Khachaturyan, Inga A. Koryagina, Maria Nikishova
Abstract:
The study investigates the impact of the ongoing financial crisis, started in the 2nd half of 2014, on marketing budgets spent by Fast-moving consumer goods companies. In these conditions, special importance is given to efficient possessory risk management systems. The main objective for establishing and developing possessory risk management systems for FMCG companies in a crisis is to analyze the data relating to the external environment and consumer behavior in a crisis. Another important objective for possessory risk management systems of FMCG companies is to develop measures and mechanisms to maintain and stimulate sales. In this regard, analysis of risks and threats which consumers define as the main reasons affecting their level of consumption become important. It is obvious that in crisis conditions the effective risk management systems responsible for development and implementation of strategies for consumer demand stimulation, as well as the identification, analysis, assessment and management of other types of risks of economic security will be the key to sustainability of a company. In terms of financial and economic crisis, the problem of forming and developing possessory risk management systems becomes critical not only in the context of management models of FMCG companies, but for all the companies operating in other sectors of the Russian economy. This study attempts to analyze the specifics of formation and development of company possessory risk management systems. In the modern economy, special importance among all the types of owner’s risks has the risk of reduction in consumer activity. This type of risk is common not only for the consumer goods trade. Study of consumer activity decline is especially important for Russia due to domestic market of consumer goods being still in the development stage, despite its significant growth. In this regard, it is especially important to form and develop possessory risk management systems for FMCG companies. The authors offer their own interpretation of the process of forming and developing possessory risk management systems within owner’s management models of FMCG companies as well as in Russian economy in general. Proposed methods and mechanisms of problem analysis of formation and development of possessory risk management systems in FMCG companies and the results received can be helpful for researchers interested in problems of consumer goods market development in Russia and overseas.Keywords: FMCG companies, marketing budget, risk management, owner, Russian economy, organization, formation, development, system
Procedia PDF Downloads 3773266 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time
Procedia PDF Downloads 331