Search results for: drawbar force
3 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device
Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres
Abstract:
The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device
Procedia PDF Downloads 2792 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines
Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri
Abstract:
This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.Keywords: wind turbines, aeroelasticity, repetitive control, periodic systems
Procedia PDF Downloads 2461 Maternity Care Model during Natural Disaster or Humanitarian Emegerncy Setting in Rural Pakistan
Authors: Humaira Maheen, Elizabeth Hoban, Catherine Bennette
Abstract:
Background: Globally, role of Community Health Workers (CHW) as front line disaster health work force is underutilized. Developing countries which are at risk of natural disasters or humanitarian emergencies should lay down effective strategies especially to ensure adequate access to maternity care during crisis situation by using CHW as they are local, trained, and most of them possess a good relationship with the community. The Minimum Initial Service Package (MISP) is a set of universal guidelines that addresses women’s reproductive health needs during the first phase of an emergency. According to the MISP, pregnant women should have access to a skilled birth attendant and adequate transportation arrangements so they can access a maternity care facility. Pakistan is one of the few countries which has been severely affected by a number of natural disaster as well as humanitarian emergencies in last decade. Pakistan has a young and structured National Disaster Management System in place, where District Authorities play a vital role in disaster management. The District Health Department develops the contingency health plan for an emergency situation and implements it under the existing district health human resources (health workers and medical staff at the health facility) and infrastructure (health care facilities). Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. The district health department didn’t make transportation arrangement for labouring women from relief camp to the nearest health care facility. As a result 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth. Of the 332 women who were pregnant at the time of the floods, 26 had adverse birth outcomes; 10 had miscarriages, 14 had stillbirths and there were four neonatal deaths. Conclusion: The district health department was not able to provide access to adequate maternity care during according to the international standard during the floods in 2011. We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps. Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. Nearly 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth, and the health camp was mostly accessed by men and always overcrowded. There was no obstetric trained medical staff in the health camps or transportation provided to take women with complications to the nearest health facility. The rate of adverse outcome following disaster was 22.2% (95% CI: 8.62% – 42.2%) amongst 27 women who did not evacuate as compare to 7.91% (95% CI: 5.03% – 11.8%) among 278 women who lived in relief camp study participants. There were 27 women who evacuated on pre-flood warning and had 0% rate of adverse outcome. Conclusion: We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps.Keywords: natural disaster, maternity care model, rural, Pakistan, community health workers
Procedia PDF Downloads 261