Search results for: artificial intelligence and genetic algorithms
3467 Computer-Integrated Surgery of the Human Brain, New Possibilities
Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto
Abstract:
The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.Keywords: computational mechanics, peridynamics, finite element, biomechanics
Procedia PDF Downloads 803466 Spatial Abilities, Memory, and Intellect of Drivers with Different Professional Experience
Authors: Khon Natalya, Kim Alla, Mukhitdinova Tansulu
Abstract:
The aim of the research was to reveal the link between mental variables, such as spatial abilities, memory, intellect and professional experience of drivers. Participants were allocated within 4 groups: no experience, inexperienced, skilled and professionals (total 85 participants). Level of ability for spatial navigation and indicator of nonverbal memory grow along the process of accumulation of driving experience. At high levels of driving experience this tendency is especially noticeable. The professionals having personal achievements in driving (racing) differ from skilled drivers in better feeling of direction which is specific for them not just in a short-term situation of an experimental task, but in life-size perspective. The level of ability of mental rotation does not grow with growth of driving experience which confirms the multiple intelligence theory according to which spatial abilities represent specific, other than logical intelligence type of intellect. The link between spatial abilities, memory, intellect, and professional experience of drivers seems to be different relating spatial navigation or mental rotation as different kinds of spatial abilities.Keywords: memory, spatial ability, intellect, drivers
Procedia PDF Downloads 6243465 The Influence of Covariance Hankel Matrix Dimension on Algorithms for VARMA Models
Authors: Celina Pestano-Gabino, Concepcion Gonzalez-Concepcion, M. Candelaria Gil-Fariña
Abstract:
Some estimation methods for VARMA models, and Multivariate Time Series Models in general, rely on the use of a Hankel matrix. It is known that if the data sample is populous enough and the dimension of the Hankel matrix is unnecessarily large, this may result in an unnecessary number of computations as well as in numerical problems. In this sense, the aim of this paper is two-fold. First, we provide some theoretical results for these matrices which translate into a lower dimension for the matrices normally used in the algorithms. This contribution thus serves to improve those methods from a numerical and, presumably, statistical point of view. Second, we have chosen an estimation algorithm to illustrate in practice our improvements. The results we obtained in a simulation of VARMA models show that an increase in the size of the Hankel matrix beyond the theoretical bound proposed as valid does not necessarily lead to improved practical results. Therefore, for future research, we propose conducting similar studies using any of the linear system estimation methods that depend on Hankel matrices.Keywords: covariances Hankel matrices, Kronecker indices, system identification, VARMA models
Procedia PDF Downloads 2433464 A Comparison of South East Asian Face Emotion Classification based on Optimized Ellipse Data Using Clustering Technique
Authors: M. Karthigayan, M. Rizon, Sazali Yaacob, R. Nagarajan, M. Muthukumaran, Thinaharan Ramachandran, Sargunam Thirugnanam
Abstract:
In this paper, using a set of irregular and regular ellipse fitting equations using Genetic algorithm (GA) are applied to the lip and eye features to classify the human emotions. Two South East Asian (SEA) faces are considered in this work for the emotion classification. There are six emotions and one neutral are considered as the output. Each subject shows unique characteristic of the lip and eye features for various emotions. GA is adopted to optimize irregular ellipse characteristics of the lip and eye features in each emotion. That is, the top portion of lip configuration is a part of one ellipse and the bottom of different ellipse. Two ellipse based fitness equations are proposed for the lip configuration and relevant parameters that define the emotions are listed. The GA method has achieved reasonably successful classification of emotion. In some emotions classification, optimized data values of one emotion are messed or overlapped to other emotion ranges. In order to overcome the overlapping problem between the emotion optimized values and at the same time to improve the classification, a fuzzy clustering method (FCM) of approach has been implemented to offer better classification. The GA-FCM approach offers a reasonably good classification within the ranges of clusters and it had been proven by applying to two SEA subjects and have improved the classification rate.Keywords: ellipse fitness function, genetic algorithm, emotion recognition, fuzzy clustering
Procedia PDF Downloads 5463463 Whole Coding Genome Inter-Clade Comparison to Predict Global Cancer-Protecting Variants
Authors: Lamis Naddaf, Yuval Tabach
Abstract:
In this research, we identified the missense genetic variants that have the potential to enhance resistance against cancer. Such field has not been widely explored, as researchers tend to investigate mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution, and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and can have significant implications on improved risk estimation, diagnostics, prognosis and even for personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and picked up the alleles that showed a correlation with the species’ cancer resistance. We predicted 250 protecting variants (PVs) with a 0.01 false discovery rate and more than 20 thousand PVs with a 0.25 false discovery rate. Cancer resistance in Mammals and reptiles was significantly predicted by the number of PVs a species has. Moreover, Genes enriched with the protecting variants are enriched in pathways relevant to tumor suppression like pathways of Hedgehog signaling and silencing, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are more abundant in healthy people compared to cancer patients within different human races.Keywords: comparative genomics, machine learning, cancer resistance, cancer-protecting alleles
Procedia PDF Downloads 973462 A Novel Gateway Location Algorithm for Wireless Mesh Networks
Authors: G. M. Komba
Abstract:
The Internet Gateway (IGW) has extra ability than a simple Mesh Router (MR) and the responsibility to route mostly the all traffic from Mesh Clients (MCs) to the Internet backbone however, IGWs are more expensive. Choosing strategic locations for the Internet Gateways (IGWs) best location in Backbone Wireless Mesh (BWM) precarious to the Wireless Mesh Network (WMN) and the location of IGW can improve a quantity of performance related problem. In this paper, we propose a novel algorithm, namely New Gateway Location Algorithm (NGLA), which aims to achieve four objectives, decreasing the network cost effective, minimizing delay, optimizing the throughput capacity, Different from existing algorithms, the NGLA increasingly recognizes IGWs, allocates mesh routers (MRs) to identify IGWs and promises to find a feasible IGW location and install minimum as possible number of IGWs while regularly conserving the all Quality of Service (QoS) requests. Simulation results showing that the NGLA outperforms other different algorithms by comparing the number of IGWs with a large margin and it placed 40% less IGWs and 80% gain of throughput. Furthermore the NGLA is easy to implement and could be employed for BWM.Keywords: Wireless Mesh Network, Gateway Location Algorithm, Quality of Service, BWM
Procedia PDF Downloads 3713461 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix
Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung
Abstract:
Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.Keywords: medical technology, artificial intelligence, radiology, lung cancer
Procedia PDF Downloads 693460 Mapping QTLs Associated with Salinity Tolerance in Maize at Seedling Stage
Authors: Mohammad Muhebbullah Ibne Hoque, Zheng Jun, Wang Guoying
Abstract:
Salinity stress is one of the most important abiotic factors contributing to crop growth and yield loss. Exploring the genetic basis is necessary to develop maize varieties with salinity tolerance. In order to discover the inherent basis for salinity tolerance traits in maize, 121 polymorphic SSR markers were used to analyze 163 F2 individuals derived from a single cross of inbred line B73 (a salt susceptible inbred line) and CZ-7 (a salt tolerant inbred line). A linkage map was constructed and the map covered 1195.2 cM of maize genome with an average distance of 9.88 cM between marker loci. Ten salt tolerance traits at seedling stage were evaluated for QTL analysis in maize seedlings. A total of 41 QTLs associated with seedling shoot and root traits were detected, with 16 and 25 QTLs under non-salinity and salinity condition, respectively. And only 4 major stable QTLs were detected in two environments. The detected QTLs were distributed on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, and chromosome 10. Phenotypic variability for the identified QTLs for all the traits was in the range from 6.27 to 21.97%. Fourteen QTLs with more than 10% contributions were observed. Our results and the markers associated with the major QTL detected in this study have the potential application for genetic improvement of salt tolerance in maize through marker-assisted selection.Keywords: salt tolerance, seedling stage, root shoot traits, quantitative trait loci, simple sequence repeat, maize
Procedia PDF Downloads 3223459 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains
Authors: Christian Angerer, Markus Lienkamp
Abstract:
Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx
Procedia PDF Downloads 4173458 Cellulose Enhancement in Wood Used in Pulp Production by Overexpression of Korrigan and Sucrose Synthase Genes
Authors: Anil Kumar, Diwakar Aggarwal, M. Sudhakara Reddy
Abstract:
The wood of Eucalyptus, Populus and bamboos are some important species used as raw material for the manufacture of pulp. However, higher levels of lignin pose a problem during Kraft pulping and yield of pulp is also lower. In order to increase the yield of pulp per unit wood and reduce the use of chemicals during kraft pulping it is important to reduce the lignin content and/or increase cellulose content in wood. Cellulose biosynthesis in wood takes place by the coordinated action of many enzymes. The two important enzymes are KORRIGAN and SUCROSE SYNTHASE. KORRIGAN (Endo-1,4--glucanase) is implicated in the process of editing growing cellulose chains and improvement of the crystallinity of produced cellulose, whereas SUCROSE SYNTHASE is involved in providing substrate (UDP-glucose) for growing cellulose chains. The present study was aimed at the cloning, characterization and overexpression of these genes in Eucalyptus and Populus. An efficient shoot organogenesis protocol from leaf explants taken from micro shoots of the species has been developed. Agrobacterium mediated genetic transformation using Agrobacterium tumefaciens strain EHA105 and LBA4404 harboring binary vector pBI121 was achieved. Both the genes were cloned from cDNA library of Populus deltoides. These were subsequently characterized using various bioinformatics tools. The cloned genes were then inserted into pBI121 under the CaMV35S promotors replacing GUS gene. The constructs were then mobilized into above strains of Agrobacterium and used for the transformation work. Subsequently, genetic transformation of these clones with target genes following already developed protocol is in progress. Four transgenic lines of Eucalyptus tereticornis overexpressing Korrigan gene under the strong constitutive promoters CaMV35S have been developed, which are being further evaluated. Work on development of more transgenic lines overexpressing these genes in Populus and Eucalyptus is also in progress. This presentation will focus on important developments in this direction.Keywords: Eucalyptus tereticornis, genetic transformation, Kraft pulping Populus deltoides
Procedia PDF Downloads 1403457 Optimal Location of Unified Power Flow Controller (UPFC) for Transient Stability: Improvement Using Genetic Algorithm (GA)
Authors: Basheer Idrees Balarabe, Aminu Hamisu Kura, Nabila Shehu
Abstract:
As the power demand rapidly increases, the generation and transmission systems are affected because of inadequate resources, environmental restrictions and other losses. The role of transient stability control in maintaining the steady-state operation in the occurrence of large disturbance and fault is to describe the ability of the power system to survive serious contingency in time. The application of a Unified power flow controller (UPFC) plays a vital role in controlling the active and reactive power flows in a transmission line. In this research, a genetic algorithm (GA) method is applied to determine the optimal location of the UPFC device in a power system network for the enhancement of the power-system Transient Stability. Optimal location of UPFC has Significantly Improved the transient stability, the damping oscillation and reduced the peak over shoot. The GA optimization Technique proposed was iteratively searches the optimal location of UPFC and maintains the unusual bus voltages within the satisfy limits. The result indicated that transient stability is improved and achieved the faster steady state. Simulations were performed on the IEEE 14 Bus test systems using the MATLAB/Simulink platform.Keywords: UPFC, transient stability, GA, IEEE, MATLAB and SIMULINK
Procedia PDF Downloads 153456 Personality Moderates the Relation Between Mother´s Emotional Intelligence and Young Children´s Emotion Situation Knowledge
Authors: Natalia Alonso-Alberca, Ana I. Vergara
Abstract:
From the very first years of their life, children are confronted with situations in which they need to deal with emotions. The family provides the first emotional experiences, and it is in the family context that children usually take their first steps towards acquiring emotion knowledge. Parents play a key role in this important task, helping their children develop emotional skills that they will need in challenging situations throughout their lives. Specifically, mothers are models imitated by their children. They create specific spatial and temporal contexts in which children learn about emotions, their causes, consequences, and complexity. This occurs not only through what mothers say or do directly to the child. Rather, it occurs, to a large extent, through the example that they set using their own emotional skills. The aim of the current study was to analyze how maternal abilities to perceive and to manage emotions influence children’s emotion knowledge, specifically, their emotion situation knowledge, taking into account the role played by the mother’s personality, the time spent together, and controlling the effect of age, sex and the child’s verbal abilities. Participants were 153 children from 4 schools in Spain, and their mothers. Children (41.8% girls)age range was 35 - 72 months. Mothers (N = 140) age (M = 38.7; R = 27-49). Twelve mothers had more than one child participating in the study. Main variables were the child´s emotion situation knowledge (ESK), measured by the Emotion Matching Task (EMT), and receptive language, using the Picture Vocabulary Test. Also, their mothers´ Emotional Intelligence (EI), through the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT) and personality, with The Big Five Inventory were analyzed. The results showed that the predictive power of maternal emotional skills on ESK was moderated by the mother’s personality, affecting both the direction and size of the relationships detected: low neuroticism and low openness to experience lead to a positive influence of maternal EI on children’s ESK, while high levels in these personality dimensions resulted in a negative influence on child´s ESK. The time that the mother and the child spend together was revealed as a positive predictor of this EK, while it did not moderate the influence of the mother's EI on child’s ESK. In light of the results, we can infer that maternal EI is linked to children’s emotional skills, though high level of maternal EI does not necessarily predict a greater degree of emotionknowledge in children, which seems rather to depend on specific personality profiles. The results of the current study indicate that a good level of maternal EI does not guarantee that children will learn the emotional skills that foster prosocial adaptation. Rather, EI must be accompanied by certain psychological characteristics (personality traits in this case).Keywords: emotional intelligence, emotion situation knowledge, mothers, personality, young children
Procedia PDF Downloads 1343455 Arbitrarily Shaped Blur Kernel Estimation for Single Image Blind Deblurring
Authors: Aftab Khan, Ashfaq Khan
Abstract:
The research paper focuses on an interesting challenge faced in Blind Image Deblurring (BID). It relates to the estimation of arbitrarily shaped or non-parametric Point Spread Functions (PSFs) of motion blur caused by camera handshake. These PSFs exhibit much more complex shapes than their parametric counterparts and deblurring in this case requires intricate ways to estimate the blur and effectively remove it. This research work introduces a novel blind deblurring scheme visualized for deblurring images corrupted by arbitrarily shaped PSFs. It is based on Genetic Algorithm (GA) and utilises the Blind/Reference-less Image Spatial QUality Evaluator (BRISQUE) measure as the fitness function for arbitrarily shaped PSF estimation. The proposed BID scheme has been compared with other single image motion deblurring schemes as benchmark. Validation has been carried out on various blurred images. Results of both benchmark and real images are presented. Non-reference image quality measures were used to quantify the deblurring results. For benchmark images, the proposed BID scheme using BRISQUE converges in close vicinity of the original blurring functions.Keywords: blind deconvolution, blind image deblurring, genetic algorithm, image restoration, image quality measures
Procedia PDF Downloads 4433454 THRAP2 Gene Identified as a Candidate Susceptibility Gene of Thyroid Autoimmune Diseases Pedigree in Tunisian Population
Authors: Ghazi Chabchoub, Mouna Feki, Mohamed Abid, Hammadi Ayadi
Abstract:
Autoimmune thyroid diseases (AITDs), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are inherited as complex traits. Genetic factors associated with AITDs have been tentatively identified by candidate gene and genome scanning approaches. We analysed three intragenic microsatellite markers in the thyroid hormone receptor associated protein 2 gene (THRAP2), mapped near D12S79 marker, which have a potential role in immune function and inflammation [THRAP2-1(TG)n, THRAP2-2 (AC)n and THRAP2-3 (AC)n]. Our study population concerned 12 patients affected with AITDs belonging to a multiplex Tunisian family with high prevalence of AITDs. Fluorescent genotyping was carried out on ABI 3100 sequencers (Applied Biosystems USA) with the use of GENESCAN for semi-automated fragment sizing and GENOTYPER peak-calling software. Statistical analysis was performed using the non parametric Lod score (NPL) by Merlin software. Merlin outputs non-parametric NPLall (Z) and LOD scores and their corresponding asymptotic P values. The analysis for three intragenic markers in the THRAP2 gene revealed strong evidence for linkage (NPL=3.68, P=0.00012). Our results suggested the possible role of THRAP2 gene in AITDs susceptibility in this family.Keywords: autoimmunity, autoimmune disease, genetic, linkage analysis
Procedia PDF Downloads 1263453 Whole Coding Genome Inter-Clade Comparisons to Predict Global Cancer-Protecting Variants
Authors: Lamis Naddaf, Yuval Tabach
Abstract:
We identified missense genetic variants with the potential to enhance resistance against cancer. Such a field has not been widely explored as researchers tend to investigate the mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and have significant implications for improved risk estimation, diagnostics, prognosis, and even personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and selected the alleles that showed a correlation with the species’ cancer resistance. Interestingly, we found several amino acids that are more generally preferred (like the Proline) or avoided (like the Cysteine) by the resistant species. Furthermore, Cancer resistance in mammals and reptiles is significantly predicted by the number of the predicted protecting variants (PVs) a species has. Moreover, PVs-enriched-genes are enriched in pathways relevant to tumor suppression. For example, they are enriched in the Hedgehog signaling and silencing pathways, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are mostly more abundant in healthy people compared to cancer patients within different human races.Keywords: cancer resistance, protecting variant, naked mole rat, comparative genomics
Procedia PDF Downloads 1113452 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks
Authors: Tugba Bayoglu
Abstract:
Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification
Procedia PDF Downloads 2793451 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: cell formation problem, group technology, imperialist competitive algorithm, sequence data
Procedia PDF Downloads 4553450 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm
Procedia PDF Downloads 3613449 MMP-2 Gene Polymorphism and Its Influence on Serum MMP-2 Levels in Pre-Eclampsia in Indian Population
Authors: Ankush Kalra, Mirza Masroor, Usha Manaktala, B. C. Koner, T. K. Mishra
Abstract:
Introduction: Pre-eclampsia affects 3-5% of pregnancies worldwide and increases maternal-fetal morbidity and mortality. Reduced placental perfusion induces the release of biomolecules by the placenta into maternal circulation causing endothelial dysfunction. Zinc dependent matrix metalloproteinase-2 (MMP-2) may be up-regulated and interact with circulating factors of oxidative stress and inflammation to produce endothelial dysfunction in pre-eclampsia. Aim: To study the functional genetic polymorphism of MMP-2 gene (g-1306 C>T) in pre-eclampsia and its effect on serum MMP-2 levels in these patients. Method: Hundred pre-eclampsia patients and hundred age and gestation period matched healthy pregnant women with their consent were recruited in the study. Serum MMP-2 levels in all subjects were estimated using standard ELISA kits. MMP-2 gene (g.- 1306 C>T) SNPs were genotyped using whole blood by ASO-PCR. Result: The pre-eclampsia patients had higher serum levels of MMP-2 compared to the healthy pregnant (p < 0.05). Also the MMP-2 genotype was associated with significant alteration in the serum MMP-2 concentration in these patients (p < 0.05). Conclusion: This study results suggest an association of MMP-2 genetic polymorphism and serum levels of MMP-2 to the path physiology of hypertensive disorder of pregnancy.Keywords: allele specific oligonucleotide polymerase chain reaction (ASO-PCR), enzyme linked immunosorbent assay (ELISA), matrix metalloproteinase-2 (MMP-2), pre-eclampsia
Procedia PDF Downloads 3293448 Exploring the Genetic Architecture of Chicken Resistance to Avian Influenza Virus
Authors: Haile Berihulay, Chenglong Luo
Abstract:
Avian influenza, commonly known as bird flu, is a highly contagious viral disease primarily affecting poultry and wild birds, with significant implications for both animal health and public safety. The influenza virus (IV) is notorious for its ability to mutate and infect multiple species, including humans, leading to severe consequences. Avian influenza poses considerable pandemic risks due to the potential evolution of low pathogenic avian influenza (LPAI) into highly pathogenic avian influenza (HPAI), which can cause rapid outbreaks in domestic flocks. While AVI viruses typically do not replicate well in humans, strains such as H5N1 and H7N9 have crossed the species barrier, raising alarm over human infections. The recent documentation of human transmission of the H5N8 strain from birds underscores the ongoing threat posed by avian influenza. This review necessitates a thorough discussion about the genetic foundation of viral pathogens, identifying key candidate genes linked to disease resilience, and discussing powerful tools. This review can help researchers to comprehensively overview the disease severity and combat related to AIV, which causes significant economic impact and set effective control strategies to mitigate the risks associated with avian influenza outbreaks.Keywords: Avian, candidate genes, chicken, molecular, pathogen, virus
Procedia PDF Downloads 193447 Amharic Text News Classification Using Supervised Learning
Authors: Misrak Assefa
Abstract:
The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.Keywords: text categorization, supervised machine learning, naive Bayes, decision tree
Procedia PDF Downloads 2113446 Adaptive Energy-Aware Routing (AEAR) for Optimized Performance in Resource-Constrained Wireless Sensor Networks
Authors: Innocent Uzougbo Onwuegbuzie
Abstract:
Wireless Sensor Networks (WSNs) are crucial for numerous applications, yet they face significant challenges due to resource constraints such as limited power and memory. Traditional routing algorithms like Dijkstra, Ad hoc On-Demand Distance Vector (AODV), and Bellman-Ford, while effective in path establishment and discovery, are not optimized for the unique demands of WSNs due to their large memory footprint and power consumption. This paper introduces the Adaptive Energy-Aware Routing (AEAR) model, a solution designed to address these limitations. AEAR integrates reactive route discovery, localized decision-making using geographic information, energy-aware metrics, and dynamic adaptation to provide a robust and efficient routing strategy. We present a detailed comparative analysis using a dataset of 50 sensor nodes, evaluating power consumption, memory footprint, and path cost across AEAR, Dijkstra, AODV, and Bellman-Ford algorithms. Our results demonstrate that AEAR significantly reduces power consumption and memory usage while optimizing path weight. This improvement is achieved through adaptive mechanisms that balance energy efficiency and link quality, ensuring prolonged network lifespan and reliable communication. The AEAR model's superior performance underlines its potential as a viable routing solution for energy-constrained WSN environments, paving the way for more sustainable and resilient sensor network deployments.Keywords: wireless sensor networks (WSNs), adaptive energy-aware routing (AEAR), routing algorithms, energy, efficiency, network lifespan
Procedia PDF Downloads 373445 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 1283444 Emotional Intelligence as a Correlate of Conflict Management Styles among Managers and Supervisors in Work Organizations in Nigeria
Authors: Solomon Ojo
Abstract:
The study investigated emotional intelligence as a correlate of conflict management styles among managers and supervisors in work organization. The study was a survey and Ex-post facto design was employed. A total of 407 participants took part in the study, and the participants were selected across different work organizations in the six (6) existing Geo-political zones in Nigeria, namely South-West, South East, South-South, North-East, North-West and North-Central. Questionnaire format was used for data collection in the study. Collected data were analyzed by both the Descriptive and Inferential Statistics, specifically using the Statistical Package for Social Sciences (SPSS) version 21.0. The findings revealed that considerate leadership style was significantly and positively related to the use of collaborating conflict management style, [r(405) = .50**, P < .01]; Considerate leadership style was significantly and positively related to the use of compromising conflict management style, [r(405) = .3**, P < .01]; Considerate leadership style was significantly and positively related to accommodation conflict management style, [r(405) = .64**, P < .01]; Considerate leadership style was not significantly related to competing conflict management style, [r(405) = .07, P > .05]; Considerate leadership style was significantly and negatively related to avoiding conflict management style, [r(405) = -.38**, P < .01]. Further, initiating structural leadership style was significantly and positively related to competing conflict management style, [r(405) = .33**, P < .01], avoiding conflict management style, [r(405) = .41**, P < .01]; collaborating conflict management style [r(405) = 51**, P < .01]. However, the findings showed that initiating structural leadership style was significantly and negatively related to compromising style, [r(405) = -.57**, P < .01] and accommodating style, [r(405) = -.13**, P < .01]. The findings were extensively discussed in relation to the existing body of literature. Moreover, it was concluded that leadership styles of managers and supervisors play a crucial role in the choice and use of conflict management styles in work organizations in Nigeria.Keywords: conflict management style, emotional, intelligence, leadership style, consideration, initiating structure, work organizations
Procedia PDF Downloads 2653443 [Keynote Speech]: Determination of Naturally Occurring and Artificial Radionuclide Activity Concentrations in Marine Sediments in Western Marmara, Turkey
Authors: Erol Kam, Z. U. Yümün
Abstract:
Natural and artificial radionuclides cause radioactive contamination in environments, just as the other non-biodegradable pollutants (heavy metals, etc.) sink to the sea floor and accumulate in sediments. Especially the habitat of benthic foraminifera living on the surface of sediments or in sediments at the seafloor are affected by radioactive pollution in the marine environment. Thus, it is important for pollution analysis to determine the radionuclides. Radioactive pollution accumulates in the lowest level of the food chain and reaches humans at the highest level. The more the accumulation, the more the environment is endangered. This study used gamma spectrometry to investigate the natural and artificial radionuclide distribution of sediment samples taken from living benthic foraminifera habitats in the Western Marmara Sea. The radionuclides, K-40, Cs-137, Ra-226, Mn 54, Zr-95+ and Th-232, were identified in the sediment samples. For this purpose, 18 core samples were taken from depths of about 25-30 meters in the Marmara Sea in 2016. The locations of the core samples were specifically selected exclusively from discharge points for domestic and industrial areas, port locations, and so forth to represent pollution in the study area. Gamma spectrometric analysis was used to determine the radioactive properties of sediments. The radionuclide concentration activity values in the sediment samples obtained were Cs-137=0.9-9.4 Bq/kg, Th-232=18.9-86 Bq/kg, Ra-226=10-50 Bq/kg, K-40=24.4–670 Bq/kg, Mn 54=0.71–0.9 Bq/kg and Zr-95+=0.18–0.19 Bq/kg. These values were compared with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data, and an environmental analysis was carried out. The Ra-226 series, the Th-232 series, and the K-40 radionuclides accumulate naturally and are increasing every day due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to the UNSCEAR values, the K-40, and Th-232 series values were found to be high in almost all the locations.Keywords: Ra-226, Th-232, K-40, Cs-137, Mn 54, Zr-95+, radionuclides, Western Marmara Sea
Procedia PDF Downloads 4213442 Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives
Authors: Nataša Kalajdžija, Strahinja Kovačević, Davor Lončar, Sanja Podunavac Kuzmanović, Lidija Jevrić
Abstract:
In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated.Keywords: lipophilicity, QSRR, RP TLC retention, secoestranes
Procedia PDF Downloads 4573441 The Effect of Artificial Intelligence on Civil Engineering Outputs and Designs
Authors: Mina Youssef Makram Ibrahim
Abstract:
Engineering identity contributes to the professional and academic sustainability of female engineers. Recognizability is an important factor that shapes an engineer's identity. People who are deprived of real recognition often fail to create a positive identity. This study draws on Hornet’s recognition theory to identify factors that influence female civil engineers' sense of recognition. Over the past decade, a survey was created and distributed to 330 graduate students in the Department of Civil, Civil and Environmental Engineering at Iowa State University. Survey items include demographics, perceptions of a civil engineer's identity, and factors that influence recognition of a civil engineer's identity, such as B. Opinions about society and family. Descriptive analysis of survey responses revealed that perceptions of civil engineering varied significantly. The definitions of civil engineering provided by participants included the terms structure, design and infrastructure. Almost half of the participants said the main reason for studying Civil Engineering was their interest in the subject, and the majority said they were proud to be a civil engineer. Many study participants reported that their parents viewed them as civil engineers. Institutional and operational treatment was also found to have a significant impact on the recognition of women civil engineers. Almost half of the participants reported feeling isolated or ignored at work because of their gender. This research highlights the importance of recognition in developing the identity of women engineers.Keywords: civil service, hiring, merit, policing civil engineering, construction, surveying, mapping, pile civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy civil engineering, gender, identity, recognition
Procedia PDF Downloads 633440 Delaunay Triangulations Efficiency for Conduction-Convection Problems
Authors: Bashar Albaalbaki, Roger E. Khayat
Abstract:
This work is a comparative study on the effect of Delaunay triangulation algorithms on discretization error for conduction-convection conservation problems. A structured triangulation and many unstructured Delaunay triangulations using three popular algorithms for node placement strategies are used. The numerical method employed is the vertex-centered finite volume method. It is found that when the computational domain can be meshed using a structured triangulation, the discretization error is lower for structured triangulations compared to unstructured ones for only low Peclet number values, i.e. when conduction is dominant. However, as the Peclet number is increased and convection becomes more significant, the unstructured triangulations reduce the discretization error. Also, no statistical correlation between triangulation angle extremums and the discretization error is found using 200 samples of randomly generated Delaunay and non-Delaunay triangulations. Thus, the angle extremums cannot be an indicator of the discretization error on their own and need to be combined with other triangulation quality measures, which is the subject of further studies.Keywords: conduction-convection problems, Delaunay triangulation, discretization error, finite volume method
Procedia PDF Downloads 1033439 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points
Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk
Abstract:
The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression
Procedia PDF Downloads 1623438 Morphometric Parameters and Evaluation of Persian Fallow Deer Semen in Dashenaz Refuge in Iran
Authors: Behrang Ekrami, Amin Tamadon
Abstract:
Persian fallow deer (Dama dama mesopotamica) is belonging to the family Cervidae and is only found in a few protected areas in the northwest, north, and southwest of Iran. The aims of this study were analysis of inbreeding and morphometric parameters of semen in male Persian fallow deer to investigate the cause of reduced fertility of this endangered species in Dasht-e-Naz National Refuge, Sari, Iran. The Persian fallow deer semen was collected from four adult bucks randomly during the breeding and non-breeding season from five dehorned and horned deer's BY an artificial vagina. Twelve blood samples was taken from Persian fallow deer and mitochondrial DNA was extracted, amplified, extracted, sequenced, and then were considered for genetic analysis. The Persian fallow deer semen, both with normal and abnormal spermatozoa, is similar to that of domestic ruminants but very smaller and difficult to observe at the primary observation. The post-mating season collected ejaculates contained abnormal spermatozoa, debris and secretion of accessory glands in horned bucks and accessory glands secretion free of any spermatozoa in dehorned or early velvet budding bucks. Microscopic evaluation in all four bucks during the mating season showed the mean concentration of 9×106 spermatozoa/ml. The mean ±SD of age, testes length and testes width was 4.60±1.52 years, 3.58±0.32 and 1.86±0.09 cm, respectively. The results identified 1120 loci (assuming each nucleotide as locus) in which 377 were polymorphic. In conclusion, reduced fertility of male Persian fallow deer may be caused by inbreeding of the protected herd in a limited area of Dasht-e-Naz National Refuge.Keywords: Persian fallow deer, spermatozoa, reproductive characteristics, morphometric parameters
Procedia PDF Downloads 577