Search results for: 3D smart network composite structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11396

Search results for: 3D smart network composite structures

9176 Behavioural Studies on Multidirectional Reinforced 4-D Orthogonal Composites on Various Preform Configurations

Authors: Sriram Venkatesh, V. Murali Mohan, T. V. Karthikeyan

Abstract:

The main advantage of multi-directionally reinforced composites is the freedom to orient selected fibre types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D preforms fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications.

Keywords: multi-directionally reinforced composites, 4-D orthogonal preform, course weave, fine weave, fibre bundle spools, unit cell, fibre architecture, fibre volume fraction, fibre distribution

Procedia PDF Downloads 233
9175 Optimization of Leaching Properties of a Low-Grade Copper Ore Using Central Composite Design (CCD)

Authors: Lawrence Koech, Hilary Rutto, Olga Mothibedi

Abstract:

Worldwide demand for copper has led to intensive search for methods of extraction and recovery of copper from different sources. The study investigates the leaching properties of a low-grade copper ore by optimizing the leaching variables using response surface methodology. The effects of key parameters, i.e., temperature, solid to liquid ratio, stirring speed and pH, on the leaching rate constant was investigated using a pH stat apparatus. A Central Composite Design (CCD) of experiments was used to develop a quadratic model which specifically correlates the leaching variables and the rate constant. The results indicated that the model is in good agreement with the experimental data with a correlation coefficient (R2) of 0.93. The temperature and solid to liquid ratio were found to have the most substantial influence on the leaching rate constant. The optimum operating conditions for copper leaching from the ore were identified as temperature at 65C, solid to liquid ratio at 1.625 and stirring speed of 325 rpm which yielded an average leaching efficiency of 93.16%.

Keywords: copper, leaching, CCD, rate constant

Procedia PDF Downloads 242
9174 Experimental Networks Synchronization of Chua’s Circuit in Different Topologies

Authors: Manuel Meranza-Castillon, Rolando Diaz-Castillo, Adrian Arellano-Delgado, Cesar Cruz-Hernandez, Rosa Martha Lopez-Gutierrez

Abstract:

In this work, we deal with experimental network synchronization of chaotic nodes with different topologies. Our approach is based on complex system theory, and we use a master-slave configuration to couple the nodes in the networks. In particular, we design and implement electronically complex dynamical networks composed by nine coupled chaotic Chua’s circuits with topologies: in nearest-neighbor, small-world, open ring, star, and global. Also, network synchronization is evaluated according to a particular coupling strength for each topology. This study is important by the possible applications to private transmission of information in a chaotic communication network of multiple users.

Keywords: complex networks, Chua's circuit, experimental synchronization, multiple users

Procedia PDF Downloads 349
9173 Vibration Propagation in Structures Through Structural Intensity Analysis

Authors: Takhchi Jamal, Ouisse Morvan, Sadoulet-Reboul Emeline, Bouhaddi Noureddine, Gagliardini Laurent, Bornet Frederic, Lakrad Faouzi

Abstract:

Structural intensity is a technique that can be used to indicate both the magnitude and direction of power flow through a structure from the excitation source to the dissipation sink. However, current analysis is limited to the low frequency range. At medium and high frequencies, a rotational component appear in the field, masking the energy flow and make its understanding difficult or impossible. The objective of this work is to implement a methodology to filter out the rotational components of the structural intensity field in order to fully understand the energy flow in complex structures. The approach is based on the Helmholtz decomposition. It allows to decompose the structural intensity field into rotational, irrotational, and harmonic components. Only the irrotational component is needed to describe the net power flow from a source to a dissipative zone in the structure. The methodology has been applied on academic structures, and it allows a good analysis of the energy transfer paths.

Keywords: structural intensity, power flow, helmholt decomposition, irrotational intensity

Procedia PDF Downloads 178
9172 Cybersecurity for Digital Twins in the Built Environment: Research Landscape, Industry Attitudes and Future Direction

Authors: Kaznah Alshammari, Thomas Beach, Yacine Rezgui

Abstract:

Technological advances in the construction sector are helping to make smart cities a reality by means of cyber-physical systems (CPS). CPS integrate information and the physical world through the use of information communication technologies (ICT). An increasingly common goal in the built environment is to integrate building information models (BIM) with the Internet of Things (IoT) and sensor technologies using CPS. Future advances could see the adoption of digital twins, creating new opportunities for CPS using monitoring, simulation, and optimisation technologies. However, researchers often fail to fully consider the security implications. To date, it is not widely possible to assimilate BIM data and cybersecurity concepts, and, therefore, security has thus far been overlooked. This paper reviews the empirical literature concerning IoT applications in the built environment and discusses real-world applications of the IoT intended to enhance construction practices, people’s lives and bolster cybersecurity. Specifically, this research addresses two research questions: (a) how suitable are the current IoT and CPS security stacks to address the cybersecurity threats facing digital twins in the context of smart buildings and districts? and (b) what are the current obstacles to tackling cybersecurity threats to the built environment CPS? To answer these questions, this paper reviews the current state-of-the-art research concerning digital twins in the built environment, the IoT, BIM, urban cities, and cybersecurity. The results of these findings of this study confirmed the importance of using digital twins in both IoT and BIM. Also, eight reference zones across Europe have gained special recognition for their contributions to the advancement of IoT science. Therefore, this paper evaluates the use of digital twins in CPS to arrive at recommendations for expanding BIM specifications to facilitate IoT compliance, bolster cybersecurity and integrate digital twin and city standards in the smart cities of the future.

Keywords: BIM, cybersecurity, digital twins, IoT, urban cities

Procedia PDF Downloads 169
9171 5G Future Hyper-Dense Networks: An Empirical Study and Standardization Challenges

Authors: W. Hashim, H. Burok, N. Ghazaly, H. Ahmad Nasir, N. Mohamad Anas, A. F. Ismail, K. L. Yau

Abstract:

Future communication networks require devices that are able to work on a single platform but support heterogeneous operations which lead to service diversity and functional flexibility. This paper proposes two cognitive mechanisms termed cognitive hybrid function which is applied in multiple broadband user terminals in order to maintain reliable connectivity and preventing unnecessary interferences. By employing such mechanisms especially for future hyper-dense network, we can observe their performances in terms of optimized speed and power saving efficiency. Results were obtained from several empirical laboratory studies. It was found that selecting reliable network had shown a better optimized speed performance up to 37% improvement as compared without such function. In terms of power adjustment, our evaluation of this mechanism can reduce the power to 5dB while maintaining the same level of throughput at higher power performance. We also discuss the issues impacting future telecommunication standards whenever such devices get in place.

Keywords: dense network, intelligent network selection, multiple networks, transmit power adjustment

Procedia PDF Downloads 376
9170 Partially Phosphorylated Polyvinyl Phosphate-PPVP Composite: Synthesis and Its Potentiality for Zr (IV) Extraction from an Acidic Medium

Authors: Khaled Alshamari

Abstract:

Synthesized partially phosphorylated polyvinyl phosphate derivative (PPVP) was functionalized to extract Zirconium (IV) from Egyptian zircon sand. The specifications for the PPVP composite were approved effectively via different techniques, namely, FT-IR, XPS, BET, EDX, TGA, HNMR, C-NMR, GC-MS, XRD and ICP-OES analyses, which demonstrated a satisfactory synthesis of PPVP and zircon dissolution from Egyptian zircon sand. Factors controlling parameters, such as pH values, shaking time, initial zirconium concentration, PPVP dose, nitrate ions concentration, co-ions, temperature and eluting agents, have been optimized. At 25 ◦C, pH 0, 20 min shaking, 0.05 mol/L zirconium ions and 0.5 mol/L nitrate ions, PPVP has an exciting preservation potential of 195 mg/g, equivalent to 390 mg/L zirconium ions. From the extraction–distribution isotherm, the practical outcomes of Langmuir’s modeling are better than the Freundlich model, with a theoretical value of 196.07 mg/g, which is more in line with the experimental results of 195 mg/g. The zirconium ions adsorption onto the PPVP composite follows the pseudo-second-order kinetics with a theoretical capacity value of 204.08 mg/g. According to thermodynamic potential, the extraction process was expected to be an exothermic, spontaneous and beneficial extraction at low temperatures. The thermodynamic parameters ∆S (−0.03 kJ/mol), ∆H (−12.22 kJ/mol) and ∆G were also considered. As the temperature grows, ∆G values increase from −2.948 kJ/mol at 298 K to −1.941 kJ/mol at 338 K. Zirconium ions may be eluted from the working loaded PPVP by 0.025M HNO₃, with a 99% efficiency rate. It was found that zirconium ions revealed good separation factors towards some co-ions such as Hf⁴+ (28.82), Fe³+ (10.64), Ti⁴+ (28.82), V⁵+ (86.46) and U⁶+ (68.17). A successful alkali fusion technique with NaOH flux followed by the extraction with PPVP is used to obtain a high-purity zirconia concentrate with a zircon content of 72.77 % and a purity of 98.29%. As a result of this, the improved factors could finally be used.

Keywords: zirconium extraction, partially phosphorylated polyvinyl phosphate (PPVP), acidic medium, zircon

Procedia PDF Downloads 66
9169 Metaverse in Future Personal Healthcare Industry: From Telemedicine to Telepresence

Authors: Mohammed Saeed Jawad

Abstract:

Metaverse involves the convergence of three major technologies trends of AI, VR, and AR. Together these three technologies can provide an entirely new channel for delivering healthcare with great potential to lower costs and improve patient outcomes on a larger scale. Telepresence is the technology that allows people to be together even if they are physically apart. Medical doctors can be symbolic as interactive avatars developed to have smart conversations and medical recommendations for patients at the different stages of the treatment. Medical digital assets such as Medical IoT for real-time remote healthcare monitoring as well as the symbolic doctors’ avatars as well as the hospital and clinical physical constructions and layout can be immersed in extended realities 3D metaverse environments where doctors, nurses, and patients can interact and socialized with the related digital assets that facilitate the data analytics of the sensed and collected personal medical data with visualized interaction of the digital twin of the patient’s body as well as the medical doctors' smart conversation and consultation or even in a guided remote-surgery operation.

Keywords: personal healthcare, metaverse, telemedicine, telepresence, avatar, medical consultation, remote-surgery

Procedia PDF Downloads 135
9168 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 65
9167 Analysis of Drilling Parameters for Al-Mg2-Si Metal Matrix Composite

Authors: S. Jahangir, S. H. I. Jaffery, M. Khan, Z. Zareef, A. Yar, A. Mubashir, S. Butt, L. Ali

Abstract:

In this work, drilling responses and behavior of MMC was investigated in Al-Mg2Si composites. For the purpose Al-15% wt. Mg2Si, was selected from the hypereutectic region of Al- Mg2Si phase diagram. Based on hardness and tensile strength, drill bit of appropriate material and morphology was selected. The performance of different drill bits of different morphology and material was studied and analysed using experimental data. For theoretical calculations of axial thrust force and required power calculation, material factor “K” was obtained from different data charts and at the same time cutting forces (drilling forces) were practically obtained using a Peizo electric force dynamometer. These results show the role of reinforcement particles on the machinability of MMCs and provide a useful guide for a better control and optimized drilling parameters for the drilling process. Furthermore, in this work, comparison of MMC with non -reinforced Aluminum Alloy regarding drilling operation was also studied.

Keywords: drilling, metal matrix composite (MMC), cutting forces, thrust force

Procedia PDF Downloads 431
9166 Utilization of “Adlai” (Coix lacryma-jobi L) Flour as Wheat Flour Extender in Selected Baked Products in the Philippines

Authors: Rolando B. Llave Jr.

Abstract:

In many countries, wheat flour is used an essential component in production/preparation of bread and other baked products considered to have a significant role in man’s diet. Partial replacement of wheat flour with other flours (composite flour) in preparation of the said products is seen as a solution to the scarcity of wheat flour (in non-wheat producing countries), and improved nourishment. In composite flour, other flours may come from cereals, legumes, root crops, and those that are rich in starch. Many countries utilize whatever is locally available. “Adlai” or Job’s tears is a tall cereal plant that belongs to the same family of grass as wheat, rice, and corn. In some countries, it is used as an ingredient in producing many dishes and alcoholic and non-alcoholic beverages. As part of the Food Staple Self-Sufficiency Program (FSSP) of the Department of Agriculture (DA) in the Philippines, “adlai” is being promoted as alternative food source for the Filipinos. In this study, the grits coming from the seeds of “adlai” were turned into flour. The resulting flour was then used as partial replacement for wheat flour in selected baked products namely “pan de sal” (salt bread), cupcakes and cookies. The supplementation of “adlai” flour ranged 20%-45% with 20%-35% for “pan de sal”; 30%-45% for cupcakes; and 25% - 40% for cookies. The study was composed of four (4) phases. Phase I was product formulation studies. Phase II included the acceptability test/sensory evaluation of the baked products where the statistical analysis of the data gathered followed. Phase III was the computation of the theoretical protein content of the most acceptable “pan de sal”, cupcake and cookie, and lastly, in Phase IV, cost benefit was analyzed, specifically in terms of the direct material cost.

Keywords: “adlai”, composite flour, supplementation, sensory evaluation

Procedia PDF Downloads 869
9165 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves

Authors: Reza Abbasi, Ahmad Hamidi Benam

Abstract:

Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.

Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm

Procedia PDF Downloads 231
9164 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 474
9163 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 73
9162 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks

Procedia PDF Downloads 390
9161 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members

Authors: J. Bartus, J. Odrobinak

Abstract:

The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.

Keywords: Ansys, concrete, modeling, steel

Procedia PDF Downloads 121
9160 'Call Drop': A Problem for Handover Minimizing the Call Drop Probability Using Analytical and Statistical Method

Authors: Anshul Gupta, T. Shankar

Abstract:

In this paper, we had analyzed the call drop to provide a good quality of service to user. By optimizing it we can increase the coverage area and also the reduction of interference and congestion created in a network. Basically handover is the transfer of call from one cell site to another site during a call. Here we have analyzed the whole network by two method-statistic model and analytic model. In statistic model we have collected all the data of a network during busy hour and normal 24 hours and in analytic model we have the equation through which we have to find the call drop probability. By avoiding unnecessary handovers we can increase the number of calls per hour. The most important parameter is co-efficient of variation on which the whole paper discussed.

Keywords: coefficient of variation, mean, standard deviation, call drop probability, handover

Procedia PDF Downloads 491
9159 Urban Networks as Model of Sustainable Design

Authors: Agryzkov Taras, Oliver Jose L., Tortosa Leandro, Vicent Jose

Abstract:

This paper aims to demonstrate how the consideration of cities as a special kind of complex network, called urban network, may lead to the use of design tools coming from network theories which, in fact, results in a quite sustainable approach. There is no doubt that the irruption in contemporary thought of Gaia as an essential political agent proposes a narrative that has been extended to the field of creative processes in which, of course, the activity of Urban Design is found. The rationalist paradigm is put in crisis, and from the so-called sciences of complexity, its way of describing reality and of intervening in it is questioned. Thus, a new way of understanding reality surges, which has to do with a redefinition of the human being's own place in what is now understood as a delicate and complex network. In this sense, we know that in these systems of connected and interdependent elements, the influences generated by them originate emergent properties and behaviors for the whole that, individually studied, would not make sense. We believe that the design of cities cannot remain oblivious to these principles, and therefore this research aims to demonstrate the potential that they have for decision-making in the urban environment. Thus, we will see an example of action in the field of public mobility, another example in the design of commercial areas, and a third example in the field of redensification of sprawl areas, in which different aspects of network theory have been applied to change the urban design. We think that even though these actions have been developed in European cities, and more specifically in the Mediterranean area in Spain, the reflections and tools could have a broader scope of action.

Keywords: graphs, complexity sciences, urban networks, urban design

Procedia PDF Downloads 154
9158 Network Mobility Support in Content-Centric Internet

Authors: Zhiwei Yan, Jong-Hyouk Lee, Yong-Jin Park, Xiaodong Lee

Abstract:

In this paper, we analyze NEtwork MObility (NEMO) supporting problems in Content-Centric Networking (CCN), and propose the CCN-NEMO which can well support the deployment of the content-centric paradigm in large-scale mobile Internet. The CCN-NEMO extends the signaling message of the basic CCN protocol, to support the mobility discovery and fast trigger of Interest re-issuing during the network mobility. Besides, the Mobile Router (MR) is extended to optimize the content searching and relaying in the local subnet. These features can be employed by the nested NEMO to maximize the advantages of content retrieving with CCN. Based on the analysis, we compare the performance on handover latency between the basic CCN and our proposed CCN-NEMO. The results show that our scheme can facilitate the content-retrieving in the NEMO scenario with improved performance.

Keywords: NEMO, CCN, mobility, handover latency

Procedia PDF Downloads 470
9157 Evaluation of National Research Motivation Evolution with Improved Social Influence Network Theory Model: A Case Study of Artificial Intelligence

Authors: Yating Yang, Xue Zhang, Chengli Zhao

Abstract:

In the increasingly interconnected global environment brought about by globalization, it is crucial for countries to timely grasp the development motivations in relevant research fields of other countries and seize development opportunities. Motivation, as the intrinsic driving force behind actions, is abstract in nature, making it difficult to directly measure and evaluate. Drawing on the ideas of social influence network theory, the research motivations of a country can be understood as the driving force behind the development of its science and technology sector, which is simultaneously influenced by both the country itself and other countries/regions. In response to this issue, this paper improves upon Friedkin's social influence network theory and applies it to motivation description, constructing a dynamic alliance network and hostile network centered around the United States and China, as well as a sensitivity matrix, to remotely assess the changes in national research motivations under the influence of international relations. Taking artificial intelligence as a case study, the research reveals that the motivations of most countries/regions are declining, gradually shifting from a neutral attitude to a negative one. The motivation of the United States is hardly influenced by other countries/regions and remains at a high level, while the motivation of China has been consistently increasing in recent years. By comparing the results with real data, it is found that this model can reflect, to some extent, the trends in national motivations.

Keywords: influence network theory, remote assessment, relation matrix, dynamic sensitivity matrix

Procedia PDF Downloads 68
9156 Functionalized Ultra-Soft Rubber for Soft Robotics Application

Authors: Shib Shankar Banerjeea, Andreas Ferya, Gert Heinricha, Amit Das

Abstract:

Recently, the growing need for the development of soft robots consisting of highly deformable and compliance materials emerge from the serious limitations of conventional service robots. However, one of the main challenges of soft robotics is to develop such compliance materials, which facilitates the design of soft robotic structures and, simultaneously, controls the soft-body systems, like soft artificial muscles. Generally, silicone or acrylic-based elastomer composites are used for soft robotics. However, mechanical performance and long-term reliabilities of the functional parts (sensors, actuators, main body) of the robot made from these composite materials are inferior. This work will present the development and characterization of robust super-soft programmable elastomeric materials from crosslinked natural rubber that can serve as touch and strain sensors for soft robotic arms with very high elastic properties and strain, while the modulus is altered in the kilopascal range. Our results suggest that such soft natural programmable elastomers can be promising materials and can replace conventional silicone-based elastomer for soft robotics applications.

Keywords: elastomers, soft materials, natural rubber, sensors

Procedia PDF Downloads 155
9155 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection

Authors: Tim Farrelly

Abstract:

In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.

Keywords: deep learning, object detection, machine vision applications, sport, network design

Procedia PDF Downloads 146
9154 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model

Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi

Abstract:

Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.

Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models

Procedia PDF Downloads 128
9153 Design and Implementation of Reliable Location-Based Social Community Services

Authors: B. J. Kim, K. W. Nam, S. J. Lee

Abstract:

Traditional social network services provide users with more information than is needed, and it is not easy to verify the authenticity of the information. This paper proposes a system that can only post messages where users are located to enhance the reliability of social networking services. The proposed system implements a Google Map API to post postings on the map and to read postings within a range of distances from the users’ location. The proposed system will only provide alerts, memories, and information about locations within a given range depending on the users' current location, providing reliable information that they believe will be necessary in real time. It is expected that the proposed system will be able to meet the real demands of users and create a more reliable social network services environment.

Keywords: social network, location, reliability, posting

Procedia PDF Downloads 257
9152 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets

Authors: Cristian Pauna

Abstract:

Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network

Procedia PDF Downloads 160
9151 Reconfigurable Intelligent Surfaces (RIS)-Assisted Integrated Leo Satellite and UAV for Non-terrestrial Networks Using a Deep Reinforcement Learning Approach

Authors: Tesfaw Belayneh Abebe

Abstract:

Integrating low-altitude earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN) with the assistance of reconfigurable intelligent surfaces (RIS), we investigate the problem of how to enhance throughput through integrated LEO satellites and UAVs with the assistance of RIS. We propose a method to jointly optimize the associations with the LEO satellite, the 3D trajectory of the UAV, and the phase shifts of the RIS to maximize communication throughput for RIS-assisted integrated LEO satellite and UAV-enabled wireless communications, which is challenging due to the time-varying changes in the position of the LEO satellite, the high mobility of UAVs, an enormous number of possible control actions, and also the large number of RIS elements. Utilizing a multi-agent double deep Q-network (MADDQN), our approach dynamically adjusts LEO satellite association, UAV positioning, and RIS phase shifts. Simulation results demonstrate that our method significantly outperforms baseline strategies in maximizing throughput. Lastly, thanks to the integrated network and the RIS, the proposed scheme achieves up to 65.66x higher peak throughput and 25.09x higher worst-case throughput.

Keywords: integrating low-altitude earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN), reconfigurable intelligent surfaces (RIS), multi-agent double deep Q-network (MADDQN)

Procedia PDF Downloads 48
9150 Models, Methods and Technologies for Protection of Critical Infrastructures from Cyber-Physical Threats

Authors: Ivan Župan

Abstract:

Critical infrastructure is essential for the functioning of a country and is designated for special protection by governments worldwide. Due to the increase in smart technology usage in every facet of the industry, including critical infrastructure, the exposure to malicious cyber-physical attacks has grown in the last few years. Proper security measures must be undertaken in order to defend against cyber-physical threats that can disrupt the normal functioning of critical infrastructure and, consequently the functioning of the country. This paper provides a review of the scientific literature of models, methods and technologies used to protect from cyber-physical threats in industries. The focus of the literature was observed from three aspects. The first aspect, resilience, concerns itself with the robustness of the system’s defense against threats, as well as preparation and education about potential future threats. The second aspect concerns security risk management for systems with cyber-physical aspects, and the third aspect investigates available testbed environments for testing developed models on scaled models of vulnerable infrastructure.

Keywords: critical infrastructure, cyber-physical security, smart industry, security methodology, security technology

Procedia PDF Downloads 77
9149 Modbus Gateway Design Using Arm Microprocessor

Authors: Semanur Savruk, Onur Akbatı

Abstract:

Integration of various communication protocols into an automation system causes a rise in setup and maintenance cost and make to control network devices in difficulty. The gateway becomes necessary for reducing complexity in network topology. In this study, Modbus RTU/Modbus TCP industrial ethernet gateway design and implementation are presented with ARM embedded system and FreeRTOS real-time operating system. The Modbus gateway can perform communication with Modbus RTU and Modbus TCP devices over itself. Moreover, the gateway can be adjustable with the user-interface application or messaging interface. Conducted experiments and the results are presented in the paper. Eventually, the proposed system is a complete, low-cost, real-time, and user-friendly design for monitoring and setting devices and useful for meeting remote control purposes.

Keywords: gateway, industrial communication, modbus, network

Procedia PDF Downloads 141
9148 Suppressing Vibration in a Three-axis Flexible Satellite: An Approach with Composite Control

Authors: Jalal Eddine Benmansour, Khouane Boulanoir, Nacera Bekhadda, Elhassen Benfriha

Abstract:

This paper introduces a novel composite control approach that addresses the challenge of stabilizing the three-axis attitude of a flexible satellite in the presence of vibrations caused by flexible appendages. The key contribution of this research lies in the development of a disturbance observer, which effectively observes and estimates the unwanted torques induced by the vibrations. By utilizing the estimated disturbance, the proposed approach enables efficient compensation for the detrimental effects of vibrations on the satellite system. To govern the attitude angles of the spacecraft, a proportional derivative controller (PD) is specifically designed and proposed. The PD controller ensures precise control over all attitude angles, facilitating stable and accurate spacecraft maneuvering. In order to demonstrate the global stability of the system, the Lyapunov method, a well-established technique in control theory, is employed. Through rigorous analysis, the Lyapunov method verifies the convergence of system dynamics, providing strong evidence of system stability. To evaluate the performance and efficacy of the proposed control algorithm, extensive simulations are conducted. The simulation results validate the effectiveness of the combined approach, showcasing significant improvements in the stabilization and control of the satellite's attitude, even in the presence of disruptive vibrations from flexible appendages. This novel composite control approach presented in this paper contributes to the advancement of satellite attitude control techniques, offering a promising solution for achieving enhanced stability and precision in challenging operational environments.

Keywords: attitude control, flexible satellite, vibration control, disturbance observer

Procedia PDF Downloads 86
9147 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector

Authors: Ahmed Al-Adaileh, Souheil Khaddaj

Abstract:

Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.

Keywords: smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data

Procedia PDF Downloads 196