Search results for: sodium fast reactors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2943

Search results for: sodium fast reactors

753 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers

Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek

Abstract:

Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.

Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations

Procedia PDF Downloads 131
752 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 314
751 Historical Analysis of the Landscape Changes and the Eco-Environment Effects on the Coastal Zone of Bohai Bay, China

Authors: Juan Zhou, Lusan Liu, Yanzhong Zhu, Kuixuan Lin, Wenqian Cai, Yu Wang, Xing Wang

Abstract:

During the past few decades, there has been an increase in the number of coastal land reclamation projects for residential, commercial and industrial purposes in more and more coastal cities of China, which led to the destruction of the wetlands and loss of the sensitive marine habitats. Meanwhile, the influences and nature of these projects attract widespread public and academic concern. For identifying the trend of landscape (esp. Coastal reclamation) and ecological environment changes, understanding of which interacted, and offering a general science for the development of regional plans. In the paper, a case study was carried out in Bohai Bay area, based on the analysis of remote sensing data. Land use maps were created for 1954, 1970, 1981, 1990, 2000 and 2010. Landscape metrics were calculated and illustrated that the degree of reclamation changes was linked to the hydrodynamic environment and macrobenthos community. The results indicated that the worst of the loss of initial areas occurred during 1954-1970, with 65.6% lost mostly to salt field; to 2010, Coastal reclamation area increased more than 200km² as artificial landscape. The numerical simulation of tidal current field in 2003 and 2010 respectively showed that the flow velocity in offshore became faster (from 2-5 cm/s to 10-20 cm/s), and the flow direction seem to go astray. These significant changes of coastline were not conducive to the spread of pollutants and degradation. Additionally, the dominant macrobenthos analysis from 1958 to 2012 showed that Musculus senhousei (Benson, 1842) spread very fast and had been the predominant species in the recent years, which was a disturbance tolerant species.

Keywords: Bohai Bay, coastal reclamation, landscape change, spatial patterns

Procedia PDF Downloads 286
750 Electronic Payment Recording with Payment History Retrieval Module: A System Software

Authors: Adrian Forca, Simeon Cainday III

Abstract:

The Electronic Payment Recording with Payment History Retrieval Module is developed intendedly for the College of Science and Technology. This system software innovates the manual process of recording the payments done in the department through the development of electronic payment recording system software shifting from the slow and time-consuming procedure to quick yet reliable and accurate way of recording payments because it immediately generates receipts for every transaction. As an added feature to its software process, generation of recorded payment report is integrated eliminating the manual reporting to a more easy and consolidated report. As an added feature to the system, all recorded payments of the students can be retrieved immediately making the system transparent and reliable payment recording software. Viewing the whole process, the system software will shift from the manual process to an organized software technology because the information will be stored in a logically correct and normalized database. Further, the software will be developed using the modern programming language and implement strict programming methods to validate all users accessing the system, evaluate all data passed into the system and information retrieved to ensure data accuracy and reliability. In addition, the system will identify the user and limit its access privilege to establish boundaries of the specific access to information allowed for the store, modify, and update making the information secure against unauthorized data manipulation. As a result, the System software will eliminate the manual procedure and replace with an innovative modern information technology resulting to the improvement of the whole process of payment recording fast, secure, accurate and reliable software innovations.

Keywords: collection, information system, manual procedure, payment

Procedia PDF Downloads 160
749 An Ensemble System of Classifiers for Computer-Aided Volcano Monitoring

Authors: Flavio Cannavo

Abstract:

Continuous evaluation of the status of potentially hazardous volcanos plays a key role for civil protection purposes. The importance of monitoring volcanic activity, especially for energetic paroxysms that usually come with tephra emissions, is crucial not only for exposures to the local population but also for airline traffic. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the high nonlinearity of the complex and coupled volcanic dynamics leads to a large variety of different volcanic behaviors. Moreover, continuously measured parameters (e.g. seismic, deformation, infrasonic and geochemical signals) are often not able to fully explain the ongoing phenomenon, thus making the fast volcano state assessment a very puzzling task for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, here we introduce a system based on an ensemble of data-driven classifiers to infer automatically the ongoing volcano status from all the available different kind of measurements. The system consists of a heterogeneous set of independent classifiers, each one built with its own data and algorithm. Each classifier gives an output about the volcanic status. The ensemble technique allows weighting the single classifier output to combine all the classifications into a single status that maximizes the performance. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision-making purposes.

Keywords: Bayesian networks, expert system, mount Etna, volcano monitoring

Procedia PDF Downloads 240
748 Solar-Blind Ni-Schottky Photodetector Based on MOCVD Grown ZnGa₂O₄

Authors: Taslim Khan, Ray Hua Horng, Rajendra Singh

Abstract:

This study presents a comprehensive analysis of the design, fabrication, and performance evaluation of a solar-blind Schottky photodetector based on ZnGa₂O₄ grown via MOCVD, utilizing Ni/Au as the Schottky electrode. ZnGa₂O₄, with its wide bandgap of 5.2 eV, is well-suited for high-performance solar-blind photodetection applications. The photodetector demonstrates an impressive responsivity of 280 A/W, indicating its exceptional sensitivity within the solar-blind ultraviolet band. One of the device's notable attributes is its high rejection ratio of 10⁵, which effectively filters out unwanted background signals, enhancing its reliability in various environments. The photodetector also boasts a photodetector responsivity contrast ratio (PDCR) of 10⁷, showcasing its ability to detect even minor changes in incident UV light. Additionally, the device features an outstanding detective of 10¹⁸ Jones, underscoring its capability to precisely detect faint UV signals. It exhibits a fast response time of 80 ms and an ON/OFF ratio of 10⁵, making it suitable for real-time UV sensing applications. The noise-equivalent power (NEP) of 10^-17 W/Hz further highlights its efficiency in detecting low-intensity UV signals. The photodetector also achieves a high forward-to-backward current rejection ratio of 10⁶, ensuring high selectivity. Furthermore, the device maintains an extremely low dark current of approximately 0.1 pA. These findings position the ZnGa₂O₄-based Schottky photodetector as a leading candidate for solar-blind UV detection applications. It offers a compelling combination of sensitivity, selectivity, and operational efficiency, making it a highly promising tool for environments requiring precise and reliable UV detection.

Keywords: wideband gap, solar blind photodetector, MOCVD, zinc gallate

Procedia PDF Downloads 31
747 Pain Management in Burn Wounds with Dual Drug Loaded Double Layered Nano-Fiber Based Dressing

Authors: Sharjeel Abid, Tanveer Hussain, Ahsan Nazir, Abdul Zahir, Nabyl Khenoussi

Abstract:

Localized application of drug has various advantages and fewer side effects as compared with other methods. Burn patients suffer from swear pain and the major aspects that are considered for burn victims include pain and infection management. Nano-fibers (NFs) loaded with drug, applied on local wound area, can solve these problems. Therefore, this study dealt with the fabrication of drug loaded NFs for better pain management. Two layers of NFs were fabricated with different drugs. Contact layer was loaded with Gabapentin (a nerve painkiller) and the second layer with acetaminophen. The fabricated dressing was characterized using scanning electron microscope, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction and UV-Vis Spectroscopy. The double layered based NFs dressing was designed to have both initial burst release followed by slow release to cope with pain for two days. The fabricated nanofibers showed diameter < 300 nm. The liquid absorption capacity of the NFs was also checked to deal with the exudate. The fabricated double layered dressing with dual drug loading and release showed promising results that could be used for dealing pain in burn victims. It was observed that by the addition of drug, the size of nanofibers was reduced, on the other hand, the crystallinity %age was increased, and liquid absorption decreased. The combination of fast nerve pain killer release followed by slow release of non-steroidal anti-inflammatory drug could be a good tool to reduce pain in a more secure manner with fewer side effects.

Keywords: pain management, burn wounds, nano-fibers, controlled drug release

Procedia PDF Downloads 247
746 Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/Graphene Nanocomposite

Authors: Bekan Bogale, Tsegaye Girma Asere, Tilahun Yai, Fekadu Melak

Abstract:

Aims: To study photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite. Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This, in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been combined with cuprous oxides, resulting in cuprous oxide/graphene nanocomposite as a promising photocatalyst. Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of methylene blue (MB) dye degradation. Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using the facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation. Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticles (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of photocatalytic MB degradation. Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as high-performance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye.

Keywords: methylene blue, photocatalysis, cuprous oxide, graphene nanocomposite

Procedia PDF Downloads 182
745 Finite Deformation of a Dielectric Elastomeric Spherical Shell Based on a New Nonlinear Electroelastic Constitutive Theory

Authors: Odunayo Olawuyi Fadodun

Abstract:

Dielectric elastomers (DEs) are a type of intelligent materials with salient features like electromechanical coupling, lightweight, fast actuation speed, low cost and high energy density that make them good candidates for numerous engineering applications. This paper adopts a new nonlinear electroelastic constitutive theory to examine radial deformation of a pressurized thick-walled spherical shell of soft dielectric material with compliant electrodes on its inner and outer surfaces. A general formular for the internal pressure, which depends on the deformation and a potential difference between boundary electrodes or uniform surface charge distributions, is obtained in terms of special function. To illustrate the effects of an applied electric field on the mechanical behaviour of the shell, three different energy functions with distinct mechanical properties are employed for numerical purposes. The observed behaviour of the shells is preserved in the presence of an applied electric field, and the influence of the field due to a potential difference declines more slowly with the increasing deformation to that produced by a surface charge. Counterpart results are then presented for the thin-walled shell approximation as a limiting case of a thick-walled shell without restriction on the energy density. In the absence of internal pressure, it is obtained that inflation is caused by the application of an electric field. The resulting numerical solutions of the theory presented in this work are in agreement with those predicted by the generally adopted Dorfmann and Ogden model.

Keywords: constitutive theory, elastic dielectric, electroelasticity, finite deformation, nonlinear response, spherical shell

Procedia PDF Downloads 86
744 Questioning the Relationship Between Young People and Fake News Through Their Use of Social Media

Authors: Marion Billard

Abstract:

This paper will focus on the question of the real relationship between young people and fake news. Fake news is one of today’s main issues in the world of information and communication. Social media and its democratization helped to spread false information. According to traditional beliefs, young people are more inclined to believe what they read through social media. But, the individuals concerned, think that they are more inclined to make a distinction between real and fake news. This phenomenon is due to their use of the internet and social media from an early age. During the 2016 and 2017 French and American presidential campaigns, the term fake news was in the mouth of the entire world and became a real issue in the field of information. While young people were informing themselves with newspapers or television until the beginning of the ’90s, Gen Z (meaning people born between 1997 and 2010), has always been immersed in this world of fast communication. They know how to use social media from a young age and the internet has no secret for them. Today, despite the sporadic use of traditional media, young people tend to turn to their smartphones and social networks such as Instagram or Twitter to stay abreast of the latest news. The growth of social media information led to an “ambient journalism”, giving access to an endless quantity of information. Waking up in the morning, young people will see little posts with short texts supplying the essential of the news, without, for the most, many details. As a result, impressionable people are not able to do a distinction between real media, and “junk news” or Fake News. This massive use of social media is probably explained by the inability of the youngsters to find connections between the communication of the traditional media and what they are living. The question arises if this over-confidence of the young people in their ability to distinguish between accurate and fake news would not make it more difficult for them to examine critically the information. Their relationship with media and fake news is more complex than popular opinion. Today’s young people are not the master in the quest for information, nor inherently the most impressionable public on social media.

Keywords: fake news, youngsters, social media, information, generation

Procedia PDF Downloads 153
743 Ghrelin, Obestatin and Ghrelin/Obestatin Ratio: A Postprandial Study in Healthy Subjects of Normal Weight

Authors: Panagiotis T. Kanellos, Vaios T. Karathanos, Andriana C. Kaliora

Abstract:

Introduction: The role of ghrelin and obestatin in appetite regulation has been investigated. However, data on ghrelin and obestatin changes after food ingestion are negligible. Objective: We aimed at assessing the appetite-regulating hormones, ghrelin, and obestatin, and furthermore calculate ghrelin/obestatin ratio in healthy normal-weight subjects after consumption of raisins. This survey is a comparative study of a glucose control with raisins containing fructose and glucose in similar concentrations as well as fibers. Methodology: Ten apparently healthy subjects who reported no history of glucose intolerance, diabetes, gastrointestinal disorders, or recent use of any antibiotics were enrolled in the study. The raisins used (Vitis vinifera) originate in Greece and are distributed worldwide as Corinthian raisins. In a randomized crossover design, all subjects after an overnight fast consumed, either 50g of glucose diluted in 240 mL of water (control) or 74 g of raisins (sugar content 50 g) with a 5-day interval between individual trials. Vein blood samples were collected at baseline and at 60, 120 and 180 min postprandially. In blood samples ghrelin and obestatin were measured applying specific enzyme linked immuno absorbent assays. Results: The subjects were of mean age 26.3 years, with BMI of 21.6 kg/m2, waist circumference of 77.7 cm, normal serum lipidemic parameters and normal HbA1c levels. Ghrelin levels were significantly lower after raisin consumption compared to glucose at 120 and at 180 min post-ingestion (p= 0.011 and p= 0.035, respectively). However, obestatin did not reach statistical significance between the two interventions. The ghrelin/obestatin ratio was found significantly lower (p=0.020) at 120 min after raisin ingestion compared to control. Conclusion: Two isocaloric foods containing equal amounts of sugars, however with a different composition, have different effects on appetite hormones ghrelin and obestatin in normal-weight healthy subjects.

Keywords: appetite, ghrelin, obestatin, raisins

Procedia PDF Downloads 392
742 Assessing Economic Losses Of 2104 Flood Disaster: A Case Study on Dabong, Kelantan, Malaysia

Authors: Ahmad Hamidi Mohamed, Jamaluddin Othman, Mashitah Suid, Mohd Zaim Mohd Shukri

Abstract:

Floods are considered an annual natural disaster in Kelantan. However, the record-setting flood of 2014 was a 'tsunami-like disaster'. A study has been conducted with the objectives to assess the economic impact of the flood to the resident of Dabong area in Kelantan Darul Naim, Malaysia. This area was selected due to the severity during the flood. The impacts of flood on local people were done by conducting structured interviews with the use of questionnaires. The questionnaire was intended to acquire information on losses faced by Dabong residence. Questionnaires covered various areas of inconveniences suffered with respect to health effects, including illnesses suffered, their intensities, duration and their associated costs. Loss of productivity and quality of life was also assessed. Inquiries were made to Government agencies to obtain relevant statistical data regarding the loss due to the flood tragedy. The data collected by giving formal request to the governmental agencies and formal meetings were done. From the study a staggering amount of losses were calculated. This figure comes from losses of property, Farmers/Agriculture, Traders/Business, Health, Insurance and Governmental losses. Flood brings hardship to the people of Dabong and these losses of home will cause inconveniences to the society. The huge amount of economic loss extracted from this study shows that federal and state government of Kelantan need to find out the cause of the major flood in 2014. Fast and effective measures have to be planned and implemented in flood prone area to prevent same tragedy happens in the future.

Keywords: economic impact, flood tragedy, Malaysia, property losses

Procedia PDF Downloads 262
741 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection

Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine

Abstract:

Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.

Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine

Procedia PDF Downloads 261
740 Critical Reading Achievement of Rural Migrant Children in China: The Roles of Educational Expectation

Authors: Liman Zhao, Jianlong Zhang, Mingman Ren, Chuang Wang, Jian Liu

Abstract:

Rural migrant children have become a fast-growing population in China as a consequence of the large-scale population flow from rural to urban areas in the context of urbanization. In China, the socioeconomic status of migrant children is relatively low in comparison to non-migrant children. Parents of migrant children often work in occupations with long working hours, high labor intensity, and low pay due to their poor academic qualifications. Most migrant children's parents have not received higher education and have no time to read with their children. The family of migrant children usually does not have a good collection of books either, which leads to these children’s insufficient reading and low reading levels. Moreover, migrant children frequently relocate with their parents, and their needs for knowledge and reading are often neglected by schools, which puts migrant children at risk of academic failure in China. Therefore, the academic achievement of rural migrant children has become a focus of education in China. This study explores the relationship between the educational expectation of rural migrant children and their critical reading competence in general and the moderating effect of the difference between parental educational expectation to their children and the children’s own educational expectation. The responses to a survey from 5113 seventh-grade children in a district of the capital city in China revealed that children who moved to cities in grades 4-6 of primary school performed the best in critical reading, and children who moved to cities after middle school showed the worst performance in critical reading. In addition, parents’ educational expectations of their children and their own educational expectations were both significant predictors of rural migrant children’s reading competence. The higher a child's expectations of a degree and the smaller the gap between parents' expectations of a child's education and the child's own education expectations, the better the child's performance in critical reading.

Keywords: educational expectation, critical reading competence, rural migrant children, moderating effect

Procedia PDF Downloads 193
739 Commercial Law Between Custom and Islamic Law

Authors: Mohamed Zakareia Ghazy Aly Belal

Abstract:

Commercial law is the set of legal rules that apply to business and regulates the trade of trade. The meaning of this is that the commercial law regulates certain relations only that arises as a result of carrying out certain businesses. which are business, as it regulates the activity of a specific sect, the sect of merchants, and the commercial law as other branches of the law has characteristics that distinguish it from other laws and various, and various sources from which its basis is derived from It is the objective or material source. the historical source, the official source and the interpretative source, and we are limited to official sources and explanatory sources. so what do you see what these sources are, and what is their degree and strength in taking it in commercial disputes. The first topic / characteristics of commercial law. Commercial law has become necessary for the world of trade and economics, which cannot be dispensed with, given the reasons that have been set as legal rules for commercial field. In fact, it is sufficient to refer to the stability and stability of the environment, and in exchange for the movement and the speed in which the commercial environment is in addition to confidence and credit. the characteristic of speed and the characteristic of trust, and credit are the ones that justify the existence of commercial law. Business is fast, while civil business is slow, stable and stability. The person concludes civil transactions in his life only a little. And before doing any civil action. he must have a period of thinking and scrutiny, and the investigation is the person who wants the husband, he must have a period of thinking and scrutiny. as if the person who wants to acquire a house to live with with his family, he must search and investigate Discuss the price before the conclusion of a purchase contract. In the commercial field, transactions take place very quickly because the time factor has an important role in concluding deals and achieving profits. This is because the merchant in contracting about a specific deal would cause a loss to the merchant due to the linkage of the commercial law with the fluctuations of the economy and the market. The merchant may also conclude more than one deal in one and short time. And that is due to the absence of commercial law from the formalities and procedures that hinder commercial transactions.

Keywords: law, commercial law, business, commercial field

Procedia PDF Downloads 68
738 Scalable and Accurate Detection of Pathogens from Whole-Genome Shotgun Sequencing

Authors: Janos Juhasz, Sandor Pongor, Balazs Ligeti

Abstract:

Next-generation sequencing, especially whole genome shotgun sequencing, is becoming a common approach to gain insight into the microbiomes in a culture-independent way, even in clinical practice. It does not only give us information about the species composition of an environmental sample but opens the possibility to detect antimicrobial resistance and novel, or currently unknown, pathogens. Accurately and reliably detecting the microbial strains is a challenging task. Here we present a sensitive approach for detecting pathogens in metagenomics samples with special regard to detecting novel variants of known pathogens. We have developed a pipeline that uses fast, short read aligner programs (i.e., Bowtie2/BWA) and comprehensive nucleotide databases. Taxonomic binning is based on the lowest common ancestor (LCA) principle; each read is assigned to a taxon, covering the most significantly hit taxa. This approach helps in balancing between sensitivity and running time. The program was tested both on experimental and synthetic data. The results implicate that our method performs as good as the state-of-the-art BLAST-based ones, furthermore, in some cases, it even proves to be better, while running two orders magnitude faster. It is sensitive and capable of identifying taxa being present only in small abundance. Moreover, it needs two orders of magnitude less reads to complete the identification than MetaPhLan2 does. We analyzed an experimental anthrax dataset (B. anthracis strain BA104). The majority of the reads (96.50%) was classified as Bacillus anthracis, a small portion, 1.2%, was classified as other species from the Bacillus genus. We demonstrate that the evaluation of high-throughput sequencing data is feasible in a reasonable time with good classification accuracy.

Keywords: metagenomics, taxonomy binning, pathogens, microbiome, B. anthracis

Procedia PDF Downloads 131
737 Optimization of Enzymatic Hydrolysis of Cooked Porcine Blood to Obtain Hydrolysates with Potential Biological Activities

Authors: Miguel Pereira, Lígia Pimentel, Manuela Pintado

Abstract:

Animal blood is a major by-product of slaughterhouses and still represents a cost and environmental problem in some countries. To be eliminated, blood should be stabilised by cooking and afterwards the slaughterhouses must have to pay for its incineration. In order to reduce the elimination costs and valorise the high protein content the aim of this study was the optimization of hydrolysis conditions, in terms of enzyme ratio and time, in order to obtain hydrolysates with biological activity. Two enzymes were tested in this assay: pepsin and proteases from Cynara cardunculus (cardosins). The latter has the advantage to be largely used in the Portuguese Dairy Industry and has a low price. The screening assays were carried out in a range of time between 0 and 10 h and using a ratio of enzyme/reaction volume between 0 and 5%. The assays were performed at the optimal conditions of pH and temperature for each enzyme: 55 °C at pH 5.2 for cardosins and 37 °C at pH 2.0 for pepsin. After reaction, the hydrolysates were evaluated by FPLC (Fast Protein Liquid Chromatography) and tested for their antioxidant activity by ABTS method. FPLC chromatograms showed different profiles when comparing the enzymatic reactions with the control (no enzyme added). The chromatogram exhibited new peaks with lower MW that were not present in control samples, demonstrating the hydrolysis by both enzymes. Regarding to the antioxidant activity, the best results for both enzymes were obtained using a ratio enzyme/reactional volume of 5% during 5 h of hydrolysis. However, the extension of reaction did not affect significantly the antioxidant activity. This has an industrial relevant aspect in what concerns to the process cost. In conclusion, the enzymatic blood hydrolysis can be a better alternative to the current elimination process allowing to the industry the reuse of an ingredient with biological properties and economic value.

Keywords: antioxidant activity, blood, by-products, enzymatic hydrolysis

Procedia PDF Downloads 503
736 Review and Analysis of Sustainable-Based Risk Management in Humanitarian Supply Chains

Authors: Marinko Maslaric, Maja Jokic

Abstract:

When searching for fast and long term responses, sustainable logistics and supply chain applications have developed irrefutable theories and hypotheses towards market requirements. Nevertheless, there are certain misunderstandings on how the implementation of sustainability principles (social, economical, and environmental) and concepts should work in practice, more specifically, within a humanitarian supply chain management context. This paper will focus on the review and analysis of risk management concepts in humanitarian supply chain in order to identify their compliance with sustainable principles. In this direction, the study will look for strategies that suggest: minimization of environmental impacts throughout the reduction of resources consumption, depreciation of logistics costs, including supply chain ones, minimization of transportation and service costs, elaboration of quality performance of supply chain and logistics, and reduction of supply chain delivery time. On the side of meeting all defense, trades and humanitarian logistics needs, the research will be aligned to UN Sustainable Development Goals, standards, and performances. It will start with relevant strategies for identification of risk indicators and it will end with suggestion of valuable strategic approaches for their minimization or total prevention. Finally, a content analysis will propose a suitable methodological structure for the creation of most sustainable strategy in risk management of humanitarian supply chain. Content analysis will accompany thorough, consistent and methodical approach of literature review for potential disaster risk management plan. Thereupon, the propositions of this research will look for contemporary literature gaps, with respect to operate the literature analysis and to suggest the appropriate sustained risk low master plan. The indicated is here to secure the high quality of logistics practices in hazardous events.

Keywords: humanitarian logistics, sustainability, supply chain risk, risk management plan

Procedia PDF Downloads 230
735 Characterization of Natural Polymers for Guided Bone Regeneration Applications

Authors: Benedetta Isella, Aleksander Drinic, Alissa Heim, Phillip Czichowski, Lisa Lauts, Hans Leemhuis

Abstract:

Introduction: Membranes for guided bone regeneration are essential to perform a barrier function between the soft and the regenerating bone tissue. Bioabsorbable membranes are desirable in this field as they do not require a secondary surgery for removal, decreasing patient surgical risk. Collagen was the first bioabsorbable alternative introduced on the market, but its degradation time may be too fast to guarantee bone regeneration, and optimisation is needed. Silk fibroin, being biocompatible, slowly bioabsorbable, and processable into different scaffold types, could be a promising alternative. Objectives: The objective is to compare the general performance of a silk fibroin membrane for guided bone regeneration to current collagen alternatives developing suitable standardized tests for the mechanical and morphological characterization. Methods: Silk fibroin and collagen-based membranes were compared from the morphological and chemical perspective, with techniques such as SEM imaging and from the mechanical point of view with techniques such as tensile and suture retention strength (SRS) tests. Results: Silk fibroin revealed a high degree of reproducibility in surface density. The SRS of silk fibroin (0.76 ± 0.04 N), although lower than collagen, was still comparable to native tissues such as the internal mammary artery (0.56 N), and the same can be extended to general mechanical behaviour in tensile tests. The SRS could be increased by an increase in thickness. Conclusion: Silk fibroin is a promising material in the field of guided bone regeneration, covering the interesting position of not being considered a product containing cells or tissues of animal origin from the regulatory perspective and having longer degradation times with respect to collagen.

Keywords: guided bone regeneration, mechanical characterization, membrane, silk fibroin

Procedia PDF Downloads 32
734 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: redox enzyme, nanomaterials, biosensors, electrical communication

Procedia PDF Downloads 452
733 Facial Recognition Technology in Institutions of Higher Learning: Exploring the Use in Kenya

Authors: Samuel Mwangi, Josephine K. Mule

Abstract:

Access control as a security technique regulates who or what can access resources. It is a fundamental concept in security that minimizes risks to the institutions that use access control. Regulating access to institutions of higher learning is key to ensure only authorized personnel and students are allowed into the institutions. The use of biometrics has been criticized due to the setup and maintenance costs, hygiene concerns, and trepidations regarding data privacy, among other apprehensions. Facial recognition is arguably a fast and accurate way of validating identity in order to guard protected areas. It guarantees that only authorized individuals gain access to secure locations while requiring far less personal information whilst providing an additional layer of security beyond keys, fobs, or identity cards. This exploratory study sought to investigate the use of facial recognition in controlling access in institutions of higher learning in Kenya. The sample population was drawn from both private and public higher learning institutions. The data is based on responses from staff and students. Questionnaires were used for data collection and follow up interviews conducted to understand responses from the questionnaires. 80% of the sampled population indicated that there were many security breaches by unauthorized people, with some resulting in terror attacks. These security breaches were attributed to stolen identity cases, where staff or student identity cards were stolen and used by criminals to access the institutions. These unauthorized accesses have resulted in losses to the institutions, including reputational damages. The findings indicate that security breaches are a major problem in institutions of higher learning in Kenya. Consequently, access control would be beneficial if employed to curb security breaches. We suggest the use of facial recognition technology, given its uniqueness in identifying users and its non-repudiation capabilities.

Keywords: facial recognition, access control, technology, learning

Procedia PDF Downloads 121
732 Characterization of Tailings From Traditional Panning of Alluvial Gold Ore (A Case Study of Ilesa - Southwestern Nigeria Goldfield Tailings Dumps)

Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke

Abstract:

Field observation revealed a lot of artisanal gold mining activities in Ilesa gold belt of southwestern Nigeria. The possibility of alluvial and lode gold deposits in commercial quantities around this location is very high, as there are many resident artisanal gold miners who have been mining and trading alluvial gold ore for decades and to date in the area. Their major process of solid gold recovery from its ore is by gravity concentration using the convectional panning method. This method is simple to learn and fast to recover gold from its alluvial ore, but its effectiveness is based on rules of thumb and the artisanal miners' experience in handling gold ore panning tool while processing the ore. Research samples from five alluvial gold ore tailings dumps were collected and studied. Samples were subjected to particle size analysis and mineralogical and elemental characterization using X-Ray Diffraction (XRD) and Particle-Induced X-ray Emission (PIXE) methods, respectively. The results showed that the tailings were of major quartz in association with albite, plagioclase, mica, gold, calcite and sulphide minerals. The elemental composition analysis revealed a 15ppm of gold concentration in particle size fraction of -90 microns in one of the tailings dumps investigated. These results are significant. It is recommended that heaps of panning tailings should be further reprocessed using other gold recovery methods such as shaking tables, flotation and controlled cyanidation that can efficiently recover fine gold particles that were previously lost into the gold panning tailings. The tailings site should also be well controlled and monitored so that these heavy minerals do not find their way into surrounding water streams and rivers, thereby causing health hazards.

Keywords: gold ore, panning, PIXE, tailings, XRD

Procedia PDF Downloads 84
731 Genomics Approach for Excavation of NAS Genes from Nutri Rich Minor Millet Crops: Transforming Perspective from Orphan Plants to Future Food Crops

Authors: Mahima Dubey, Girish Chandel

Abstract:

Minor millets are highly nutritious and climate resilient cereal crops. These features make them ideal candidates to excavate the physiology of the underlying mechanism. In an attempt to understand the basis of mineral nutrition in minor millets, a set of five Barnyard millet genotypes were analyzed for grain Fe and Zn content under contrasting Fe-Zn supply to identify genotypes proficient in tolerating mineral deficiency. This resulted in the identification of Melghat-1 genotype to be nutritionally superior with better ability to withstand deficiency. Expression analysis of several Nicotianamine synthase (NAS) genes showed that HvNAS1 and OsNAS2 genes were prominent in positively mediating mineral deficiency response in Barnyard millet. Further, strategic efforts were employed for fast-track identification of more effective orthologous NAS genes from Barnyard millet. This resulted in the identification of two genes namely EfNAS1 (orthologous to HvNAS1 of barley) and EfNAS2 (orthologous to OsNAS2 gene of rice). Sequencing and thorough characterization of these sequences revealed the presence of intact NAS domain and signature tyrosine and di-leucine motifs in their predicted proteins and thus established their candidature as functional NAS genes in Barnyard millet. Moreover, EfNAS1 showed structural superiority over previously known NAS genes and is anticipated to have role in more efficient metal transport. Findings of the study provide insight into Fe-Zn deficiency response and mineral nutrition in millets. This provides millets with a physiological edge over micronutrient deficient staple cereals such as rice in withstanding Fe-Zn deficiency and subsequently accumulating higher levels of Fe and Zn in millet grains.

Keywords: gene expression, micronutrient, millet, ortholog

Procedia PDF Downloads 228
730 Land Layout and Urban Design of New Cities in Underdeveloped Areas of China: A Case Study of Xixian New Area

Authors: Libin Ouyang

Abstract:

China has experienced a very fast urbanization process in the past two decades. Due to the uncoordinated characteristics of regional development in China, a large number of people from rural areas or small towns have flooded into regional central cities, which are building new cities around them due to the shortage of construction land or the need for urban development. However, the construction of some new cities has not achieved the expected effect, the absorption capacity of industry and population is limited, and the phenomenon of capital and land waste is obvious. This paper takes the Xixian New Area in Shaanxi Province, an inland region in Northwest China, as an example, and tries to analyse the reasons for the lack of vitality in the current situation of the Xixian New Area from the perspective of site layout and urban design, analyses the practical experience of the construction of new city cores in developed countries and regions, and studies how to optimise at the level of site layout planning and urban design to improve the vitality and attractiveness of the new city, decongest the population of large cities, effectively solve the problems of large cities, and promote The study will also examine how to optimise land use planning and urban design to enhance the vitality and attractiveness of new cities, relieve the population of large cities, effectively solve the problems of large cities and promote sustainable development of new cities. The study can serve as a reference for urban planners and policy makers, provide theoretical assistance for new city construction in other less developed regions of China, and provide some case references for urban construction in other developing countries undergoing rapid urbanisation.

Keywords: new city, land use layout, urban design, attraction

Procedia PDF Downloads 118
729 Impact of E-Resources and Its Acceessability by Faculty and Research Scholars of Academic Libraries: A Case Study

Authors: M. Jaculine Mary

Abstract:

Today electronic resources are considered as an integral part of information sources to impart efficient services to the people aspiring to acquire knowledge in different fields. E-resources are those resources which include documents in e-format that can be accessed via the Internet in a digital library environment. The present study focuses on accessibility and use of e-resources by faculty and research scholars of academic libraries of Coimbatore, TamilNadu, India. The main objectives are to identify their purpose of using e-resources, know the users’ Information and Communication Technology (ICT) skills, identify satisfaction level of availability of e-resources, use of different e-resources, overall user satisfaction of using e-resources, impact of e-resources on their research and problems faced by them in the access of e-resources. The research methodology adopted to collect data for this study includes analysis of survey reports carried out by distributing questionnaires to the users. The findings of the research are based on the study of responses received from questionnaires distributed to a sample population of 200 users. Among the 200 respondents, 55 percent of research students and 45 percent of faculty members were users of e-resources. It was found that a majority of the users agreed that relevant, updated information at a fast pace had influenced them to use e-resources. Most of the respondents were of the view that more numbers of computers in the library would facilitate quick learning. Academic libraries have to take steps to arrange various training and orientation programmes for research students and faculty members to use the availability of e-resources. This study helps the librarian in planning and development of e-resources to provide modern services to their users of libraries. The study recommends that measures should be taken to increase the accessibility level of e-resource services among the information seekers for increasing the best usage of available electronic resources in the academic libraries.

Keywords: academic libraries, accessibility, electronic resources, satisfaction level, survey

Procedia PDF Downloads 136
728 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete

Authors: Farzad Danaei, Yilmaz Akkaya

Abstract:

In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.

Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient

Procedia PDF Downloads 70
727 Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA

Authors: Yi-Guang Li, Suresh Sampath

Abstract:

Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance.

Keywords: gas turbine, adaptive GPA, performance, diagnostics, condition monitoring

Procedia PDF Downloads 82
726 New Ethanol Method for Soft Tissue Imaging in Micro-CT

Authors: Matej Patzelt, Jan Dudak, Frantisek Krejci, Jan Zemlicka, Vladimir Musil, Jitka Riedlova, Viktor Sykora, Jana Mrzilkova, Petr Zach

Abstract:

Introduction: Micro-CT is well used for examination of bone structures and teeth. On the other hand visualization of the soft tissues is still limited. The goal of our study was to create a new fixation method for soft tissue imaging in micro-CT. Methodology: We used organs of 18 mice - heart, lungs, kidneys, liver and brain, which we fixated in ethanol after meticulous preparation. We fixated organs in different concentrations of ethanol and for different period of time. We used three types of ethanol concentration - 97%, 50% and ascending ethanol concentration (25%, 50%, 75%, 97% each for 12 hours). Fixated organs were scanned after 72 hours, 168 hours and 336 hours period of fixation. We scanned all specimens in micro-CT MARS (Medipix All Resolution System). Results: Ethanol method provided contrast enhancement in all studied organs in all used types of fixation. Fixation in 97% ethanol provided very fast fixation and the contrast among the tissues was visible already after 72 hours of fixation. Fixation for the period of 168 and 336 hours gave better details, especially in lung tissue, where alveoli were visualized. On the other hand, this type of fixation caused organs to petrify. Fixation in 50% ethanol provided best results in 336 hours fixation, details were visualized better than in 97% ethanol and samples were not as hard as in fixation in 97% ethanol. Best results were obtained in fixation in ascending ethanol concentration. All organs were visualized in great details, best-visualized organ was heart, where trabeculae and valves were visible. In this type of fixation, organs stayed soft for whole time. Conclusion: New ethanol method is a great option for soft tissue fixation as well as the method for enhancing contrast among tissues in organs. The best results were obtained with fixation of the organs in ascending ethanol concentration, the best visualized organ was the heart.

Keywords: x-ray imaging, small animals, ethanol, ex-vivo

Procedia PDF Downloads 316
725 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface

Procedia PDF Downloads 326
724 Green Synthesis of Silver and Silver-Gold Alloy Nanoparticle Using Cyanobacteria as Bioreagent

Authors: Piya Roychoudhury, Ruma Pal

Abstract:

Cyanobacteria, commonly known as blue green algae were found to be an effective bioreagent for nanoparticle synthesis. Nowadays silver nanoparticles (AgNPs) are very popular due to their antimicrobial and anti-proliferative activity. To exploit these characters in different biotechnological fields, it is very essential to synthesize more stable, non-toxic nano-silver. For this reason silver-gold alloy (Ag-AuNPs) nanoparticles are of great interest as they are more stable, harder and more effective than single metal nanoparticles. In the present communication we described a simple technique for rapid synthesis of biocompatible AgNP and Ag-AuNP employing cyanobacteria, Leptolyngbya and Lyngbya respectively. For synthesis of AgNP the biomass of Leptolyngbya valderiana (200 mg Fresh weight) was exposed to 9 mM AgNO3 solution (pH 4). For synthesis of Ag-AuNP Lyngbya majuscula (200 mg Fresh weight) was exposed to equimolar solution of hydrogen tetra-auro chlorate and silver nitrate (1mM, pH 4). After 72 hrs of exposure thallus of Leptolyngyba turned brown in color and filaments of Lyngbya turned pink in color that indicated synthesis of nanoparticles. The produced particles were extracted from the cyanobacterial biomass using nano-capping agent, sodium citrate. Firstly, extracted brown and pink suspensions were taken for Energy Dispersive X-ray (EDAX) analysis to confirm the presence of silver in brown suspension and presence of both gold and silver in pink suspension. Extracted nanoparticles showed a distinct single plasmon band (AgNP at 411 nm; Ag-Au NP at 481 nm) in Uv-vis spectroscopy. It was revealed from Transmission electron microscopy (TEM) that all the synthesized particles were spherical in nature with a size range of ~2-25 nm. In X-ray powder diffraction (XRD) analysis four intense peaks appeared at 38.2°, 44.5°, 64.8°and 77.8° which confirmed the crystallographic nature of synthesized particles. Presence of different functional groups viz. N-H, C=C, C–O, C=O on the surface of nanoparticles were recorded by Fourier transform infrared spectroscopy (FTIR). Scanning Electron microscopy (SEM) images showed the surface topography of metal treated filaments of cyanobacteria. The stability of the particles was observed by Zeta potential study. Antibiotic property of synthesized particles was tested by Agar well diffusion method against gram negative bacteria Pseudomonas aeruginosa. Overall, this green-technique requires low energy, less manufacturing cost and produces rapidly eco-friendly metal nanoparticles.

Keywords: cyanobacteria, silver nanoparticles, silver-gold alloy nanoparticles, spectroscopy

Procedia PDF Downloads 320