Search results for: fuzzy set Models
5152 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 345151 Brine Waste from Seawater Desalination in Malaysia
Authors: Cynthia Mahadi, Norhafezah Kasmuri
Abstract:
Water scarcity is a growing issue these days. As a result, saltwater is being considered a limitless supply of fresh water through the desalination process, which is likely to address the worldwide water crisis, including in Malaysia. This study aims to offer the best management practice for controlling brine discharge in Malaysia by comparing environmental regulations on brine waste management in other countries. Then, a survey was distributed to the public to acquire further information about their level of awareness of the harmful effects of brine waste and to find out their perspective on the proposed solutions to ensure the effectiveness of the measures. As a result, it has been revealed that Malaysia still lacks regulations regarding the disposal of brine waste. Thus, a recommendation based on practices in other nations has been put forth by this study. This study suggests that the government and Malaysia's environmental regulatory body should govern brine waste disposal in the Environmental Quality Act 1974. Also, to add the construction of a desalination plant in Schedule 1 of prescribed activities was necessary. Because desalination plants can harm the environment during both construction and operation, every proposal for the construction of a desalination plant should involve the submission of an environmental impact assessment (EIA).Keywords: seawater desalination, brine waste, environmental impact assessment, fuzzy Delphi method
Procedia PDF Downloads 805150 From Clients to Colleagues: Supporting the Professional Development of Survivor Social Work Students
Authors: Stephanie Jo Marchese
Abstract:
This oral presentation is a reflective piece regarding current social work teaching methods that value and devalue the lived experiences of survivor students. This presentation grounds the term ‘survivor’ in feminist frameworks. A survivor-defined approach to feminist advocacy assumes an individual’s agency, considers each case and needs independent of generalizations, and provides resources and support to empower victims. Feminist ideologies are ripe arenas to update and influence the rapport-building schools of social work have with these students. Survivor-based frameworks are rooted in nuanced understandings of intersectional realities, staunchly combat both conscious and unconscious deficit lenses wielded against victims, elevate lived experiences to the realm of experiential expertise, and offer alternatives to traditional power structures and knowledge exchanges. Actively importing a survivor framework into the methodology of social work teaching breaks open barriers many survivor students have faced in institutional settings, this author included. The profession of social work is at an important crux of change, both in the United States and globally. The United States is currently undergoing a radical change in its citizenry and outlier communities have taken to the streets again in opposition to their othered-ness. New waves of students are entering this field, emboldened by their survival of personal and systemic oppressions- heavily influenced by third-wave feminism, critical race theory, queer theory, among other post-structuralist ideologies. Traditional models of sociological and psychological studies are actively being challenged. The profession of social work was not founded on the diagnosis of disorders but rather a grassroots-level activism that heralded and demanded resources for oppressed communities. Institutional and classroom acceptance and celebration of survivor narratives can catapult the resurgence of these values needed in the profession’s service-delivery models and put social workers back in the driver's seat of social change (a combined advocacy and policy perspective), moving away from outsider-based intervention models. Survivor students should be viewed as agents of change, not solely former victims and clients. The ideas of this presentation proposal are supported through various qualitative interviews, as well as reviews of ‘best practices’ in the field of education that incorporate feminist methods of inclusion and empowerment. Curriculum and policy recommendations are also offered.Keywords: deficit lens bias, empowerment theory, feminist praxis, inclusive teaching models, strengths-based approaches, social work teaching methods
Procedia PDF Downloads 2895149 Management and Evaluation of the Importance of Porous Media in Biomedical Engineering as Associated with Magnetic Resonance Imaging Besides Drug Delivery
Authors: Fateme Nokhodchi Bonab
Abstract:
Studies related to magnetic resonance imaging (MRI) and drug delivery are reviewed in this study to demonstrate the role of transport theory in porous media in facilitating advances in biomedical applications. Diffusion processes are believed to be important in many therapeutic modalities such as: B. Delivery of drugs to the brain. We analyse the progress in the development of diffusion equations using the local volume average method and the evaluation of applications related to diffusion equations. Torsion and porosity have significant effects on diffusive transport. In this study, various relevant models of torsion are presented and mathematical modeling of drug release from biodegradable delivery systems is analysed. In this study, a new model of drug release kinetics from porous biodegradable polymeric microspheres under bulk and surface erosion of the polymer matrix is presented. Solute drug diffusion, drug dissolution from the solid phase, and polymer matrix erosion have been found to play a central role in controlling the overall drug release process. This work paves the way for MRI and drug delivery researchers to develop comprehensive models based on porous media theory that use fewer assumptions compared to other approaches.Keywords: MRI, porous media, drug delivery, biomedical applications
Procedia PDF Downloads 905148 Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes
Authors: Abed Ahmed, Mehrdad Asadi, Jennifer Martay
Abstract:
Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes’ security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure.Keywords: dynamic impact, deformable boundary conditions, finite element modelling, LS-DYNA, stainless steel pipe
Procedia PDF Downloads 1495147 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor
Authors: Ibrahim Makram Ibrahim Salib
Abstract:
Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income
Procedia PDF Downloads 755146 Kinetics, Equilibrium and Thermodynamic Studies on Adsorption of Reactive Blue 29 from Aqueous Solution Using Activated Tamarind Kernel Powder
Authors: E. D. Paul, A. D. Adams, O. Sunmonu, U. S. Ishiaku
Abstract:
Activated tamarind kernel powder (ATKP) was prepared from tamarind fruit (Tamarindus indica), and utilized for the removal of Reactive Blue 29 (RB29) from its aqueous solution. The powder was activated using 4N nitric acid (HNO₃). The adsorbent was characterised using infrared spectroscopy, bulk density, ash content, pH, moisture content and dry matter content measurements. The effect of various parameters which include; temperature, pH, adsorbent dosage, ion concentration, and contact time were studied. Four different equilibrium isotherm models were tested on the experimental data, but the Temkin isotherm model was best-fitted into the experimental data. The pseudo-first order and pseudo-second-order kinetic models were also fitted into the graphs, but pseudo-second order was best fitted to the experimental data. The thermodynamic parameters showed that the adsorption of Reactive Blue 29 onto activated tamarind kernel powder is a physical process, feasible and spontaneous, exothermic in nature and there is decreased randomness at the solid/solution interphase during the adsorption process. Therefore, activated tamarind kernel powder has proven to be a very good adsorbent for the removal of Reactive Blue 29 dyes from industrial waste water.Keywords: tamarind kernel powder, reactive blue 29, isotherms, kinetics
Procedia PDF Downloads 2485145 Building Information Modeling-Based Information Exchange to Support Facilities Management Systems
Authors: Sandra T. Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell
Abstract:
Today’s facilities are ever more sophisticated and the need for available and reliable information for operation and maintenance activities is vital. The key challenge for facilities managers is to have real-time accurate and complete information to perform their day-to-day activities and to provide their senior management with accurate information for decision-making process. Currently, there are various technology platforms, data repositories, or database systems such as Computer-Aided Facility Management (CAFM) that are used for these purposes in different facilities. In most current practices, the data is extracted from paper construction documents and is re-entered manually in one of these computerized information systems. Construction Operations Building information exchange (COBie), is a non-proprietary data format that contains the asset non-geometric data which was captured and collected during the design and construction phases for owners and facility managers use. Recently software vendors developed add-in applications to generate COBie spreadsheet automatically. However, most of these add-in applications are capable of generating a limited amount of COBie data, in which considerable time is still required to enter the remaining data manually to complete the COBie spreadsheet. Some of the data which cannot be generated by these COBie add-ins is essential for facilities manager’s day-to-day activities such as job sheet which includes preventive maintenance schedules. To facilitate a seamless data transfer between BIM models and facilities management systems, we developed a framework that enables automated data generation using the data extracted directly from BIM models to external web database, and then enabling different stakeholders to access to the external web database to enter the required asset data directly to generate a rich COBie spreadsheet that contains most of the required asset data for efficient facilities management operations. The proposed framework is a part of ongoing research and will be demonstrated and validated on a typical university building. Moreover, the proposed framework supplements the existing body of knowledge in facilities management domain by providing a novel framework that facilitates seamless data transfer between BIM models and facilities management systems.Keywords: building information modeling, BIM, facilities management systems, interoperability, information management
Procedia PDF Downloads 1165144 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1755143 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers
Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier
Abstract:
The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law
Procedia PDF Downloads 305142 Building Information Models Utilization for Design Improvement of Infrastructure
Authors: Keisuke Fujioka, Yuta Itoh, Masaru Minagawa, Shunji Kusayanagi
Abstract:
In this study, building information models of the underground temporary structures and adjacent embedded pipes were constructed to show the importance of the information on underground pipes adjacent to the structures to enhance the productivity of execution of construction. Next, the bar chart used in actual construction process were employed to make the Gantt chart, and the critical pass analysis was carried out to show that accurate information on the arrangement of underground existing pipes can be used for the enhancement of the productivity of the construction of underground structures. In the analyzed project, significant construction delay was not caused by unforeseeable existence of underground pipes by the management ability of the construction manager. However, in many cases of construction executions in the developing countries, the existence of unforeseeable embedded pipes often causes substantial delay of construction. Design change based on uncertainty on the position information of embedded pipe can be also important risk for contractors in domestic construction. So CPM analyses were performed by a project-management-software to the situation that influence of the tasks causing construction delay was assumed more significant. Through the analyses, the efficiency of information management on underground pipes and BIM analysis in the design stage for workability improvement was indirectly confirmed.Keywords: building-information modelling, construction information modelling, design improvement, infrastructure
Procedia PDF Downloads 3085141 The Effects of Implementing Platform Strategy for Craft Industry Development: A Case Study on Economic Value-Added of Taiwan Bamboo Village
Authors: Kuo-Wei Hsu, Shu-Fang Huang
Abstract:
Global trend in creative economies promoted the modernization process of the development of cultural and creative industries and technology coincided with the craft industry towards value-added industrial restructuring. Due to government support and economic motivation in the private sector, regional craft products have emerged across counties and cities all over Taiwan which have led to an increased focus on craft culture promotion. However, most craft industry corporations in Taiwan are micro-enterprise, restricted operating profitability. This phenomenon shows the weakness of craft industry constitution when facing the rapid expansion of global economic commerce and manufacturing. In recent years, combining public and private enterprise, Platform business models revolutionary changed in craft industries’ original operation and transaction models. Therefore, this study attempts to explore the effects by implementing platform strategy on bamboo industry development in Nantou, the hometown of crafts in Taiwan, with an experimental investigation. This study concluded that platform strategy increases essence and insubstantial value for the bamboo industry in Taiwan. This study explored the economic value added of Taiwan bamboo village with three perspectives: Community participation, Culture Conservation, Regional Rejuvenation.Keywords: platform strategy, craft industry, economic value-added
Procedia PDF Downloads 3415140 Investigating the Effect of the Pedagogical Agent on Visual Attention in Attention Deficit Hyperactivity Disorder Students
Authors: Nasrin Mohammadhasani, Rosa Angela Fabio
Abstract:
The attention to relevance information is the key element for learning. Otherwise, Attention Deficit Hyperactivity Disorder (ADHD) students have a fuzzy visual pattern that prevents them to attention and remember learning subject. The present study aimed to test the hypothesis that the presence of a pedagogical agent can effectively support ADHD learner's attention and learning outcomes in a multimedia learning environment. The learning environment was integrated with a pedagogical agent, named Koosha as a social peer. This study employed a pretest and posttest experimental design with control group. The statistical population was 30 boys students, age 10-11 with ADHD that randomly assigned to learn with/without an agent in well designed environment for mathematic. The results suggested that experimental and control groups show a significant difference in time when they participated and mathematics achievement. According to this research, using the pedagogical agent can enhance learning of ADHD students by gaining and guiding their attention to relevance information part on display, so it can be considered as asocial cue that provides theme cognitive supports.Keywords: attention, computer assisted instruction, multimedia learning environment, pedagogical agent
Procedia PDF Downloads 3145139 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling
Authors: Champika S. Kariyawasam
Abstract:
The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus
Procedia PDF Downloads 1345138 The Study of Applying Models: House, Temple and School for Sufficiency Development to Participate in ASEAN Economic Community: A Case Study of Trimitra Temple (China Town) Bangkok, Thailand
Authors: Saowapa Phaithayawat
Abstract:
The purposes of this study are: 1) to study the impact of the 3-community-core model: House (H), Temple (T), and School (S) with the co-operation of official departments on community development to ASEAN economic community involvement, and 2) to study the procedures and extension of the model. The research which is a qualitative research based on formal and informal interviews. Local people in a community are observed. Group interview is also operated by executors and cooperators in the school in the community. In terms of social and cultural dimension, the 3-community-core model consisting of house, temple and school is the base of Thai cultures bringing about understanding, happiness and unity to the community. The result of this research is that the official departments in accompanied with this model developers cooperatively work together in the community to support such factors as budget, plan, activities. Moreover, the need of community, and the continual result to sustain the community are satisfied by the model implementation. In terms of the procedures of the model implementation, executors and co-operators can work, coordinate, think, and launch their public relation altogether. Concerning the model development, this enables the community to achieve its goal to prepare the community’s readiness for ASEAN Economic Community involvement.Keywords: ASEAN Economic Community, the applying models and sufficiency development, house, temple, school
Procedia PDF Downloads 3145137 A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints
Authors: Minho Lee, Donghyun Back, Jaemoon Jung, Woojin Park
Abstract:
The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort.Keywords: baseball, memory-based, posture prediction, reaching area, 3D digital human models
Procedia PDF Downloads 2165136 Short Answer Grading Using Multi-Context Features
Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan
Abstract:
Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.Keywords: artificial intelligence, intelligent systems, natural language processing, text mining
Procedia PDF Downloads 1335135 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 3685134 Climate Change Impacts on Future Wheat Growing Areas
Authors: Rasha Aljaryian, Lalit Kumar
Abstract:
Climate is undergoing continuous change and this trend will affect the cultivation areas ofmost crops, including wheat (Triticum aestivum L.), in the future. The current suitable cultivation areas may become unsuitable climatically. Countries that depend on wheat cultivation and export may suffer an economic loss because of production decline. On the other hand, some regions of the world could gain economically by increasing cultivation areas. This study models the potential future climatic suitability of wheat by using CLIMEX software. Two different global climate models (GCMs) were used, CSIRO-Mk3.0 (CS) and MIROC-H (MR), with two emission scenarios (A2, A1B). The results of this research indicate that the suitable climatic areas for wheat in the southern hemisphere, such as Australia, are expected to contract by the end of this century. However, some unsuitable or marginal areas will become climatically suitable under future climate scenarios. In North America and Europe further expansion inland could occur. Also, the results illustrate that heat and dry stresses as abiotic climatic factors will play an important role in wheat distribution in the future. Providing sufficient information about future wheat distribution will be useful for agricultural ministries and organizations to manage the shift in production areas in the future. They can minimize the expected harmful economic consequences by preparing strategic plans and identifying new areas for wheat cultivation.Keywords: Climate change, Climate modelling, CLIMEX, Triticum aestivum, Wheat
Procedia PDF Downloads 2535133 GSM Based Smart Patient Monitoring System
Authors: Ayman M. Mansour
Abstract:
In this paper, we propose an intelligent system that is used for monitoring the health conditions of Patients. Monitoring the health condition of Patients is a complex problem that involves different medical units and requires continuous monitoring especially in rural areas because of inadequate number of available specialized physicians. The proposed system will Improve patient care and drive costs down comparing to the existing system in Jordan. The proposed system will be the start point to Faster and improve the communication between different units in the health system in Jordan. Connecting patients and their physicians beyond hospital doors regarding their geographical area is an important issue in developing the health system in Jordan. The propose system will provide an intelligent system that will generate initial diagnosing to the patient case. This will assist and advice clinicians at the point of care. The decision is based on demographic data and laboratory test results of patient data. Using such system with the ability of making medical decisions, the quality of medical care in Jordan and specifically in Tafial is expected to be improved. This will provide more accurate, effective, and reliable diagnoses and treatments especially if the physicians have insufficient knowledge.Keywords: GSM, SMS, patient, monitoring system, fuzzy logic, multi-agent system
Procedia PDF Downloads 5675132 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam
Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen
Abstract:
In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks
Procedia PDF Downloads 2105131 CFD Studies on Forced Convection Nanofluid Flow Inside a Circular Conduit
Authors: M. Khalid, W. Rashmi, L. L. Kwan
Abstract:
This work provides an overview on the experimental and numerical simulations of various nanofluids and their flow and heat transfer behavior. It was further extended to study the effect of nanoparticle concentration, fluid flow rates and thermo-physical properties on the heat transfer enhancement of Al2O3/water nanofluid in a turbulent flow circular conduit using ANSYS FLUENT™ 14.0. Single-phase approximation (homogeneous model) and two-phase (mixture and Eulerian) models were used to simulate the nanofluid flow behavior in the 3-D horizontal pipe. The numerical results were further validated with experimental correlations reported in the literature. It was found that heat transfer of nanofluids increases with increasing particle volume concentration and Reynolds number, respectively. Results showed good agreement (~9% deviation) with the experimental correlations, especially for a single-phase model with constant properties. Among two-phase models, mixture model (~14% deviation) showed better prediction compared to Eulerian-dispersed model (~18% deviation) when temperature independent properties were used. Non-drag forces were also employed in the Eulerian two-phase model. However, the two-phase mixture model with temperature dependent nanofluid properties gave slightly closer agreement (~12% deviation).Keywords: nanofluid, CFD, heat transfer, forced convection, circular conduit
Procedia PDF Downloads 5235130 Inclusive Cities Decision Matrix Based on a Multidimensional Approach for Sustainable Smart Cities
Authors: Madhurima S. Waghmare, Shaleen Singhal
Abstract:
The concept of smartness, inclusion, sustainability is multidisciplinary and fuzzy, rooted in economic and social development theories and policies which get reflected in the spatial development of the cities. It is a challenge to convert these concepts from aspirations to transforming actions. There is a dearth of assessment and planning tools to support the city planners and administrators in developing smart, inclusive, and sustainable cities. To address this gap, this study develops an inclusive cities decision matrix based on an exploratory approach and using mixed methods. The matrix is soundly based on a review of multidisciplinary urban sector literature and refined and finalized based on inputs from experts and insights from case studies. The application of the decision matric on the case study cities in India suggests that the contemporary planning tools for cities need to be multidisciplinary and flexible to respond to the unique needs of the diverse contexts. The paper suggests that a multidimensional and inclusive approach to city planning can play an important role in building sustainable smart cities.Keywords: inclusive-cities decision matrix, smart cities in India, city planning tools, sustainable cities
Procedia PDF Downloads 1565129 Parametric Modeling for Survival Data with Competing Risks Using the Generalized Gompertz Distribution
Authors: Noora Al-Shanfari, M. Mazharul Islam
Abstract:
The cumulative incidence function (CIF) is a fundamental approach for analyzing survival data in the presence of competing risks, which estimates the marginal probability for each competing event. Parametric modeling of CIF has the advantage of fitting various shapes of CIF and estimates the impact of covariates with maximum efficiency. To calculate the total CIF's covariate influence using a parametric model., it is essential to parametrize the baseline of the CIF. As the CIF is an improper function by nature, it is necessary to utilize an improper distribution when applying parametric models. The Gompertz distribution, which is an improper distribution, is limited in its applicability as it only accounts for monotone hazard shapes. The generalized Gompertz distribution, however, can adapt to a wider range of hazard shapes, including unimodal, bathtub, and monotonic increasing or decreasing hazard shapes. In this paper, the generalized Gompertz distribution is used to parametrize the baseline of the CIF, and the parameters of the proposed model are estimated using the maximum likelihood approach. The proposed model is compared with the existing Gompertz model using the Akaike information criterion. Appropriate statistical test procedures and model-fitting criteria will be used to test the adequacy of the model. Both models are applied to the ‘colon’ dataset, which is available in the “biostat3” package in R.Keywords: competing risks, cumulative incidence function, improper distribution, parametric modeling, survival analysis
Procedia PDF Downloads 1045128 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho
Abstract:
We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation
Procedia PDF Downloads 2085127 Building Information Modeling Acting as Protagonist and Link between the Virtual Environment and the Real-World for Efficiency in Building Production
Authors: Cristiane R. Magalhaes
Abstract:
Advances in Information and Communication Technologies (ICT) have led to changes in different sectors particularly in architecture, engineering, construction, and operation (AECO) industry. In this context, the advent of BIM (Building Information Modeling) has brought a number of opportunities in the field of the digital architectural design process bringing integrated design concepts that impact on the development, elaboration, coordination, and management of ventures. The project scope has begun to contemplate, from its original stage, the third dimension, by means of virtual environments (VEs), composed of models containing different specialties, substituting the two-dimensional products. The possibility to simulate the construction process of a venture in a VE starts at the beginning of the design process offering, through new technologies, many possibilities beyond geometrical digital modeling. This is a significant change and relates not only to form, but also to how information is appropriated in architectural and engineering models and exchanged among professionals. In order to achieve the main objective of this work, the Design Science Research Method will be adopted to elaborate an artifact containing strategies for the application and use of ICTs from BIM flows, with pre-construction cut-off to the execution of the building. This article intends to discuss and investigate how BIM can be extended to the site acting as a protagonist and link between the Virtual Environments and the Real-World, as well as its contribution to the integration of the value chain and the consequent increase of efficiency in the production of the building. The virtualization of the design process has reached high levels of development through the use of BIM. Therefore it is essential that the lessons learned with the virtual models be transposed to the actual building production increasing precision and efficiency. Thus, this paper discusses how the Fourth Industrial Revolution has impacted on property developments and how BIM could be the propellant acting as the main fuel and link between the virtual environment and the real production for the structuring of flows, information management and efficiency in this process. The results obtained are partial and not definite up to the date of this publication. This research is part of a doctoral thesis development, which focuses on the discussion of the impact of digital transformation in the construction of residential buildings in Brazil.Keywords: building information modeling, building production, digital transformation, ICT
Procedia PDF Downloads 1225126 Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method
Authors: Strahinja Z. Kovačević, Lidija R. Jevrić, Sanja O. Podunavac Kuzmanović
Abstract:
The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds.Keywords: antibacterial, benzimidazole, molecular descriptors, QSAR
Procedia PDF Downloads 3645125 The Role of Creative Works Dissemination Model in EU Copyright Law Modernization
Authors: Tomas Linas Šepetys
Abstract:
In online content-sharing service platforms, the ability of creators to restrict illicit use of audiovisual creative works has effectively been abolished, largely due to specific infrastructure where a huge volume of copyrighted audiovisual content can be made available to the public. The European Union legislator has attempted to strengthen the positions of creators in the realm of online content-sharing services. Article 17 of the new Digital Single Market Directive considers online content-sharing service providers to carry out acts of communication to the public of any creative content uploaded to their platforms by users and posits requirements to obtain licensing agreements. While such regulation intends to assert authors‘ ability to effectively control the dissemination of their creative works, it also creates threats of parody content overblocking through automated content monitoring. Such potentially paradoxical outcome of the efforts of the EU legislator to deliver economic safeguards for the creators in the online content-sharing service platforms leads to presume lack of informity on legislator‘s part regarding creative works‘ economic exploitation opportunities provided to creators in the online content-sharing infrastructure. Analysis conducted in this scientific research discloses that the aforementioned irregularities of parody and other creative content dissemination are caused by EU legislators‘ lack of assessment of value extraction conditions for parody creators in the online content-sharing service platforms. Historical and modeling research method application reveals the existence of two creative content dissemination models and their unique mechanisms of commercial value creation. Obligations to obtain licenses and liability over creative content uploaded to their platforms by users set in Article 17 of the Digital Single Market Directive represent technological replication of the proprietary dissemination model where the creator is able to restrict access to creative content apart from licensed retail channels. The online content-sharing service platforms represent an open dissemination model where the economic potential of creative content is based on the infrastructure of unrestricted access by users and partnership with advertising services offered by the platform. Balanced modeling of proprietary dissemination models in such infrastructure requires not only automated content monitoring measures but also additional regulatory monitoring solutions to separate parody and other types of creative content. An example of the Digital Single Market Directive proves that regulation can dictate not only the technological establishment of a proprietary dissemination model but also a partial reduction of the open dissemination model and cause a disbalance between the economic interests of creators relying on such models. The results of this scientific research conclude an informative role of the creative works dissemination model in the EU copyright law modernization process. A thorough understanding of the commercial prospects of the open dissemination model intrinsic to the online content-sharing service platform structure requires and encourages EU legislators to regulate safeguards for parody content dissemination. Implementing such safeguards would result in a common application of proprietary and open dissemination models in the online content-sharing service platforms and balanced protection of creators‘ economic interests explicitly based on those creative content dissemination models.Keywords: copyright law, creative works dissemination model, digital single market directive, online content-sharing services
Procedia PDF Downloads 745124 Chitosan Modified Halloysite Nanomaterials for Efficient and Effective Vaccine Delivery in Farmed Fish
Authors: Saji George, Eng Khuan Seng, Christof Luda
Abstract:
Nanotechnology has been recognized as an important tool for modern agriculture and has the potential to overcome some of the pressing challenges faced by aquaculture industry. A strategy for optimizing nanotechnology-based therapeutic delivery platform for immunizing farmed fish was developed. Accordingly, a compositional library of nanomaterials of natural chemistry (Halloysite (clay), Chitosan, Hydroxyapatite, Mesoporous Silica and a composite material of clay-chitosan) was screened for their toxicity and efficiency in delivering models antigens in cellular and zebrafish embryo models using high throughput screening platforms. Through multi-parametric optimization, chitosan modified halloysite (clay) nanomaterial was identified as an optimal vaccine delivery platform. Further, studies conducted in juvenile seabass showed the potential of clay-chitosan in delivering outer membrane protein of Tenacibaculum maritimum- TIMA (pathogenic bacteria) to and its efficiency in eliciting immune responses in fish. In short, as exemplified by this work, the strategy of using compositional nanomaterial libraries and their biological profiling using high-throughput screening platform could fasten the discovery process of nanomaterials with potential applications in food and agriculture.Keywords: nanotechnology, fish-vaccine, drug-delivery, halloysite-chitosan
Procedia PDF Downloads 2825123 Performance Analysis of Permanent Magnet Synchronous Motor Using Direct Torque Control Based ANFIS Controller for Electric Vehicle
Authors: Marulasiddappa H. B., Pushparajesh Viswanathan
Abstract:
Day by day, the uses of internal combustion engines (ICE) are deteriorating because of pollution and less fuel availability. In the present scenario, the electric vehicle (EV) plays a major role in the place of an ICE vehicle. The performance of EVs can be improved by the proper selection of electric motors. Initially, EV preferred induction motors for traction purposes, but due to complexity in controlling induction motor, permanent magnet synchronous motor (PMSM) is replacing induction motor in EV due to its advantages. Direct torque control (DTC) is one of the known techniques for PMSM drive in EV to control the torque and speed. However, the presence of torque ripple is the main drawback of this technique. Many control strategies are followed to reduce the torque ripples in PMSM. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) controller technique is proposed to reduce torque ripples and settling time. Here the performance parameters like torque, speed and settling time are compared between conventional proportional-integral (PI) controller with ANFIS controller.Keywords: direct torque control, electric vehicle, torque ripple, PMSM
Procedia PDF Downloads 164