Search results for: enhanced data encryption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27395

Search results for: enhanced data encryption

25205 Numerical Simulation of Magnetohydrodynamic (MHD) Blood Flow in a Stenosed Artery

Authors: Sreeparna Majee, G. C. Shit

Abstract:

Unsteady blood flow has been numerically investigated through stenosed arteries to achieve an idea about the physiological blood flow pattern in diseased arteries. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. For direct numerical simulation, vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman-Rachford Alternating Direction Implicit (ADI) scheme. The effects of magnetic parameter and Reynolds number on velocity and wall shear stress are being studied and presented quantitatively over the entire arterial segment. The streamlines have been plotted to understand the flow pattern in the stenosed artery, which has significant alterations in the downstream of the stenosis in the presence of magnetic field. The results show that there are nominal changes in the flow pattern when magnetic field strength is enhanced upto 8T which can have remarkable usage to MRI machines.

Keywords: magnetohydrodynamics, blood flow, stenosis, energy dissipation

Procedia PDF Downloads 276
25204 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 318
25203 Investigation of Mechanical Properties and Wear Behavior of Hot Roller Grades

Authors: Majid Mokhtari, Masoud Bahrami Alamdarlo, Babak Nazari, Hossein Zakerinya, Mehdi Salehi

Abstract:

In this study, microstructure, macro, and microhardness of phases for three grades of cast iron rolls with modified chemical composition using a light microscope (OM) and electron microscopy (SEM) were investigated. The grades were chosen from Chodan Sazan Manufacturing Co. (CSROLL) productions for finishing stands of hot strip mills. The percentage of residual austenite was determined with a ferrite scope magnetic device. Thermal susceptibility testing was also measured. The results show the best oxidation resistance at high temperatures is graphitic high chromium white cast iron alloy. In order to evaluate the final properties of these grades in rolling lines, the results of the Pin on Disk abrasion test showed the superiority of the abrasive behavior of the white chromium graphite cast iron alloy grade sample at the same hardness compared to conventional alloy grades and the enhanced grades.

Keywords: hot roller, wear, behavior, microstructure

Procedia PDF Downloads 242
25202 Static vs. Stream Mining Trajectories Similarity Measures

Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh

Abstract:

Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.

Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining

Procedia PDF Downloads 396
25201 Altered Proteostasis Contributes to Skeletal Muscle Atrophy during Chronic Hypobaric Hypoxia: An Insight into Signaling Mechanisms

Authors: Akanksha Agrawal, Richa Rathor, Geetha Suryakumar

Abstract:

Muscle represents about ¾ of the body mass, and a healthy muscular system is required for human performance. A healthy muscular system is dynamically balanced via the catabolic and anabolic process. High altitude associated hypoxia altered this redox balance via producing reactive oxygen and nitrogen species that ultimately modulates protein structure and function, hence, disrupts proteostasis or protein homeostasis. The mechanism by which proteostasis is clinched includes regulated protein translation, protein folding, and protein degradation machinery. Perturbation in any of these mechanisms could increase proteome imbalance in the cellular processes. Altered proteostasis in skeletal muscle is likely to be responsible for contributing muscular atrophy in response to hypoxia. Therefore, we planned to elucidate the mechanism involving altered proteostasis leading to skeletal muscle atrophy under chronic hypobaric hypoxia. Material and Methods-Male Sprague Dawley rats weighing about 200-220 were divided into five groups - Control (Normoxic animals), 1d, 3d, 7d and 14d hypobaric hypoxia exposed animals. The animals were exposed to simulated hypoxia equivalent to 282 torr pressure (equivalent to an altitude of 7620m, 8% oxygen) at 25°C. On completion of chronic hypobaric hypoxia (CHH) exposure, rats were sacrificed, muscle was excised and biochemical, histopathological and protein synthesis signaling were studied. Results-A number of changes were observed with the CHH exposure time period. ROS was increased significantly on 07 and 14 days which were attributed to protein oxidation via damaging muscle protein structure by oxidation of amino acids moiety. The oxidative damage to the protein further enhanced the various protein degradation pathways. Calcium activated cysteine proteases and other intracellular proteases participate in protein turnover in muscles. Therefore, we analysed calpain and 20S proteosome activity which were noticeably increased at CHH exposure as compared to control group representing enhanced muscle protein catabolism. Since inflammatory markers (myokines) affect protein synthesis and triggers degradation machinery. So, we determined inflammatory pathway regulated under hypoxic environment. Other striking finding of the study was upregulation of Akt/PKB translational machinery that was increased on CHH exposure. Akt, p-Akt, p70 S6kinase, and GSK- 3β expression were upregulated till 7d of CHH exposure. Apoptosis related markers, caspase-3, caspase-9 and annexin V was also increased on CHH exposure. Conclusion: The present study provides evidence of disrupted proteostasis under chronic hypobaric hypoxia. A profound loss of muscle mass is accompanied by the muscle damage leading to apoptosis and cell death under CHH. These cellular stress response pathways may play a pivotal role in hypobaric hypoxia induced skeletal muscle atrophy. Further research in these signaling pathways will lead to development of therapeutic interventions for amelioration of hypoxia induced muscle atrophy.

Keywords: Akt/PKB translational machinery, chronic hypobaric hypoxia, muscle atrophy, protein degradation

Procedia PDF Downloads 270
25200 A Qualitative Study Identifying the Complexities of Early Childhood Professionals' Use and Production of Data

Authors: Sara Bonetti

Abstract:

The use of quantitative data to support policies and justify investments has become imperative in many fields including the field of education. However, the topic of data literacy has only marginally touched the early care and education (ECE) field. In California, within the ECE workforce, there is a group of professionals working in policy and advocacy that use quantitative data regularly and whose educational and professional experiences have been neglected by existing research. This study aimed at analyzing these experiences in accessing, using, and producing quantitative data. This study utilized semi-structured interviews to capture the differences in educational and professional backgrounds, policy contexts, and power relations. The participants were three key professionals from county-level organizations and one working at a State Department to allow for a broader perspective at systems level. The study followed Núñez’s multilevel model of intersectionality. The key in Núñez’s model is the intersection of multiple levels of analysis and influence, from the individual to the system level, and the identification of institutional power dynamics that perpetuate the marginalization of certain groups within society. In a similar manner, this study looked at the dynamic interaction of different influences at individual, organizational, and system levels that might intersect and affect ECE professionals’ experiences with quantitative data. At the individual level, an important element identified was the participants’ educational background, as it was possible to observe a relationship between that and their positionality, both with respect to working with data and also with respect to their power within an organization and at the policy table. For example, those with a background in child development were aware of how their formal education failed to train them in the skills that are necessary to work in policy and advocacy, and especially to work with quantitative data, compared to those with a background in administration and/or business. At the organizational level, the interviews showed a connection between the participants’ position within the organization and their organization’s position with respect to others and their degree of access to quantitative data. This in turn affected their sense of empowerment and agency in dealing with data, such as shaping what data is collected and available. These differences reflected on the interviewees’ perceptions and expectations for the ECE workforce. For example, one of the interviewees pointed out that many ECE professionals happen to use data out of the necessity of the moment. This lack of intentionality is a cause for, and at the same time translates into missed training opportunities. Another interviewee pointed out issues related to the professionalism of the ECE workforce by remarking the inadequacy of ECE students’ training in working with data. In conclusion, Núñez’s model helped understand the different elements that affect ECE professionals’ experiences with quantitative data. In particular, what was clear is that these professionals are not being provided with the necessary support and that we are not being intentional in creating data literacy skills for them, despite what is asked of them and their work.

Keywords: data literacy, early childhood professionals, intersectionality, quantitative data

Procedia PDF Downloads 253
25199 In situ One-Step Synthesis of Graphene Quantum Dots-Metal Free and Zinc Phthalocyanines Conjugates: Investigation of Photophysicochemical Properties

Authors: G. Fomo, O. J. Achadu, T. Nyokong

Abstract:

Nanoconjugates of graphene quantum dots (GQDs) and 4-(tetrakis-5-(trifluoromethyl)-2-mercaptopyridinephthalocyanine (H₂Pc(OPyF₃)₄) or 4-(tetrakis-5-(trifluoromethyl)-2-mercaptopyridinephthalocyaninato) zinc (II) (ZnPc(OPyF₃)₄) were synthesized via a novel in situ one-step route. The bottom-up approach for the prepared conjugates could ensure the intercalation of the phthalocyanines (Pcs) directly onto the edges or surface of the GQDs and or non-covalent coordination using the π-electron systems of both materials. The as-synthesized GQDs and their Pcs conjugates were characterized using different spectroscopic techniques and their photophysicochemical properties evaluated. The singlet oxygen quantum yields of the Pcs in the presence of GQDs were enhanced due to Förster resonance energy transfer (FRET) occurrence within the conjugated hybrids. Hence, these nanoconjugates are potential materials for photodynamic therapy (PDT) and photocatalysis applications.

Keywords: graphene quantum dots, metal free fluorinated phthalocyanine, zinc fluorinated phthalocyanine, photophysicochemical properties

Procedia PDF Downloads 182
25198 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria

Abstract:

The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Multiple Factorial Correspondence Analysis, Principal Component Analysis, Factor Analysis, E.U.-28 countries, Statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu Statistics

Procedia PDF Downloads 512
25197 Intellectual Women: The Continuing Struggle between Marriage and Personal Dreams in Margaret Drabble's a Summer Bird-Cage and The Millstone

Authors: Ashwag Abdul-Hakeem Al-Thubaiti

Abstract:

This study aims at analysing women's hesitant attitudes towards marriage in Margaret Drabble's novels, A Summer-Bird-Cage (1964) and The Millstone (1965), to prove that these ambivalent feelings are due to their search for autonomy. The heroines' radical outlook on independence is only meant to hide their conflict regarding sex-experience and fear of intimacy, a fear that has been enhanced by their rejection of the expression of faith that considers marriage a sacred bond and instead focus on their own identity and dissolve any bond that may affect their independence. To achieve their autonomy, they have to depend on themselves financially and focus on their aspirational goals. This sharp division between the two worlds, the family life and the personal success attributes negatively to their lives and leads to a self-identity crisis. Drabble tends to solve this struggle by awakening their maternal instinct. Once they respect their physical needs and appreciate their role as it is assigned to them by nature and society, they reach a balanced identity.

Keywords: autonomy, marriage, maternity, women

Procedia PDF Downloads 562
25196 Entrepreneurial Determinants Contributing to the Long Term Growth of Young Hi-Technology Start-Ups

Authors: A. Binnui, O. Kalinowska-Beszczynska, G. Shaw

Abstract:

It is postulated that innovative deployment of entrepreneurial activities leads to firm's growth. This paper draws upon the key predictions of the core theories on entrepreneurship and innovation to formulate a conceptual framework which can be used to depict the casual chain of events from which entrepreneurs can manage more innovatively and ultimately deliver higher growth which benefits of the regional and national economies. It examines the key firm-based factors extracted from the theories, namely the characteristics of entrepreneurial hi-tech firms, characteristics of innovating firms, and firm growth dynamics that lead to enhanced economic growth. The framework postulates that the key determinants extracted such as entrepreneurial demographics, firm characteristic, skills and competencies, research and development, product/service characteristics, market development, financial of the firm and internationalization might lead to the survival and long term development of high-technology startups.

Keywords: innovative entrepreneurial activities, entrepreneuship, determinants, growth, hi-technology start-upws

Procedia PDF Downloads 141
25195 Anticandidal and Antibacterial Silver and Silver(Core)-Gold(Shell) Bimetallic Nanoparticles by Fusarium graminearum

Authors: Dipali Nagaonkar, Mahendra Rai

Abstract:

Nanotechnology has experienced significant developments in engineered nanomaterials in the core-shell arrangement. Nanomaterials having nanolayers of silver and gold are of primary interest due to their wide applications in catalytical and biomedical fields. Further, mycosynthesis of nanoparticles has been proved as a sustainable synthetic approach of nanobiotechnology. In this context, we have synthesized silver and silver (core)-gold (shell) bimetallic nanoparticles using a fungal extract of Fusarium graminearum by sequential reduction. The core-shell deposition of nanoparticles was confirmed by the red shift in the surface plasmon resonance from 434 nm to 530 nm with the aid of the UV-Visible spectrophotometer. The mean particle size of Ag and Ag-Au nanoparticles was confirmed by nanoparticle tracking analysis as 37 nm and 50 nm respectively. Quite polydispersed and spherical nanoparticles are evident by TEM analysis. These mycosynthesized bimetallic nanoparticles were tested against some pathogenic bacteria and Candida sp. The antimicrobial analysis confirmed enhanced anticandidal and antibacterial potential of bimetallic nanoparticles over their monometallic counterparts.

Keywords: bimetallic nanoparticles, core-shell arrangement, mycosynthesis, sequential reduction

Procedia PDF Downloads 573
25194 Deployment of Electronic Healthcare Records and Development of Big Data Analytics Capabilities in the Healthcare Industry: A Systematic Literature Review

Authors: Tigabu Dagne Akal

Abstract:

Electronic health records (EHRs) can help to store, maintain, and make the appropriate handling of patient histories for proper treatment and decision. Merging the EHRs with big data analytics (BDA) capabilities enable healthcare stakeholders to provide effective and efficient treatments for chronic diseases. Though there are huge opportunities and efforts that exist in the deployment of EMRs and the development of BDA, there are challenges in addressing resources and organizational capabilities that are required to achieve the competitive advantage and sustainability of EHRs and BDA. The resource-based view (RBV), information system (IS), and non- IS theories should be extended to examine organizational capabilities and resources which are required for successful data analytics in the healthcare industries. The main purpose of this study is to develop a conceptual framework for the development of healthcare BDA capabilities based on past works so that researchers can extend. The research question was formulated for the search strategy as a research methodology. The study selection was made at the end. Based on the study selection, the conceptual framework for the development of BDA capabilities in the healthcare settings was formulated.

Keywords: EHR, EMR, Big data, Big data analytics, resource-based view

Procedia PDF Downloads 131
25193 Wicking and Evaporation of Liquids in Knitted Fabrics: Analytic Solution of Capillary Rise Restrained by Gravity and Evaporation

Authors: N. S. Achour, M. Hamdaoui, S. Ben Nasrallah

Abstract:

Wicking and evaporation of water in porous knitted fabrics is investigated by combining experimental and analytical approaches: The standard wicking model from Lucas and Washburn is enhanced to account for evaporation and gravity effects. The goal is to model the effect of gravity and evaporation on wicking using simple analytical expressions and investigate the influence of fabrics geometrical parameters, such as porosity and thickness on evaporation impact on maximum reachable height values. The results show that fabric properties have a significant influence on evaporation effect. In this paper, an experimental study of determining water kinetics from different knitted fabrics were gravimetrically investigated permitting the measure of the mass and the height of liquid rising in fabrics in various atmospheric conditions. From these measurements, characteristic pore parameters (capillary radius and permeability) can be determined.

Keywords: evaporation, experimental study, geometrical parameters, model, porous knitted fabrics, wicking

Procedia PDF Downloads 582
25192 Development of a Spatial Data for Renal Registry in Nigeria Health Sector

Authors: Adekunle Kolawole Ojo, Idowu Peter Adebayo, Egwuche Sylvester O.

Abstract:

Chronic Kidney Disease (CKD) is a significant cause of morbidity and mortality across developed and developing nations and is associated with increased risk. There are no existing electronic means of capturing and monitoring CKD in Nigeria. The work is aimed at developing a spatial data model that can be used to implement renal registries required for tracking and monitoring the spatial distribution of renal diseases by public health officers and patients. In this study, we have developed a spatial data model for a functional renal registry.

Keywords: renal registry, health informatics, chronic kidney disease, interface

Procedia PDF Downloads 214
25191 Investigation of Dispersion of Carbon Nanoparticles in Polymer Melt for the Fabrication of Functional Filaments

Authors: Merle Bischoff, Thomas Gries, Gunnar Seide

Abstract:

Nanocomposites have become more and more important as the implementation of nanoparticles in polymer allows additional functions in common industrial parts. Especially in the fabrication of filaments or fibres nanomodification is important, as only very small fillers can be added to the very fine fibres (common diameter is 20 µm, fine filament are 1 µm). Discharging fibres, conductive fibres, and many other functional fibres raise in their importance nowadays. Especially the dispersion quality is essential for the final enhancement of the filament propertied. In this paper, the dispersion of carbon nanoparticles in polymer melt is enhanced by a newly developed sonication unit of ITA and BANDELIN electronic GmbH & Co. KG. The first development steps of the unit fabrication, as well as the first experimental results of the modification of the dispersion, are shown. Special focus will be laid on the sealing of the new sonication unit as well as the positioning and equipment size when being implemented in an existing melt spinning unit. Furthermore, the influence on the thereby manufactured nano-modified filaments will be shown.

Keywords: dispersion, sonication, carbon nanoparticles, filaments

Procedia PDF Downloads 301
25190 Revealing Insights into the Mechanisms of Biofilm Adhesion on Surfaces in Crude Oil Environments

Authors: Hadjer Didouh, Mohammed Hadj Meliani, Izzaddine Sameut Bouhaik

Abstract:

This study employs a multidisciplinary approach to investigate the intricate processes governing biofilm-surface interactions. Results indicate that surface properties significantly influence initial microbial attachment, with materials characterized by increased roughness and hydrophobicity promoting enhanced biofilm adhesion. Moreover, the chemical composition of materials plays a crucial role in impacting the development of biofilms. Environmental factors, such as temperature fluctuations and nutrient availability, were identified as key determinants affecting biofilm formation dynamics. Advanced imaging techniques revealed complex three-dimensional biofilm structures, emphasizing microbial communication and cooperation within these networks. These findings offer practical implications for industries operating in crude oil environments, guiding the selection and design of materials to mitigate biofilm-related challenges and enhance operational efficiency in such settings.

Keywords: biofilm adhesion, surface properties, crude oil environments, microbial interactions, multidisciplinary investigation

Procedia PDF Downloads 73
25189 Environmental Evaluation of Two Kind of Drug Production (Syrup and Pomade Form) Using Life Cycle Assessment Methodology

Authors: H. Aksas, S. Boughrara, K. Louhab

Abstract:

The goal of this study was the use of life cycle assessment (LCA) methodology to assess the environmental impact of pharmaceutical product (four kinds of syrup form and tree kinds of pomade form), which are produced in one leader manufactory in Algeria town that is SAIDAL Company. The impacts generated have evaluated using SimpaPro7.1 with CML92 Method for syrup form and EPD 2007 for pomade form. All impacts evaluated have compared between them, with determination of the compound contributing to each impacts in each case. Data needed to conduct Life Cycle Inventory (LCI) came from this factory, by the collection of theoretical data near the responsible technicians and engineers of the company, the practical data are resulting from the assay of pharmaceutical liquid, obtained at the laboratories of the university. This data represent different raw material imported from European and Asian country necessarily to formulate the drug. Energy used is coming from Algerian resource for the input. Outputs are the result of effluent analysis of this factory with different form (liquid, solid and gas form). All this data (input and output) represent the ecobalance.

Keywords: pharmaceutical product, drug residues, LCA methodology, environmental impacts

Procedia PDF Downloads 246
25188 Adopting a Systematically Planned Humour Pedagogical Approach to Increase Student Engagement in Higher Education

Authors: Rita Gill Singh, Alex Chun Koon, Cindy Sing Bik Ngai, Joanna Wen Ying Ho, Mei Li Khong, Enoch Chan, Terrence Lau

Abstract:

Although humour is viewed as a beneficial element in teaching, there has been little attempt to systematize humour in teaching, possibly because it is difficult to teach someone to be humorous. This study integrated planned humour pedagogical approach into teaching and learning activities and examined the effect of systematically planned humour on students’ engagement and learning in different courses. Specifically, appropriate types of humour (i.e. analogy, absurdity and wordplay) and incorporation methods and frequency were systematically integrated into the lessons of courses at some higher education institutions in Hong Kong. The results showed that the planned humour pedagogical approach increased student engagement, as well as enhanced learning and motivation while reducing students’ stress. The pedagogical implications of this study will be useful for researchers, practitioners, and educators.

Keywords: higher education, pedagogy, humour, student engagement, learning, motivation

Procedia PDF Downloads 62
25187 Metal-Semiconductor-Metal Photodetector Based on Porous In0.08Ga0.92N

Authors: Saleh H. Abud, Z. Hassan, F. K. Yam

Abstract:

Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15 min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390 nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.

Keywords: porous InGaN, photoluminescence, SMS photodetector, atomic force microscopy

Procedia PDF Downloads 489
25186 Multi Cloud Storage Systems for Resource Constrained Mobile Devices: Comparison and Analysis

Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta

Abstract:

Cloud storage is a model of online data storage where data is stored in virtualized pool of servers hosted by third parties (CSPs) and located in different geographical locations. Cloud storage revolutionized the way how users access their data online anywhere, anytime and using any device as a tablet, mobile, laptop, etc. A lot of issues as vendor lock-in, frequent service outage, data loss and performance related issues exist in single cloud storage systems. So to evade these issues, the concept of multi cloud storage introduced. There are a lot of multi cloud storage systems exists in the market for mobile devices. In this article, we are providing comparison of four multi cloud storage systems for mobile devices Otixo, Unclouded, Cloud Fuze, and Clouds and evaluate their performance on the basis of CPU usage, battery consumption, time consumption and data usage parameters on three mobile phones Nexus 5, Moto G and Nexus 7 tablet and using Wi-Fi network. Finally, open research challenges and future scope are discussed.

Keywords: cloud storage, multi cloud storage, vendor lock-in, mobile devices, mobile cloud computing

Procedia PDF Downloads 408
25185 The Relationship between Emotional Intelligence and Leadership Performance

Authors: Omar Al Ali

Abstract:

The current study was aimed to explore the relationships between emotional intelligence, cognitive ability, and leader's performance. Data were collected from 260 senior managers from UAE. The results showed that there are significant relationships between emotional intelligence and leadership performance as measured by the annual internal evaluations of each participant (r = .42, p < .01). Data from regression analysis revealed that both variables namely emotional intelligence (beta = .31, p < .01), and cognitive ability (beta = .29, p < .01), predicted leadership competencies, and together explained 26% of its variance. Data suggests that EI and cognitive ability are significantly correlated with leadership performance. In depth implications of the present findings for human resource development theory and practice are discussed.

Keywords: emotional intelligence, cognitive ability, leadership, performance

Procedia PDF Downloads 477
25184 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system

Procedia PDF Downloads 142
25183 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
25182 Leadership Dynamics and Teacher Engagement in Greek Education

Authors: Vasileios Floros

Abstract:

This article delves into the intricate interplay between leadership styles and teacher satisfaction within the Greek educational framework, underscoring the pivotal role of school leadership in shaping educational success and fostering a conducive school culture. Through a comprehensive analysis, the study explores various leadership theories, the psychological contract between teachers and leaders, and the impact of leadership on teacher job satisfaction and group dynamics within educational institutions. It highlights how leadership efficacy can significantly influence the organizational climate, teacher motivation, and, ultimately, educational outcomes. The findings suggest that effective leadership, characterized by a deep understanding of teacher psychology, thoughtful engagement with the school culture, and strategic application of leadership styles, can lead to heightened teacher satisfaction and enhanced educational performance. This research offers valuable insights for educational policymakers, school leaders, and the broader academic community interested in optimizing leadership practices to foster an enriching educational environment in Greece.

Keywords: educational leadership, teacher satisfaction, school culture, leadership styles, Greek education

Procedia PDF Downloads 50
25181 Text Based Shuffling Algorithm on Graphics Processing Unit for Digital Watermarking

Authors: Zayar Phyo, Ei Chaw Htoon

Abstract:

In a New-LSB based Steganography method, the Fisher-Yates algorithm is used to permute an existing array randomly. However, that algorithm performance became slower and occurred memory overflow problem while processing the large dimension of images. Therefore, the Text-Based Shuffling algorithm aimed to select only necessary pixels as hiding characters at the specific position of an image according to the length of the input text. In this paper, the enhanced text-based shuffling algorithm is presented with the powered of GPU to improve more excellent performance. The proposed algorithm employs the OpenCL Aparapi framework, along with XORShift Kernel including the Pseudo-Random Number Generator (PRNG) Kernel. PRNG is applied to produce random numbers inside the kernel of OpenCL. The experiment of the proposed algorithm is carried out by practicing GPU that it can perform faster-processing speed and better efficiency without getting the disruption of unnecessary operating system tasks.

Keywords: LSB based steganography, Fisher-Yates algorithm, text-based shuffling algorithm, OpenCL, XORShiftKernel

Procedia PDF Downloads 151
25180 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity

Authors: Shaan Khosla, Jon Krohn

Abstract:

In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.

Keywords: AI, machine learning, NLP, recruiting

Procedia PDF Downloads 84
25179 A Web Service-Based Framework for Mining E-Learning Data

Authors: Felermino D. M. A. Ali, S. C. Ng

Abstract:

E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.

Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka

Procedia PDF Downloads 236
25178 Parallel Magnetic Field Effect on Copper Cementation onto Rotating Iron Rod

Authors: Hamouda M. Mousa, M. Obaid, Chan Hee Park, Cheol Sang Kim

Abstract:

The rate of copper cementation on iron rod was investigated. The study was mainly dedicated to illustrate the effect of application of electromagnetic field (EMF) on the rate of cementation. The magnetic flux was placed parallel to the iron rod and different magnetic field strength was studied. The results showed that without EMF, the rate of mass transfer was correlated by the equation: Sh= 1.36 Re0. 098 Sc0.33. The application of EMF enhanced the time required to reach high percentage copper cementation by 50%. The rate of mass transfer was correlated by the equation: Sh= 2.29 Re0. 95 Sc0.33, with applying EMF. This work illustrates that the enhancement of copper recovery in presence of EMF is due to the induced motion of Fe+n in the solution which is limited in the range of rod rotation speed of 300~900 rpm. The calculation of power consumption of EMF showed that although the application of EMF partially reduced the cementation time, the reduction of power consumption due to utilization of magnetic field is comparable to the increase in power consumed by introducing magnetic field of 2462 A T/m.

Keywords: copper cementation, electromagnetic field, copper ions, iron cylinder

Procedia PDF Downloads 489
25177 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows

Authors: A. P. Joshi, H. V. Warrior, J. P. Panda

Abstract:

This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.

Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson critical number

Procedia PDF Downloads 167
25176 Mathematics Bridging Theory and Applications for a Data-Driven World

Authors: Zahid Ullah, Atlas Khan

Abstract:

In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.

Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models

Procedia PDF Downloads 75