Search results for: shock wave loading
1123 Collaborative Economy in Developing Countries: Perspectives from the Philippines
Authors: Ivy Jessen Galvan
Abstract:
Over the past decade, a phenomenon has emerged at the frontier of the digital economy: a wave of ‘disruptive’ technologies that offer digital solutions to variety of everyday problems, challenging the way traditional industries operate. Most of these disruptive technologies are applications ('apps') that rely on the Internet to connect people to people for sharing, selling, renting, or lending, creating a unique economic model wherein users provide for other users’ demand – called 'collaborative economy.' Although collaborative economy is spreading in every part of the world, there may be different ways in which this phenomenon is unfolding throughout the developing countries. In this study, the characteristics of collaborative economy in the Philippines are highlighted and compared from observations in the developed world. The paper looks at two leading collaborative economy ventures in the Philippines – Grab and Shopee – probing into how these smartphone-based platforms place technology into the 'micro-frictions' of the Philippine developing context. Using framing analysis on interviews conducted among Grab and Shopee users in Metro Manila, three frames have been identified: 1) metropolitan solution; 2) financial inclusion and; 3) formalization of labor. This research contextualizes the Fourth Industrial Revolution in ASEAN by analyzing the effect of a digital economy in everyday life.Keywords: ASEAN Unicorns, collaborative economy, developing countries, fourth industrial revolution
Procedia PDF Downloads 1181122 Optimizing Water Consumption of a Washer-Dryer Which Contains Water Condensation Technology under a Constraint of Energy Consumption and Drying Performance
Authors: Aysegul Sarac
Abstract:
Washer-dryers are the machines which can either wash the laundries or can dry them. In other words, we can define a washer-dryer as a washing machine and a dryer in one machine. Washing machines are characterized by the loading capacity, cabinet depth and spin speed. Dryers are characterized by the drying technology. On the other hand, energy efficiency, water consumption, and noise levels are main characteristics that influence customer decisions to buy washers. Water condensation technology is the most common drying technology existing in the washer-dryer market. Water condensation technology uses water to dry the laundry inside the machine. Thus, in this type of the drying technology water consumption is at high levels comparing other technologies. Water condensation technology sprays cold water in the drum to condense the humidity of hot weather in order to dry the laundry inside. Thus, water consumption influences the drying performance. The scope of this study is to optimize water consumption during drying process under a constraint of energy consumption and drying performance. We are using 6-Sigma methodology to find the optimum water consumption by comparing drying performances of different drying algorithms.Keywords: optimization, 6-Sigma methodology, washer-dryers, water condensation technology
Procedia PDF Downloads 3601121 Experimental and Semi-Analytical Investigation of Wave Interaction with Double Vertical Slotted Walls
Authors: H. Ahmed, A. Schlenkhoff, R. Rousta, R. Abdelaziz
Abstract:
Vertical slotted walls can be used as permeable breakwaters to provide economical and environmental protection from undesirable waves and currents inside the port. The permeable breakwaters are partially protection and have been suggested to overcome the environmental disadvantages of fully protection breakwaters. For regular waves a semi-analytical model is based on an eigenfunction expansion method and utilizes a boundary condition at the surface of each wall are developed to detect the energy dissipation through the slots. Extensive laboratory tests are carried out to validate the semi-analytic models. The structure of the physical model contains two walls and it consists of impermeable upper and lower part, where the draft is based a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the water depth from the first one. A comparison of the theoretical results with previous studies and experimental measurements of the present study show a good agreement and that, the semi-analytical model is able to adequately reproduce most the important features of the experiment.Keywords: permeable breakwater, double vertical slotted walls, semi-analytical model, transmission coefficient, reflection coefficient, energy dissipation coefficient
Procedia PDF Downloads 3851120 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers
Authors: H. Ozbasaran
Abstract:
IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.Keywords: cantilever, IPN, IPE, lateral torsional buckling
Procedia PDF Downloads 5401119 Economic Load Dispatch with Valve-Point Loading Effect by Using Differential Evolution Immunized Ant Colony Optimization Technique
Authors: Nur Azzammudin Rahmat, Ismail Musirin, Ahmad Farid Abidin
Abstract:
Economic load dispatch is performed by the utilities in order to determine the best generation level at the most feasible operating cost. In order to guarantee satisfying energy delivery to the consumer, a precise calculation of generation level is required. In order to achieve accurate and practical solution, several considerations such as prohibited operating zones, valve-point effect and ramp-rate limit need to be taken into account. However, these considerations cause the optimization to become complex and difficult to solve. This research focuses on the valve-point effect that causes ripple in the fuel-cost curve. This paper also proposes Differential Evolution Immunized Ant Colony Optimization (DEIANT) in solving economic load dispatch problem with valve-point effect. Comparative studies involving DEIANT, EP and ACO are conducted on IEEE 30-Bus RTS for performance assessments. Results indicate that DEIANT is superior to the other compared methods in terms of calculating lower operating cost and power loss.Keywords: ant colony optimization (ACO), differential evolution (DE), differential evolution immunized ant colony optimization (DEIANT), economic load dispatch (ELD)
Procedia PDF Downloads 4491118 Shear Strengthening of RC T-Beams by Means of CFRP Sheets
Authors: Omar A. Farghal
Abstract:
This research aimed to experimentally and analytically investigate the contribution of bonded web carbon fiber reinforced polymer (CFRP) sheets to the shear strength of reinforced concrete (RC) T-beams. Two strengthening techniques using CFRP strips were applied along the shear-span zone: the first one is vertical U-jacket and the later is vertical strips bonded to the beam sides only. Fibers of both U-jacket and side sheets were vertically oriented (θ = 90°). Test results showed that the strengthening technique with U-jacket CFRP sheets improved the shear strength particularly. Three mechanisms of failure were recognized for the tested beams depending upon the end condition of the bonded CFRP sheet. Although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket CFRP sheets showed more or less a ductile behavior at a higher loading level up to a load level just before failure. As a consequence, these beams approved an acceptable enhancement in the structural ductility. Moreover, the obtained results concerning both the strains induced in the CFRP sheets and the maximum loads are used to study the applicability of the analytical models proposed in this study (ACI code) to predict: the nominal shear strength of the strengthened beams.Keywords: carbon fiber reinforced polymer, wrapping, ductility, shear strengthening
Procedia PDF Downloads 2551117 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation
Authors: Nguyen Thu Huong, Nguyen Quang Bau
Abstract:
The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.Keywords: hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation
Procedia PDF Downloads 4881116 Future Education: Changing Paradigms
Authors: Girish Choudhary
Abstract:
Education is in a state of flux. Not only one need to acquire skills in order to cope with a fast changing global world, an explosive growth in technology, on the other hand is providing a new wave of teaching tools - computer aided video instruction, hypermedia, multimedia, CD-ROMs, Internet connections, and collaborative software environments. The emerging technology incorporates the group qualities of interactive, classroom-based learning while providing individual students the flexibility to participate in an educational programme at their own time and place. The technology facilitating self learning also seems to provide a cost effective solution to the dilemma of delivering education to masses. Online education is a unique learning domain that provides for many to many communications as well. The computer conferencing software defines the boundaries of the virtual classroom. The changing paradigm provides access of instruction to a large proportion of society, promises a qualitative change in the quality of learning and echoes a new way of thinking in educational theory that promotes active learning and open new learning approaches. Putting it to practice is challenging and may fundamentally alter the nature of educational institutions. The subsequent part of paper addresses such questions viz. 'Do we need to radically re-engineer the curriculum and foster an alternate set of skills in students?' in the onward journey.Keywords: on-line education, self learning, energy and power engineering, future education
Procedia PDF Downloads 3291115 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance
Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif
Abstract:
The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant
Procedia PDF Downloads 2981114 Study on the Inhibition Effect of Rail Dampers on Rail Wave Abrasion
Authors: Zhenyu Lei, Chengshun Li
Abstract:
To prevent the occurrence of rail corrugation and mitigate the influence of existing corrugation, this paper first conducts actual measurements of rail corrugation before and after the installation of the frequency-modulated rail dampers, determines the characteristic frequencies of corrugation and makes comparisons of the time-domain and frequency-domain of the vertical and lateral vibration accelerations of the rails. It indicates that the rail dampers significantly reduce the rail vibration acceleration levels at the characteristic frequencies, and the vibrations are significantly reduced after the installation of the dampers. Additionally, a simulation study is carried out on the wheel-rail system with and without the frequency-modulated rail dampers. The theory that resonance of the wheel-rail system leads to corrugation shows that rail vibration is inseparably associated with the generation of corrugation, and the potential causes of corrugation in each frequency band are explored through the natural frequencies of the system. Finally, the rail vibration attenuation rate index is calculated, describing the absorption effect of the frequency-modulated rail dampers on rail vibration. It indicates that the dampers absorb part of the lateral vibration energy of the rails and have the effect of altering the rail vibration characteristics in the frequency domain. It is considered that they have a positive influence on the suppression of rail corrugation.Keywords: rail corrugation, frequency-modulated rail damper, finite element analysis, wheel-rail system resonance, rail vibration attenuation rate
Procedia PDF Downloads 31113 The Effect of Collapse Structure on Economic Growth and Influence of Soil Investigation
Authors: Fatai Shola Afolabi
Abstract:
The study identified and evaluates the causes of building failure and examined the effects of building failure with respect to cost in Lagos State, Nigeria. The method employed in the collection of data includes the administration of questionnaire to professionals in the construction industry and case studies for the sites. A purposive sampling technique was used for selecting the sites visited, and selecting the construction professionals. Descriptive statistical techniques such as frequency distribution and percentages and mean response analysis were used to analyze data. The study revealed that the major causes of building failures were bad design, faulty construction, over loading, non-possession of approved drawings, Possession of approved drawings but non-compliance, and the use of quarks. In the two case studies considered, the total direct loss to the building owners was thirty eight million three hundred and eight five thousand, seven hundred and twenty one naira (38,385,721) which is about One hundred and ninety four thousand, eighty hundred and fifty one dollars ($194,851) at one hundred and ninety seven naira to one US dollars, central bank Nigeria of exchange rate as at 14th March, 2015.Keywords: building structures, building failure, building collapse, structural failure, cost, direct loss
Procedia PDF Downloads 2631112 Truck Scheduling Problem in a Cross-Dock Centre with Fixed Due Dates
Authors: Mohsen S. Sajadieha, Danyar Molavia
Abstract:
In this paper, a truck scheduling problem is investigated at a two-touch cross-docking center with due dates for outbound trucks as a hard constraint. The objective is to minimize the total cost comprising penalty and delivery cost of delayed shipments. The sequence of unloading shipments is considered and is assumed that shipments are sent to shipping dock doors immediately after unloading and a First-In-First-Out (FIFO) policy is considered for loading the shipments. A mixed integer programming model is developed for the proposed model. Two meta-heuristic algorithms including genetic algorithm (GA) and variable neighborhood search (VNS) are developed to solve the problem in medium and large sized scales. The numerical results show that increase in due dates for outbound trucks has a crucial impact on the reduction of penalty costs of delayed shipments. In addition, by increase the due dates, the improvement in the objective function arises on average in comparison with the situation that the cross-dock is multi-touch and shipments are sent to shipping dock doors only after unloading the whole inbound truck.Keywords: cross-docking, truck scheduling, fixed due date, door assignment
Procedia PDF Downloads 4041111 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets
Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew
Abstract:
Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.Keywords: nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus
Procedia PDF Downloads 3561110 Numerical Study of Steel Structures Responses to External Explosions
Authors: Mohammad Abdallah
Abstract:
Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.Keywords: steel structure, blast load, terrorist attacks, charge weight, damage level
Procedia PDF Downloads 3641109 The Impact of Intestinal Ischaemia-Reperfusion Injury upon the Biological Function of Mesenteric Lymph
Authors: Beth Taylor, Kojima Mituaki, Atsushi Senda, Koji Morishita, Yasuhiro Otomo
Abstract:
Intestinal ischaemia-reperfusion injury drives systemic inflammation and organ failure following trauma/haemorrhagic shock (T/HS), through the release of pro-inflammatory mediators into the mesenteric lymph (ML). However, changes in the biological function of ML are not fully understood, and therefore, a specific model of intestinal ischaemia-reperfusion injury is required to obtain ML for the study of its biological function upon inflammatory cells. ML obtained from a model of intestinal ischaemia-reperfusion injury was used to assess biological function upon inflammatory cells and investigate changes in the biological function of individual ML components. An additional model was used to determine the effect of vagal nerve stimulation (VNS) upon biological function. Rat ML was obtained by mesenteric lymphatic duct cannulation before and after occlusion of the superior mesenteric artery (SMAO). ML was incubated with human polymorphonuclear neutrophils (PMNs), monocytes and lymphocytes, and the biological function of these cells was assessed. ML was then separated into supernatant, exosome and micro-vesicle components, and biological activity was compared in monocytes. A model with an additional VNS phase was developed, in which the right cervical vagal nerve was exposed and stimulated, and ML collected for comparison of biological function with the conventional model. The biological function of ML was altered by intestinal ischaemia-reperfusion injury, increasing PMN activation, monocyte activation, and lymphocyte apoptosis. Increased monocyte activation was only induced by the exosome component of ML, with no significant changes induced by the supernatant or micro-vesicle components. VNS partially attenuated monocyte activation, but no attenuation of PMN activation was observed. Intestinal ischaemia-reperfusion injury induces changes in the biological function of ML upon both innate and adaptive inflammatory cells, supporting the role of intestinal ischaemia-reperfusion injury in driving systemic inflammation following T/HS. The exosome component of ML appears to be critical to the transport of pro-inflammatory mediators in ML. VNS partially attenuates changes in innate inflammatory cell biological activity observed, presenting possibilities for future novel treatment development in multiple organ failure patients.Keywords: exosomes, inflammation, intestinal ischaemia, mesenteric lymph, vagal stimulation
Procedia PDF Downloads 1341108 Climate Refugees In International Law – Analyzing The Legal Framework
Authors: Kristof Lukas Heidemann
Abstract:
The adverse effects of climate change, such as rising sea levels, increased temperatures, and extreme weather events are already posing a significant threat to the lives of people living in extreme weather zones all around the globe and could displace more than a billion people worldwide in the upcoming decades, causing a wave of climate-induced migration. Notwithstanding the urgency of the situation, this situation has so far not been addressed in a specific international treaty. Therefore, this paper analyses whether solutions might be found through existing legal framework. Accordingly, the investigation scrutinizes the possibilities of overcoming the conceptual challenge of combining climate law, refugee law, and human rights law. To this end, the study particularly reflects upon the example of Pacific Islanders by assessing the reasoning within the decisions Ioane Teitota v. New Zealand and Daniel Billy and Others v. Australia. The paper concludes that the differences in objective, scope, and enforcement of the three fields are too fundamental to be surmounted by overlapping concepts, e.g. state responsibility or the non-refoulement principle. Consequently, states are urged to tackle the problem with a separate international treaty in which the advantages of the different traditions are incorporated into a new protection mechanism.Keywords: climate change, climate treaties, forcibly displaced persons, human rights, improving and creating advanced knowledge of concepts, non-refoulement, state responsibility, refugee law, refugee status
Procedia PDF Downloads 81107 One-Dimensional Performance Improvement of a Single-Stage Transonic Compressor
Authors: A. Shahsavari, M. Nili-Ahmadabadi
Abstract:
This paper presents an innovative one-dimensional optimization of a transonic compressor based on the radial equilibrium theory by means of increasing blade loading. Firstly, the rotor blade of the transonic compressor is redesigned based on the constant span-wise deHaller number and diffusion. The code is applied to extract compressor meridional plane and blade to blade geometry containing rotor and stator in order to design blade three-dimensional view. A structured grid is generated for the numerical domain of fluid. Finer grids are used for regions near walls to capture boundary layer effects and behavior. RANS equations are solved by finite volume method for rotating zones (rotor) and stationary zones (stator). The experimental data, available for the performance map of NASA Rotor67, is used to validate the results of simulations. Then, the capability of the design method is validated by CFD that is capable of predicting the performance map. The numerical results of new geometry show about 19% increase in pressure ratio and 11% improvement in overall efficiency of the transonic stage; however, the design point mass flow rate of the new compressor is 5.7% less than that of the original compressor.Keywords: deHaller number, one dimensional design, radial equilibrium, transonic compressor
Procedia PDF Downloads 3411106 Effect of Additives on Post-hydrogen Decompression Microstructure and Mechanical Behaviour of PA11 Involved in Type-IV Hydrogen Tank Liners
Authors: Mitia Ramarosaona, Sylvie Castagnet, Damien Halm, Henri-Alexandre Cayzac, Nicolas Dufaure, Philippe Papin
Abstract:
In light of the ongoing energy transition, 'Infrastructure developments' for hydrogen transportation and storage raise studies on the materials employed for hyperbaric vessels. Type IV tanks represent the most mature choice for gaseous hydrogen storage at high pressure – 70MPa. These tanks are made of a composite shell and an internal hydrogen-exposed polymer liner. High pressure conditions lead to severe mechanical loading requiring high resistance. Liner is in contact with hydrogen and undergoes compression – decompression cycles during system filling and emptying. Stresses induced by this loading, coupled with hydrogen diffusion, were found to cause microstructural changes and degradation of mechanical behaviour after decompression phase in some studies on HDPE. These phenomena are similar to those observed in elastomeric components like sealing rings, which can affect permeability and lead to their failure. They may lead to a hydrogen leak, compromising security and tightness of the tank. While these phenomena have been identified in elastomers, they remain less addressed in thermoplastics and consequences post-decompression damages on mechanical behaviour and to the best of author's knowledge was not studied either. Different additives are also included in liner formulation to improve its behaviour. This study aimed to better understand damage micro-mechanisms in PA11s exposed to hydrogen compression-decompression cycles and understand if additives influence their resistance. Samples of pure, plasticized and impact-modified PA11s are exposed to 1, 3 and 8 pressure cycles including hydrogen saturation at 70MPa followed by severe 15-second decompression. After hydrogen exposure and significantly later than full desorption, the residual mechanical behaviour is characterized through impact and monotonic tensile tests, on plain and notched samples. Several techniques of microstructure and micro-nano damage characterization are carried out to assess whether changes in macroscopic properties are driven by microstructural changes in the crystalline structure (SAXS-WAXS acquisitions and SEM micrographs). Thanks to WAXS acquisition and microscopic observation, the effects due to additives and pressure consequences can be decorrelated. Pure PA11 and PA11 with a low percentage of additives show an increase in stress level at the first yielding point after hydrogen cycles. The amplitude of the stress increase is more important in formulation with additives because of changes in PA11 matrix behavior and environment created by additives actions. Plasticizer modifies chain mobility leading to microstructure changes while other additives, more ductile than PA11, is able to cavitate inside PA11 matrix when undergoing decompression. On plasticized formulation, plasticizer migration are suspected to enhance impact of hydrogen cycling on mechanical behaviour. Compared to the literature on HDPE and elastomers, no damages like cavitation or cracking could be evidenced from SAXS experiments on every PA11 formulation tested. In perspectives, on all formulation, experimental work is underway to confirm influence of residual pressure level after decompression on post-decompression damages level, the aim is to better understand the factors affecting the mechanical behavior of thermoplastics subject to mechanical solicitation from decompression in hydrogen tank liners, not mechanical behaviour of liner in hydrogen tanks directly.Keywords: additives, hydrogen tank liner, microstructural analysis, PA11
Procedia PDF Downloads 451105 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation
Authors: Ayan Chakraborty, BV. Rathish Kumar
Abstract:
Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional
Procedia PDF Downloads 1921104 Intervention of Self-Limiting L1 Inner Speech during L2 Presentations: A Study of Bangla-English Bilinguals
Authors: Abdul Wahid
Abstract:
Inner speech, also known as verbal thinking, self-talk or private speech, is characterized by the subjective language experience in the absence of overt or audible speech. It is a psychological form of verbal activity which is being rehearsed without the articulation of any sound wave. In Psychology, self-limiting speech means the type of speech which contains information that inhibits the development of the self. People, in most cases, experience inner speech in their first language. It is very frequent in Bangladesh where the Bangla (L1) speaking students lose track of speech during their presentations in English (L2). This paper investigates into the long pauses (more than 0.4 seconds long) in English (L2) presentations by Bangla speaking students (18-21 year old) and finds the intervention of Bangla (L1) inner speech as one of its causes. The overt speeches of the presenters are placed on Audacity Audio Editing software where the length of pauses are measured in milliseconds. Varieties of inner speech questionnaire (VISQ) have been conducted randomly amongst the participants out of whom 20 were selected who have similar phenomenology of inner speech. They have been interviewed to describe the type and content of the voices that went on in their head during the long pauses. The qualitative interview data are then codified and converted into quantitative data. It was observed that in more than 80% cases students experience self-limiting inner speech/self-talk during their unwanted pauses in L2 presentations.Keywords: Bangla-English Bilinguals, inner speech, L1 intervention in bilingualism, motor schema, pauses, phonological loop, phonological store, working memory
Procedia PDF Downloads 1521103 Investigations on the Seismic Performance of Hot-Finished Hollow Steel Sections
Authors: Paola Pannuzzo, Tak-Ming Chan
Abstract:
In seismic applications, hollow steel sections show, beyond undeniable esthetical appeal, promising structural advantages since, unlike open section counterparts, they are not susceptible to weak-axis and lateral-torsional buckling. In particular, hot-finished hollow steel sections have homogeneous material properties and favorable ductility but have been underutilized for cyclic bending. The main reason is that the parameters affecting their hysteretic behaviors are not yet well understood and, consequently, are not well exploited in existing codes of practice. Therefore, experimental investigations have been conducted on a wide range of hot-finished rectangular hollow section beams with the aim to providing basic knowledge for evaluating their seismic performance. The section geometry (width-to-thickness and depth-to-thickness ratios) and the type of loading (monotonic and cyclic) have been chosen as the key parameters to investigate the cyclic effect on the rotational capacity and to highlight the differences between monotonic and cyclic load conditions. The test results provide information on the parameters that affect the cyclic performance of hot-finished hollow steel beams and can be used to assess the design provisions stipulated in the current seismic codes of practice.Keywords: bending, cyclic test, finite element modeling, hollow sections, hot-finished sections
Procedia PDF Downloads 1561102 Experimental Investigation to Find Transition Temperature of VG 30 Binder
Authors: D. Latha, V. Sunitha, Samson Mathew
Abstract:
In India, most of the pavement is laid by bituminous road and the consumption of binder is high for pavement construction and also modified binders are used to satisfy any specific pavement requirement. Since the binders are visco-elastic material which is having the mechanical properties of binder transition from visco-elastic solid to visco-elastic fluid. In this paper, two different protocols were used to measure the viscosity property of binder using a Brookfield Viscometer and there is a need to find the appropriate mixing and compaction temperatures of various types of binders which can result in complete aggregate coating and adequate field density of HMA mixtures. The aim of this work is to find the transition temperature from Non-Newtonian behavior to Newtonian behavior of the binder by adopting a steady shear protocol and the shear rate ramp protocol. The transition from non-Newtonian to Newtonian can occur through an increase of temperature and shear of the material. The test has been conducted for unmodified binder VG 30. The transition temperature was found in the unmodified binder VG is 120oC. So the application of both modified binder and unmodified binder in the pavement construction needs to be studied properly by considering temperature and traffic loading factors of the respective project site.Keywords: unmodified and modified binders, Brookfield viscometer, transition temperature, steady shear and shear rate protocol
Procedia PDF Downloads 2151101 A Modified Periodic 2D Cellular Re-Entrant Honeycomb Model to Enhance the Auxetic Elastic Properties
Authors: Sohaib Z. Khan, Farrukh Mustahsan, Essam R. I. Mahmoud, S. H. Masood
Abstract:
Materials or structures that contract laterally on the application of a compressive load and vice versa are said to be Auxetic materials which exhibit Negative Poisson’s Ratio (NPR). Numerous auxetic structures are proposed in the literature. One of the most studied periodic auxetic structure is the re-entrant honeycomb model. In this paper, a modified re-entrant model is proposed to enhance the auxetic behavior. The paper aimed to investigate the elastic behaviour of the proposed model to improve Young’s modulus and NPR by evaluating the analytical model. Finite Element Analysis (FEA) is also conducted to support the analytical results. A significant increment in Young’s modulus and NPR can be achieved in one of the two orthogonal directions of the loading at the cost of compromising these values in other direction. The proposed modification resulted in lower relative densities when compared to the existing re-entrant honeycomb structure. A trade-off in the elastic properties in one direction at low relative density makes the proposed model suitable for uni-direction applications where higher stiffness and NPR is required, and strength to weight ratio is important.Keywords: 2D model, auxetic materials, re-entrant honeycomb, negative Poisson's ratio
Procedia PDF Downloads 1381100 Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite
Authors: Illyas Md Isa, Maryam Musfirah Che Sobry, Mohamad Syahrizal Ahmad, Nurashikin Abd Azis
Abstract:
A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods.Keywords: bisphenol A, magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite, Nanocomposite, uric acid
Procedia PDF Downloads 2121099 Numerical Investigation on Performance of Expanded Polystyrene Geofoam Block in Protecting Buried Lifeline Structures
Authors: M. Abdollahi, S. N. Moghaddas Tafreshi
Abstract:
Expanded polystyrene (EPS) geofoam is often used in below ground applications in geotechnical engineering. A most recent configuration system implemented in roadways to protect lifelines such as buried pipes, electrical cables and culvert systems could be consisted of two EPS geofoam blocks, “posts” placed on each side of the structure, an EPS block capping, “beam” put atop two posts, and soil cover on the beam. In this configuration, a rectangular void space will be built atop the lifeline. EPS blocks will stand all the imposed vertical forces due to their strength and deformability, thus the lifeline will experience no vertical stress. The present paper describes the results of a numerical study on the post and beam configuration subjected to the static loading. Three-dimensional finite element analysis using ABAQUS software is carried out to investigate the effect of different parameters such as beam thickness, soil thickness over the beam, post height to width ratio, EPS density, and free span between two posts, on the stress distribution and the deflection of the beam. The results show favorable performance of EPS geofoam for protecting sensitive infrastructures.Keywords: beam, EPS block, numerical analysis, post, stress distribution
Procedia PDF Downloads 2441098 Energy-Dense and High-Power Li-Cl₂/I₂ Batteries by Reversible Chemical Bonds
Authors: Pei Li, Chunyi Zhi
Abstract:
Conversion-type lithium-ion batteries show great potential as high-energy-density, low-cost and sustainable alternatives to current transition-metal-based intercalation cells. Li-Cl₂/Li⁻I₂ conversion batteries, based on anionic redox reactions of Cl⁻/Cl⁰ or I⁻/I⁰, are highly attractive due to their superior voltage and capacity. However, a redox-active and reversible chlorine cathode has not been developed in organic electrolytes. And thermodynamic instability and shuttling issues of iodine cathodes have plagued the active iodine loading, capacity retention and cyclability. By reversible chemical bonds, we develop reversible chlorine redox reactions in organic electrolytes with interhalogen bonds between I and Cl for Li-I₂ batteries and develop a highly thermally stable I/I₃--bonded organic salts with iodine content up to 80% as cathode materials for the rechargeable Li-I₂ batteries. The demonstration of reversible chemical bonds enabled rechargeable Li-halogen batteries opens a new avenue to develop halogen compound cathodes.Keywords: conversion-type, chlorine, halogen cathode, high energy density, iodine, interhalogen bond, lithium-ion batteries
Procedia PDF Downloads 841097 Modified Plastic-Damage Model for FRP-Confined Repaired Concrete Columns
Authors: I. A Tijani, Y. F Wu, C.W. Lim
Abstract:
Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.Keywords: Concrete, FRP, Damage, Repairing, Plasticity, and Finite element method
Procedia PDF Downloads 1381096 Behavior of Reinforced Soil by Polypropylene Fibers
Authors: M. Kamal Elbokl
Abstract:
The beneficial effects of reinforcing the subgrade soil in pavement system with randomly distributed polypropylene fibers were investigated. For this issue, two types of soils and one type of fiber were selected. Proctor, CBR and unconfined compression tests were conducted on unreinforced samples as well as reinforced ones at different concentrations and aspect ratio of fibers. OMC, CBR and modulus of elasticity were investigated and thereby, the optimum value of aspect ratio and fiber content were determined. The static and repeated triaxial tests were also conducted to study the behaviour of fiber reinforced soils under both static and repeated loading. The results indicated that CBR values of reinforced sand and clay were 3.1 and 4.2 times of their unreinforced values respectively. The modulus of elasticity of fiber reinforced soils has increased by 100% for silty sandy soil and 60.20% for silty clay soil due to fiber reinforcement. The reinforced soils exhibited higher failure stresses in the static triaxial tests than the unreinforced ones due to the apparent bond developed between soil particle and the fiber. Fiber reinforcement of subgrade soils can play an important role in control the rut formation in the pavement system.Keywords: polypropylene fibers, CBR, static triaxial, cyclic triaxial, resilient strain, permanent strain
Procedia PDF Downloads 6231095 Crack Initiation Assessment during Fracture of Heat Treated Duplex Stainless Steels
Authors: Faraj Ahmed E. Alhegagi, Anagia M. Khamkam Mohamed, Bassam F. Alhajaji
Abstract:
Duplex stainless steels (DSS) are widely employed in industry for apparatus working with sea water in petroleum, refineries and in chemical plants. Fracture of DSS takes place by cleavage of the ferrite phase and the austenite phase ductile tear off. Pop-in is an important feature takes place during fracture of DSS. The procedure of Pop-ins assessment plays an important role in fracture toughness studies. In present work, Zeron100 DSS specimens were heat treated at different temperatures, cooled and pulled to failure to assess the pop-ins criterion in crack initiation prediction. The outcome results were compared to the British Standard (BS 7448) and the ASTEM standard (E1290) for Crack-Tip Opening Displacement (CTOD) fracture toughness measurement. Pop-in took place during specimens loading specially for those specimens heat treated at higher temperatures. The standard BS7448 was followed to check specimen validity for fractured toughness assessment by direct determination of KIC. In most cases, specimens were invalid for KIC measurement. The two procedures were equivalent only when single pop-ins were assessed. A considerable contrast in fracture toughness value between was observed where multiple pop-ins were assessed.Keywords: fracture toughness, stainless steels, pop ins, crack assessment
Procedia PDF Downloads 1251094 First Principle Studies on the Structural, Electronic and Magnetic Properties of Some BaMn-Based Double Perovskites
Authors: Amel Souidi, S. Bentata, B. Bouadjemi, T. Lantri, Z. Aziz
Abstract:
Perovskite materials which include magnetic elements have relevance due to the technological perspectives in the spintronics industry. In this work, we have investigated the structural, electronic and magnetic properties of double perovskites Ba2MnXO6 with X= Mo and W by using the full-potential linearized augmented plane wave (FP-LAPW) method based on Density Functional Theory (DFT) [1, 2] as implemented in the WIEN2K [3] code. The interchange-correlation potential was included through the generalized gradient approximation (GGA) [4] as well as taking into account the on-site coulomb repulsive interaction in (GGA+U) approach. We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. The results show that the materials crystallize in the 225 space group (Fm-3m) and have a lattice parameter of about 7.97 Å and 7.95 Å for Ba2MnMoO6 and Ba2MnWO6, respectively. The band structures reveal a metallic ferromagnetic (FM) ground state in Ba2MnMoO6 and half-metallic (HM) ferromagnetic (FM) ground state in the Ba2MnWO6 compound, with total magnetic moment equal 2.9951μB (Ba2MnMoO6 ) and 4.0001μB (Ba2MnWO6 ). The GGA+U calculations predict an energy gap in the spin-up bands in Ba2MnWO6. So we estimate that this material with HM-FM nature implies a promising application in spin-electronics technology.Keywords: double perovskites, electronic structure, first-principles, semiconductors
Procedia PDF Downloads 368