Search results for: phase field crystal model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26757

Search results for: phase field crystal model

24597 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties

Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm

Abstract:

Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.

Keywords: phase change material, microencapsulation, adhesive bonding, thermal management

Procedia PDF Downloads 72
24596 Regularized Euler Equations for Incompressible Two-Phase Flow Simulations

Authors: Teng Li, Kamran Mohseni

Abstract:

This paper presents an inviscid regularization technique for the incompressible two-phase flow simulations. This technique is known as observable method due to the understanding of observability that any feature smaller than the actual resolution (physical or numerical), i.e., the size of wire in hotwire anemometry or the grid size in numerical simulations, is not able to be captured or observed. Differ from most regularization techniques that applies on the numerical discretization, the observable method is employed at PDE level during the derivation of equations. Difficulties in the simulation and analysis of realistic fluid flow often result from discontinuities (or near-discontinuities) in the calculated fluid properties or state. Accurately capturing these discontinuities is especially crucial when simulating flows involving shocks, turbulence or sharp interfaces. Over the past several years, the properties of this new regularization technique have been investigated that show the capability of simultaneously regularizing shocks and turbulence. The observable method has been performed on the direct numerical simulations of shocks and turbulence where the discontinuities are successfully regularized and flow features are well captured. In the current paper, the observable method will be extended to two-phase interfacial flows. Multiphase flows share the similar features with shocks and turbulence that is the nonlinear irregularity caused by the nonlinear terms in the governing equations, namely, Euler equations. In the direct numerical simulation of two-phase flows, the interfaces are usually treated as the smooth transition of the properties from one fluid phase to the other. However, in high Reynolds number or low viscosity flows, the nonlinear terms will generate smaller scales which will sharpen the interface, causing discontinuities. Many numerical methods for two-phase flows fail at high Reynolds number case while some others depend on the numerical diffusion from spatial discretization. The observable method regularizes this nonlinear mechanism by filtering the convective terms and this process is inviscid. The filtering effect is controlled by an observable scale which is usually about a grid length. Single rising bubble and Rayleigh-Taylor instability are studied, in particular, to examine the performance of the observable method. A pseudo-spectral method is used for spatial discretization which will not introduce numerical diffusion, and a Total Variation Diminishing (TVD) Runge Kutta method is applied for time integration. The observable incompressible Euler equations are solved for these two problems. In rising bubble problem, the terminal velocity and shape of the bubble are particularly examined and compared with experiments and other numerical results. In the Rayleigh-Taylor instability, the shape of the interface are studied for different observable scale and the spike and bubble velocities, as well as positions (under a proper observable scale), are compared with other simulation results. The results indicate that this regularization technique can potentially regularize the sharp interface in the two-phase flow simulations

Keywords: Euler equations, incompressible flow simulation, inviscid regularization technique, two-phase flow

Procedia PDF Downloads 502
24595 Development of a Human Skin Explant Model for Drug Metabolism and Toxicity Studies

Authors: K. K. Balavenkatraman, B. Bertschi, K. Bigot, A. Grevot, A. Doelemeyer, S. D. Chibout, A. Wolf, F. Pognan, N. Manevski, O. Kretz, P. Swart, K. Litherland, J. Ashton-Chess, B. Ling, R. Wettstein, D. J. Schaefer

Abstract:

Skin toxicity is poorly detected during preclinical studies, and drug-induced side effects in humans such as rashes, hyperplasia or more serious events like bullous pemphigus or toxic epidermal necrolysis represent an important hurdle for clinical development. In vitro keratinocyte-based epidermal skin models are suitable for the detection of chemical-induced irritancy, but do not recapitulate the biological complexity of full skin and fail to detect potential serious side-effects. Normal healthy skin explants may represent a valuable complementary tool, having the advantage of retaining the full skin architecture and the resident immune cell diversity. This study investigated several conditions for the maintenance of good morphological structure after several days of culture and the retention of phase II metabolism for 24 hours in skin explants in vitro. Human skin samples were collected with informed consent from patients undergoing plastic surgery and immediately transferred and processed in our laboratory by removing the underlying dermal fat. Punch biopsies of 4 mm diameter were cultured in an air-liquid interface using transwell filters. Different cultural conditions such as the effect of calcium, temperature and cultivation media were tested for a period of 14 days and explants were histologically examined after Hematoxylin and Eosin staining. Our results demonstrated that the use of Williams E Medium at 32°C maintained the physiological integrity of the skin for approximately one week. Upon prolonged incubation, the upper layers of the epidermis become thickened and some dead cells are present. Interestingly, these effects were prevented by addition of EGFR inhibitors such as Afatinib or Erlotinib. Phase II metabolism of the skin such as glucuronidation (4-methyl umbeliferone), sulfation (minoxidil), N-acetyltransferase (p-toluidene), catechol methylation (2,3-dehydroxy naphthalene), and glutathione conjugation (chlorodinitro benzene) were analyzed by using LCMS. Our results demonstrated that the human skin explants possess metabolic activity for a period of at least 24 hours for all the substrates tested. A time course for glucuronidation with 4-methyl umbeliferone was performed and a linear correlation was obtained over a period of 24 hours. Longer-term culture studies will indicate the possible evolution of such metabolic activities. In summary, these results demonstrate that human skin explants maintain a normal structure for several days in vitro and are metabolically active for at least the first 24 hours. Hence, with further characterisation, this model may be suitable for the study of drug-induced toxicity.

Keywords: human skin explant, phase II metabolism, epidermal growth factor receptor, toxicity

Procedia PDF Downloads 281
24594 A Conceptual Model of Social Entrepreneurial Intention Based on the Social Cognitive Career Theory

Authors: Anh T. P. Tran, Harald Von Korflesch

Abstract:

Entrepreneurial intention play a major role in entrepreneurship academia and practice. The spectrum ranges from the first model of the so-called Entrepreneurial Event, then the Theory of Planned Behavior, the Theory of Planned Behavior Entrepreneurial Model, and the Social Cognitive Career Theory to some typical empirical studies with more or less diverse results. However, little is known so far about the intentions of entrepreneurs in the social areas of venture creation. It is surprising that, since social entrepreneurship is an emerging field with growing importance. Currently, all around the world, there is a big challenge with a lot of urgent soaring social and environmental problems such as poor households, people with disabilities, HIV/AIDS infected people, the lonely elderly, or neglected children, some of them even actual in the Western countries. In addition, the already existing literature on entrepreneurial intentions demonstrates a high level of theoretical diversity in general, especially the missing link to the social dimension of entrepreneurship. Seeking to fill the mentioned gaps in the social entrepreneurial intentions literature, this paper proposes a conceptual model of social entrepreneurial intentions based on the Social Cognitive Career Theory with two main factors influencing entrepreneurial intentions namely self-efficacy and outcome expectation. Moreover, motives, goals and plans do not arise from empty nothingness, but are shaped by interacting with the environment. Hence, personalities (i.e., agreeableness, conscientiousness, extraversion, neuroticism, openness) as well as contextual factors (e.g., role models, education, and perceived support) are also considered as the antecedents of social entrepreneurship intentions.

Keywords: entrepreneurial intention, social cognitive career theory, social entrepreneurial intention, social entrepreneurship

Procedia PDF Downloads 475
24593 An Elbow Biomechanical Model and Its Coefficients Adjustment

Authors: Jie Bai, Yongsheng Gao, Shengxin Wang, Jie Zhao

Abstract:

Through the establishment of the elbow biomechanical model, it can provide theoretical guide for rehabilitation therapy on the upper limb of the human body. A biomechanical model of the elbow joint can be built by the connection of muscle force model and elbow dynamics. But there are many undetermined coefficients in the model like the optimal joint angle and optimal muscle force which are usually specified as the experimental parameters of other workers. Because of the individual differences, there is a certain deviation of the final result. To this end, the RMS value of the deviation between the actual angle and calculated angle is considered. A set of coefficients which lead to the minimum RMS value will be chosen to be the optimal parameters. The direct search method and the conjugacy search method are used to get the optimal parameters, thus the model can be more accurate and mode adaptability.

Keywords: elbow biomechanical model, RMS, direct search, conjugacy search

Procedia PDF Downloads 549
24592 Effects of Pre-Task Activities on the Writing Performance of Second Language Learners

Authors: Wajiha Fatima

Abstract:

Based on Rod Ellis’s (2002) the methodology of task-based teaching, this study explored the effects of pre-task activities on the Job Application letter of 102 ESL students (who were female and undergraduate learners). For this purpose, students were divided among three groups (Group A, Group B, and Group C), kept in control and experimental settings as well. Pre-task phase motivates the learners to perform the actual task. Ellis reportedly discussed four pre-task phases: (1) performing a similar task; (2) providing a model; (3) non-task preparation activities and (4) strategic planning. They were taught through above given three pre-task activities. Accordingly, the learners in control setting were supposed to write without any teaching aid while learners in an experimental situation were provided three different pre-task activities in each group. In order to compare the scores of the pre-test and post-test of the three groups, sample paired t-test was utilized. The obtained results of the written job application by the female students revealed that pre-task activities improved their performance in writing. On the other hand, the comparison of the three pre-task activities revealed that 'providing a model' outperformed the other two activities. For this purpose, ANOVA was utilized.

Keywords: pre-task activities, second language learners, task based language teaching, writing

Procedia PDF Downloads 178
24591 Invisible Aircraft Using Plasma Display

Authors: C. Ramamoorthy, R. Ranga Raj

Abstract:

In olden days the Ramayana epic depicts the usage of invisible and fuel less aircraft named pushpavimana. The change of color in the reptile family chameleon paves way for the concept of color change phenomenon available in nature. In present scenario the aircrafts are visible so it is easily identified. So there are too many problems from the threatening. Research is still going on about this problem by using Liquid Crystal Display (LCD). Objective of this paper is to find much better to use the concept of invisible aircraft using plasma display through Couple Charged Device camera (CCD), which has a high resolution and can be used for many purposes like spying, defense, etc. Moreover it is cost wise cheap then, escaping the foe viewing.

Keywords: CCD camera, chameleon, invisible, plasma display

Procedia PDF Downloads 403
24590 Forecasting for Financial Stock Returns Using a Quantile Function Model

Authors: Yuzhi Cai

Abstract:

In this paper, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.

Keywords: DJIA, financial returns, predictive distribution, quantile function model

Procedia PDF Downloads 367
24589 Phase Transition of Aqueous Ternary (THF + Polyvinylpyrrolidone + H2O) System as Revealed by Terahertz Time-Domain Spectroscopy

Authors: Hyery Kang, Dong-Yeun Koh, Yun-Ho Ahn, Huen Lee

Abstract:

Determination of the behavior of clathrate hydrate with inhibitor in the THz region will provide useful information about hydrate plug control in the upstream of the oil and gas industry. In this study, terahertz time-domain spectroscopy (THz-TDS) revealed the inhibition of the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different molecular weights. Distinct footprints of phase transition in the THz region (0.4–2.2 THz) were analyzed and absorption coefficients and real part of refractive indices are obtained in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy.

Keywords: clathrate hydrate, terahertz spectroscopy, tetrahydrofuran, inhibitor

Procedia PDF Downloads 339
24588 Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling

Authors: Mehdi Fuladipanah

Abstract:

Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways.

Keywords: stepped spillway, fluent model, VOF model, K-ε model, energy distribution

Procedia PDF Downloads 372
24587 Enhanced Flight Dynamics Model to Simulate the Aircraft Response to Gust Encounters

Authors: Castells Pau, Poetsch Christophe

Abstract:

The effect of gust and turbulence encounters on aircraft is a wide field of study which allows different approaches, from high-fidelity multidisciplinary simulations to more simplified models adapted to industrial applications. The typical main goal is to predict the gust loads on the aircraft in order to ensure a safe design and achieve certification. Another topic widely studied is the gust loads reduction through an active control law. The impact of gusts on aircraft handling qualities is of interest as well in the analysis of in-service events so as to evaluate the aircraft response and the performance of the flight control laws. Traditionally, gust loads and handling qualities are addressed separately with different models adapted to the specific needs of each discipline. In this paper, an assessment of the differences between both models is presented and a strategy to better account for the physics of gust encounters in a typical flight dynamics model is proposed based on the model used for gust loads analysis. The applied corrections aim to capture the gust unsteady aerodynamics and propagation as well as the effect of dynamic flexibility at low frequencies. Results from the gust loads model at different flight conditions and measures from real events are used for validation. An assessment of a possible extension of steady aerodynamic nonlinearities to low frequency range is also addressed. The proposed corrections provide meaningful means to evaluate the performance and possible adjustments of the flight control laws.

Keywords: flight dynamics, gust loads, handling qualities, unsteady aerodynamics

Procedia PDF Downloads 147
24586 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 150
24585 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach

Authors: Sina Kazemi, Farshid Torabi, Todd Peterson

Abstract:

Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.

Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity

Procedia PDF Downloads 86
24584 Remediation of Dye Contaminated Wastewater Using N, Pd Co-Doped TiO₂ Photocatalyst Derived from Polyamidoamine Dendrimer G1 as Template

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N, Pt) co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. The resultant photocatalysts were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), UV‐Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), thermal gravimetric analysis (TGA). The results showed that the calcination atmosphere played an important role in the morphology, crystal structure, spectral absorption, oxygen vacancy concentration, and visible light photocatalytic performance of the catalysts. Anatase phase particles ranging between 9- 20 nm were also confirmed by TEM, SEM, and analysis. The origin of the visible light photocatalytic activity was attributed to both the elemental N and Pd dopants and the existence of oxygen vacancies. Co-doping imparted a shift in the visible region of the solar spectrum. The visible light photocatalytic activity of the samples was investigated by monitoring the photocatalytic degradation of brilliant black dye. Co-doped TiO₂ showed greater photocatalytic brilliant black degradation efficiency compared to singly doped N-TiO₂ or Pd-TiO₂ under visible light irradiation. The highest reaction rate constant of 3.132 x 10-2 min⁻¹ was observed for N, Pd co-doped TiO₂ (2% Pd). The results demonstrated that the N, Pd co-doped TiO₂ (2% Pd) sample could completely degrade the dye in 3 h, while the commercial TiO₂ showed the lowest dye degradation efficiency (52.66%).

Keywords: brilliant black, Co-doped TiO₂, polyamidoamine generation 1 (PAMAM G1), photodegradation

Procedia PDF Downloads 179
24583 Monitoring Three-Dimensional Models of Tree and Forest by Using Digital Close-Range Photogrammetry

Authors: S. Y. Cicekli

Abstract:

In this study, tree-dimensional model of tree was created by using terrestrial close range photogrammetry. For this close range photos were taken. Photomodeler Pro 5 software was used for camera calibration and create three-dimensional model of trees. In first test, three-dimensional model of a tree was created, in the second test three-dimensional model of three trees were created. This study aim is creating three-dimensional model of trees and indicate the use of close-range photogrammetry in forestry. At the end of the study, three-dimensional model of tree and three trees were created. This study showed that usability of close-range photogrammetry for monitoring tree and forests three-dimensional model.

Keywords: close- range photogrammetry, forest, tree, three-dimensional model

Procedia PDF Downloads 389
24582 A Mathematical-Based Formulation of EEG Fluctuations

Authors: Razi Khalafi

Abstract:

Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli.

Keywords: Brain, stimuli, partial differential equation, response, eeg signal

Procedia PDF Downloads 433
24581 Performance and Availability Analysis of 2N Redundancy Models

Authors: Yutae Lee

Abstract:

In this paper, we consider the performance and availability of a redundancy model. The redundancy model is a form of resilience that ensures service availability in the event of component failure. This paper considers a 2N redundancy model. In the model there are at most one active service unit and at most one standby service unit. The active one is providing the service while the standby is prepared to take over the active role when the active fails. We design our analysis model using Stochastic Reward Nets, and then evaluate the performance and availability of 2N redundancy model using Stochastic Petri Net Package (SPNP).

Keywords: availability, performance, stochastic reward net, 2N redundancy

Procedia PDF Downloads 421
24580 The Effects of Cost-Sharing Contracts on the Costs and Operations of E-Commerce Supply Chains

Authors: Sahani Rathnasiri, Pritee Ray, Sardar M. N. Isalm, Carlos A. Vega-Mejia

Abstract:

This study develops a cooperative game theory-based cost-sharing contract model for a business to consumer (B2C) e-commerce supply chain to minimize the overall supply chain costs and the individual costs within an information asymmetry scenario. The objective of this study is to address the issues of strategic interactions among the key players of the e-commerce supply chain operation, which impedes the optimal operational outcomes. Game theory has been included in the field of supply chain management to resolve strategic decision-making issues; however, most of the studies are limited only to two-echelons of the supply chains. Multi-echelon supply chain optimizations based on game-theoretic models are less explored in the previous literature. This study adopts a cooperative game model to focus on the common payoff of operations and addresses the issues of information asymmetry and coordination of a three-echelon e-commerce supply chain. The cost-sharing contract model integrates operational features such as production, inventory management and distribution with the contract related constraints. The outcomes of the model highlight the importance of maintaining lower operational costs by all players to obtain benefits from the cost-sharing contract. Further, the cost-sharing contract ensures true cost revelation, and hence eliminates the information asymmetry issues among the players. Comparing the results of the contract model with the de-centralized e-commerce supply chain operation further emphasizes that the cost-sharing contract derives Pareto-improved outcomes and minimizes the costs of overall e-commerce supply chain operation.

Keywords: cooperative game theory, cost-sharing contract, e-commerce supply chain, information asymmetry

Procedia PDF Downloads 128
24579 Enhancing the Rollability of Cu-Ge-Ni Alloy through Heat Treatment Methods

Authors: Morteza Hadi

Abstract:

This research investigates the potential enhancement of the rollability of Cu-Ge-Ni alloy through the mitigation of microstructural and compositional inhomogeneities via two distinct heat treatment methods: homogenization and solution treatment. To achieve this objective, the alloy with the desired composition was fabricated using a vacuum arc remelting furnace (VAR), followed by sample preparation for microstructural, compositional, and heat treatment analyses at varying temperatures and durations. Characterization was conducted employing optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness testing. The results obtained indicate that a minimum duration of 10 hours is necessary for adequate homogenization of the alloy at 750°C. This heat treatment effectively removes coarse dendrites from the casting microstructure and significantly reduces elemental separations. However, despite these improvements, the presence of a second phase with markedly different hardness from the matrix results in poor rolling ability for the alloy. The optimal time for solution treatment at various temperatures was determined, with the most effective cycle identified as 750°C for 2 hours, followed by rapid quenching in water. This process induces the formation of a single-phase microstructure and complete elimination of the second  phase, as confirmed by X-ray diffraction analysis. Results demonstrate a reduction in hardness by 30 Vickers, and the elimination of microstructural unevenness enables successful thickness reduction by up to 50% through rolling without encountering cracking.

Keywords: Cu-Ge-Ni alloy, homogenization. solution treatment, rollability

Procedia PDF Downloads 52
24578 Multifunctional β-Cyclodextrin-EDTA-Chitosan Polymer Adsorbent Synthesis for Simultaneous Removal of Heavy Metals and Organic Dyes from Wastewater

Authors: Monu Verma, Hyunook Kim

Abstract:

Heavy metals and organic dyes are the major sources of water pollution. Herein, a trifunctional β−cyclodextrin−ethylenediaminetetraacetic acid−chitosan (β−CD−EDTA−CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β−CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area, and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg²⁺) and cadmium (Cd²⁺), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV), and safranin O (SO), were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows a monolayer adsorption capacity of 346.30 ± 14.0 and 202.90 ± 13.90 mg g−¹ for Hg²⁺ and Cd²⁺, respectively, and a heterogeneous adsorption capacity of 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g−¹ for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161–0.00368 g mg−¹ min−¹) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the four heavy metals, Hg²⁺, Cd²⁺, Ni²⁺, and Cu²⁺, and three dyes MB, CV, and SO in secondary treated wastewater. The findings of this study indicate that β-CD-EDTA-CS is simple and easy to synthesize and can be used in wastewater treatment.

Keywords: adsorption isotherms, adsorption mechanism, amino-β-cyclodextrin, heavy metal ions, organic dyes

Procedia PDF Downloads 107
24577 Analytical Study on the Shape of T-Type Girder Modular Bridge Connection by Using Parametric

Authors: Jongho Park, Jinwoong Choi, Sungnam Hong, Seung-Kyung Kye, Sun-Kyu Park

Abstract:

Recently, to cope with the rapidly changing construction trend because of aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape examination of the transverse connection of T-type girder newly developed between the segmented modules is not performed. Therefore, the investigation of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verification of model for transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree.

Keywords: modular bridge, optimal transverse shape, parameter, FEM

Procedia PDF Downloads 650
24576 Intensity-Enhanced Super-Resolution Amplitude Apodization Effect on the Non-Spherical Near-Field Particle-Lenses

Authors: Liyang Yue, Bing Yan, James N. Monks, Rakesh Dhama, Zengbo Wang, Oleg V. Minin, Igor V. Minin

Abstract:

A particle can function as a refractive lens to focus a plane wave, generating a narrow, high intensive, weak-diverging beam within a sub-wavelength volume, known as the ‘photonic jet’. Refractive index contrast (particle to background media) and scaling effect of the dielectric particle (relative-to-wavelength size) play key roles in photonic jet formation, rather than the shape of particle-lens. Waist (full width of half maximum, FWHM) of a photonic jet could be beyond the diffraction limit and smaller than the Airy disk, which defines the minimum distance between two objects to be imaged as two instead of one. Many important applications for imaging and sensing have been afforded based upon the super-resolution characteristic of the photonic jet. It is known that apodization method, in the form of an amplitude pupil-mask centrally situated on a particle-lens, can further reduce the waist of a photonic nanojet, however, usually lower its intensity at the focus due to blocking of the incident light. In this paper, the anomalously intensity-enhanced apodization effect was discovered in the near-field via numerical simulation. It was also experimentally verified by a scale model using a copper-masked Teflon cuboid solid immersion lens (SIL) with 22 mm side length under radiation of a plane wave with 8 mm wavelength. Peak intensity enhancement and the lateral resolution of the produced photonic jet increased by about 36.0 % and 36.4 % in this approach, respectively. This phenomenon may possess the scale effect and would be valid in multiple frequency bands.

Keywords: apodization, particle-lens, scattering, near-field optics

Procedia PDF Downloads 192
24575 FEM Analysis of an Occluded Ear Simulator with Narrow Slit Pathway

Authors: Manabu Sasajima, Takao Yamaguchi, Yoshio Koike, Mitsuharu Watanabe

Abstract:

This paper discusses the propagation of sound waves in air, specifically in narrow rectangular pathways of an occluded-ear simulator for acoustic measurements. In narrow pathways, both the speed of sound and the phase of the sound waves are affected by the damping of the air viscosity. Herein, we propose a new finite-element method (FEM) that considers the effects of the air viscosity. The method was developed as an extension of existing FEMs for porous, sound-absorbing materials. The results of a numerical calculation for a three-dimensional ear-simulator model using the proposed FEM were validated by comparing with theoretical lumped-parameter modeling analysis and standard values.

Keywords: ear simulator, FEM, simulation, viscosity

Procedia PDF Downloads 444
24574 Performance Analysis of a 6-Phase PMG Exciter with Rotating Thyristor-Controlled Rectification Topologies

Authors: Jonas Kristiansen Nøland, Karina Hjelmervik, Urban Lundin

Abstract:

The thyristor bridge rectifier is often used for control of excitation equipment for synchronous generators. However, on the rotating shaft of brushless exciters, the diode bridge rectifier is mostly used. The step response of a conventional brushless rotating excitation system is slow compared to static excitation systems. This paper investigates the performance of different thyristor-controlled rectification topologies applied on the shaft of a 6-phase PMG exciter connected to a synchronous generator. One of the important issues is the steady-state torque ripple produced by the thyristor bridges.

Keywords: brushless exciters, rotating exciters, permanent magnet machines, synchronous generators

Procedia PDF Downloads 476
24573 Analysis of BSF Layer N-Gaas/P-Gaas/P+-Gaas Solar Cell

Authors: Abderrahmane Hemmani, Hamid Khachab, Dennai Benmoussa, Hassane Benslimane, Abderrachid Helmaoui

Abstract:

Back surface field GaAs with n -p-p+ structures are found to have better characteristics than the conventional solar cells. A theory, based on the transport of both minority carriers under the charge neutrality condition, has been developed in the present paper which explains behavior of the back surface field solar cells. That is reported with an efficiency of 25,05% (Jsc=33.5mA/cm2, Vco=0.87v and fill factor 86% under AM1.5 global conditions). We present the effect of technological parameters of the p+ layer on the conversion efficiency on the solar cell. Good agreement is achieved between our results and the simulation results given the variation of the equivalent recombination velocity to p+ layer as a function of BSF thickness and BSF doping.

Keywords: back surface field, GaAs, solar cell, technological parameters

Procedia PDF Downloads 433
24572 Building an Opinion Dynamics Model from Experimental Data

Authors: Dino Carpentras, Paul J. Maher, Caoimhe O'Reilly, Michael Quayle

Abstract:

Opinion dynamics is a sub-field of agent-based modeling that focuses on people’s opinions and their evolutions over time. Despite the rapid increase in the number of publications in this field, it is still not clear how to apply these models to real-world scenarios. Indeed, there is no agreement on how people update their opinion while interacting. Furthermore, it is not clear if different topics will show the same dynamics (e.g., more polarized topics may behave differently). These problems are mostly due to the lack of experimental validation of the models. Some previous studies started bridging this gap in the literature by directly measuring people’s opinions before and after the interaction. However, these experiments force people to express their opinion as a number instead of using natural language (and then, eventually, encoding it as numbers). This is not the way people normally interact, and it may strongly alter the measured dynamics. Another limitation of these studies is that they usually average all the topics together, without checking if different topics may show different dynamics. In our work, we collected data from 200 participants on 5 unpolarized topics. Participants expressed their opinions in natural language (“agree” or “disagree”). We also measured the certainty of their answer, expressed as a number between 1 and 10. However, this value was not shown to other participants to keep the interaction based on natural language. We then showed the opinion (and not the certainty) of another participant and, after a distraction task, we repeated the measurement. To make the data compatible with opinion dynamics models, we multiplied opinion and certainty to obtain a new parameter (here called “continuous opinion”) ranging from -10 to +10 (using agree=1 and disagree=-1). We firstly checked the 5 topics individually, finding that all of them behaved in a similar way despite having different initial opinions distributions. This suggested that the same model could be applied for different unpolarized topics. We also observed that people tend to maintain similar levels of certainty, even when they changed their opinion. This is a strong violation of what is suggested from common models, where people starting at, for example, +8, will first move towards 0 instead of directly jumping to -8. We also observed social influence, meaning that people exposed with “agree” were more likely to move to higher levels of continuous opinion, while people exposed with “disagree” were more likely to move to lower levels. However, we also observed that the effect of influence was smaller than the effect of random fluctuations. Also, this configuration is different from standard models, where noise, when present, is usually much smaller than the effect of social influence. Starting from this, we built an opinion dynamics model that explains more than 80% of data variance. This model was also able to show the natural conversion of polarization from unpolarized states. This experimental approach offers a new way to build models grounded on experimental data. Furthermore, the model offers new insight into the fundamental terms of opinion dynamics models.

Keywords: experimental validation, micro-dynamics rule, opinion dynamics, update rule

Procedia PDF Downloads 109
24571 New Features for Copy-Move Image Forgery Detection

Authors: Michael Zimba

Abstract:

A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.

Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery

Procedia PDF Downloads 543
24570 Measuring the Likeability of Robots among Seniors: A Field Research

Authors: Balaji Viswanathan, Tim Oates

Abstract:

A number of pilot projects have commenced across the world to use robots for senior care. We aim to measure the likeability of these robots among seniors and help robot designers focus on the features that matter. We built a robot likability score with over 30 parameters and used this to interview 50 seniors in various locations in the United States. This paper presents the results of this field research.

Keywords: HRI, assistive robotics, social robotics, HCI, aging

Procedia PDF Downloads 105
24569 High Resolution Sandstone Connectivity Modelling: Implications for Outcrop Geological and Its Analog Studies

Authors: Numair Ahmed Siddiqui, Abdul Hadi bin Abd Rahman, Chow Weng Sum, Wan Ismail Wan Yousif, Asif Zameer, Joel Ben-Awal

Abstract:

Advances in data capturing from outcrop studies have made possible the acquisition of high-resolution digital data, offering improved and economical reservoir modelling methods. Terrestrial laser scanning utilizing LiDAR (Light detection and ranging) provides a new method to build outcrop based reservoir models, which provide a crucial piece of information to understand heterogeneities in sandstone facies with high-resolution images and data set. This study presents the detailed application of outcrop based sandstone facies connectivity model by acquiring information gathered from traditional fieldwork and processing detailed digital point-cloud data from LiDAR to develop an intermediate small-scale reservoir sandstone facies model of the Miocene Sandakan Formation, Sabah, East Malaysia. The software RiScan pro (v1.8.0) was used in digital data collection and post-processing with an accuracy of 0.01 m and point acquisition rate of up to 10,000 points per second. We provide an accurate and descriptive workflow to triangulate point-clouds of different sets of sandstone facies with well-marked top and bottom boundaries in conjunction with field sedimentology. This will provide highly accurate qualitative sandstone facies connectivity model which is a challenge to obtain from subsurface datasets (i.e., seismic and well data). Finally, by applying this workflow, we can build an outcrop based static connectivity model, which can be an analogue to subsurface reservoir studies.

Keywords: LiDAR, outcrop, high resolution, sandstone faceis, connectivity model

Procedia PDF Downloads 227
24568 A Mathematical Equation to Calculate Stock Price of Different Growth Model

Authors: Weiping Liu

Abstract:

This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.

Keywords: stock price, multistage model, different growth model, discounted cash flow method

Procedia PDF Downloads 406