Search results for: ocular axial length
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3258

Search results for: ocular axial length

1098 Improvements in Double Q-Learning for Anomalous Radiation Source Searching

Authors: Bo-Bin Xiaoa, Chia-Yi Liua

Abstract:

In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.

Keywords: double Q learning, dueling network, NoisyNet, source searching

Procedia PDF Downloads 113
1097 Effect of Institution Volume on Mortality and Outcomes in Osteoporotic Hip Fracture Care

Authors: J. Milton, C. Uzoigwe, O. Ayeko, B. Offorha, K. Anderson, R. G. Middleton

Abstract:

Background: We used the UK National Hip Fracture database to determine the effect of institution hip fracture case volume on hip fracture healthcare outcomes in 2019. Using logistic regression for each healthcare outcome, we compared the best performing 50 units with the poorest performing 50 units in order to determine if the unit volume was associated with performance for each particular outcome. Method: We analysed 175 institutions treating a total of 67,673 patients over the course of a year. Results: The number of hip fractures seen per unit ranged between 86 and 952. Larger units tendered to perform health assessments more consistently and mobilise patients more expeditiously post-operatively. Patients treated at large institutions had shorter lengths of stay. With regard to most other outcomes, there was no association between unit case volume and performance, notably compliance with the Best Practice Tariff, time to surgery, proportion of eligible patients undergoing total hip arthroplasty, length of stay, delirium risk, and pressure sore risk assessments. Conclusion: There is no relationship between unit volume and the majority of health care outcomes. It would seem that larger institutions tend to perform better at parameters that are dependent upon personnel numbers. However, where the outcome is contingent, even partially, on physical infrastructure capacity, there was no difference between larger and smaller units.

Keywords: institution volume, mortality, neck of femur fractures, osteoporosis

Procedia PDF Downloads 96
1096 Effect of Constant and Variable Temperature on the Morphology of TiO₂ Nanotubes Prepared by Two-Step Anodization Method

Authors: Tayyaba Ghani, Mazhar Mehmood, Mohammad Mujahid

Abstract:

TiO₂ nanotubes are receiving immense attraction in the field of dye-sensitized solar cells due to their well-defined nanostructures, efficient electron transport and large surface area as compared to other one dimensional structures. In the present work, we have investigated the influence of temperature on the morphology of anodically produced self-organized Titanium oxide nanotubes (TiNTs). TiNTs are synthesized by two-step anodization method in an ethylene glycol based electrolytes containing ammonium fluoride. Experiments are performed at constant anodization voltage for two hours. An investigation by the SEM images reveals that if the temperature is kept constant during the anodizing experiment, variation in the average tube diameter is significantly reduced. However, if the temperature is not controlled then due to the exothermic nature of reactions for the formation of TiNTs, the temperature of electrolyte keep on increasing. This variation in electrolyte bath temperature introduced strong variations in tube diameter (20 nm to 160 nm) along the length of tubes. Current profiles, recorded during the anodization experiment, predict the effect of constant and varying experimental temperatures as well. In both cases, XRD results show the complete anatase crystal structure of nanotube upon annealing at 450 °C. Present work highlights the importance of constant temperature during the anodization experiments in order to develop an ordered array of nanotubes with a uniform tube diameter.

Keywords: anodization, ordering, temperature, TiO₂ nanotubes

Procedia PDF Downloads 171
1095 Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure.

Keywords: spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization

Procedia PDF Downloads 122
1094 Veering Pattern in Human Walking in Sighted and Blindfolded Conditions

Authors: Triloki Prasad, Subhankar Ghosh, Asis Goswami

Abstract:

The information received from visual organ plays an important role in human locomotion and human beings generally veer from the straight line in the absence of visual cue. Since in case of visually impaired persons this support is unavailable they are expected to have a different type of locomotion behaviour than the sighted persons. Higher degree of veering can result in accident or injury during indoor and outdoor activities. Hence, it is important to know the degree of veering that may happen in case of a sighted individual loosing the visual input. The present study was conducted on fifty three volunteers who walked with open and closed eyes, at their comfortable pace, in a grid marked area of 17m by 10m space. The volunteers had to walk in a straight line from a central starting point during three trials and their walking path was marked with a pair of sponge absorbed with three different colours. All volunteers had walked expectedly in straight line during open eye condition but had varied degree of veering during closed eye state. The correlation between the first step side and the side of deviation was not significant in closed eye condition. The number of steps taken in open eye and closed eye condition were significantly different while travelling similar distances. This study reveals that sighted persons become cautious during walking if the visual cue is not available and they reduce the step length so there is increase in step number.

Keywords: Closed eye, Open eye, Footprint, Veering

Procedia PDF Downloads 203
1093 Patented Free-Space Optical System for Auto Aligned Optical Beam Allowing to Compensate Mechanical Misalignments

Authors: Aurelien Boutin

Abstract:

In optical systems such as Variable Optical Delay Lines, where a collimated beam has to go back and forth, corner cubes are used in order to keep the reflected beam parallel to the incoming beam. However, the reflected beam can be laterally shifted, which will lead to losses. In this paper, we report on a patented optical design that allows keeping the reflected beam with the exact same position and direction whatever the displacement of the corner cube leading to zero losses. After explaining how the optical design works and theoretically allows to compensate for any defects in the translation of the corner cube, we will present the results of experimental comparisons between a standard layout (i.e., only corner cubes) and our optical layout. To compare both optical layouts, we used a fiber-to-fiber coupling setup. It consists of a couple of lights from one fiber to the other, thanks to two lenses. The ensemble [fiber+lense] is fixed and called a collimator so that the light is coupled from one collimator to another. Each collimator was precisely made in order to have a precise working distance. In the experiment, we measured and compared the Insertion Losses (IL) variations between both collimators with the distance between them (i.e., natural Gaussian beam coupling losses) and between both collimators in the different optical layouts tested, with the same optical length propagation. We will show that the IL variations of our setup are less than 0.05dB with respect to the IL variations of collimators alone.

Keywords: free-space optics, variable optical delay lines, optical cavity, auto-alignment

Procedia PDF Downloads 100
1092 A Multi-Scale Approach for the Analysis of Fiber-Reinforced Composites

Authors: Azeez Shaik, Amit Salvi, B. P. Gautham

Abstract:

Fiber reinforced polymer resin composite materials are finding wide variety of applications in automotive and aerospace industry because of their high specific stiffness and specific strengths when compared to metals. New class of 2D and 3D textile and woven fabric composites offer excellent fracture toughens as they bridge the cracks formed during fracture. Due to complexity of their fiber architectures and its resulting composite microstructures, optimized design and analysis of these structures is very complicated. A traditional homogenization approach is typically used to analyze structures made up of these materials. This approach usually fails to predict damage initiation as well as damage propagation and ultimate failure of structure made up of woven and textile composites. This study demonstrates a methodology to analyze woven and textile composites by using the multi-level multi-scale modelling approach. In this approach, a geometric repetitive unit cell (RUC) is developed with all its constituents to develop a representative volume element (RVE) with all its constituents and their interaction modeled correctly. The structure is modeled based on the RUC/RVE and analyzed at different length scales with desired levels of fidelity incorporating the damage and failure. The results are passed across (up and down) the scales qualitatively as well as quantitatively from the perspective of material, configuration and architecture.

Keywords: cohesive zone, multi-scale modeling, rate dependency, RUC, woven textiles

Procedia PDF Downloads 361
1091 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System

Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar

Abstract:

The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.

Keywords: genetic algorithm, energy, exergy, PVT module, optimization

Procedia PDF Downloads 605
1090 Design and Implementation of the Embedded Control System for the Electrical Motor Based Cargo Vehicle

Authors: Syed M. Rizvi, Yiqing Meng, Simon Iwnicki

Abstract:

With an increased demand in the land cargo industry, it is predicted that the freight trade will rise to a record $1.1 trillion in revenue and volume in the following years to come. This increase is mainly driven by the e-commerce model ever so popular in the consumer market. Many innovative ideas have stemmed from this demand and change in lifestyle likes of which include e-bike cargo and drones. Rural and urban areas are facing air quality challenges to keep pollution levels in city centre to a minimum. For this purpose, this paper presents the design and implementation of a non-linear PID control system, employing a micro-controller and low cost sensing technique, for controlling an electrical motor based cargo vehicle with various loads, to follow a leading vehicle (bike). Within using this system, the cargo vehicle will have no load influence on the bike rider on different gradient conditions, such as hill climbing. The system is being integrated with a microcontroller to continuously measure several parameters such as relative displacement between bike and the cargo vehicle and gradient of the road, and process these measurements to create a portable controller capable of controlling the performance of electrical vehicle without the need of a PC. As a result, in the case of carrying 180kg of parcel weight, the cargo vehicle can maintain a reasonable spacing over a short length of sensor travel between the bike and itself.

Keywords: cargo, e-bike, microcontroller, embedded system, nonlinear pid, self-adaptive, inertial measurement unit (IMU)

Procedia PDF Downloads 209
1089 Photo Electrical Response in Graphene Based Resistive Sensor

Authors: H. C. Woo, F. Bouanis, C. S. Cojocaur

Abstract:

Graphene, which consists of a single layer of carbon atoms in a honeycomb lattice, is an interesting potential optoelectronic material because of graphene’s high carrier mobility, zero bandgap, and electron–hole symmetry. Graphene can absorb light and convert it into a photocurrent over a wide range of the electromagnetic spectrum, from the ultraviolet to visible and infrared regimes. Over the last several years, a variety of graphene-based photodetectors have been reported, such as graphene transistors, graphene-semiconductor heterojunction photodetectors, graphene based bolometers. It is also reported that there are several physical mechanisms enabling photodetection: photovoltaic effect, photo-thermoelectric effect, bolometric effect, photogating effect, and so on. In this work, we report a simple approach for the realization of graphene based resistive photo-detection devices and the measurements of their photoelectrical response. The graphene were synthesized directly on the glass substrate by novel growth method patented in our lab. Then, the metal electrodes were deposited by thermal evaporation on it, with an electrode length and width of 1.5 mm and 300 μm respectively, using Co to fabricate simple graphene based resistive photosensor. The measurements show that the graphene resistive devices exhibit a photoresponse to the illumination of visible light. The observed re-sistance response was reproducible and similar after many cycles of on and off operations. This photoelectrical response may be attributed not only to the direct photocurrent process but also to the desorption of oxygen. Our work shows that the simple graphene resistive devices have potential in photodetection applications.

Keywords: graphene, resistive sensor, optoelectronics, photoresponse

Procedia PDF Downloads 286
1088 Daily Probability Model of Storm Events in Peninsular Malaysia

Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain

Abstract:

Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.

Keywords: daily probability model, monsoon seasons, regions, storm events

Procedia PDF Downloads 343
1087 Optimization of Highly Oriented Pyrolytic Graphite Crystals for Neutron Optics

Authors: Hao Qu, Xiang Liu, Michael Crosby, Brian Kozak, Andreas K. Freund

Abstract:

The outstanding performance of highly oriented pyrolytic graphite (HOPG) as an optical element for neutron beam conditioning is unequaled by any other crystalline material in the applications of monochromator, analyzer, and filter. This superiority stems from the favorable nuclear properties of carbon (small absorption and incoherent scattering cross-sections, big coherent scattering length) and the specific crystalline structure (small thermal diffuse scattering cross-section, layered crystal structure). The real crystal defect structure revealed by imaging techniques is correlated with the parameters used in the mosaic model (mosaic spread, mosaic block size, uniformity). The diffraction properties (rocking curve width as determined by both the intrinsic mosaic spread and the diffraction process, peak and integrated reflectivity, filter transmission) as a function of neutron wavelength or energy can be predicted with high accuracy and reliability by diffraction theory using empirical primary extinction coefficients extracted from a great amount of existing experimental data. The results of these calculations are given as graphs and tables permitting to optimize HOPG characteristics (mosaic spread, thickness, curvature) for any given experimental situation.

Keywords: neutron optics, pyrolytic graphite, mosaic spread, neutron scattering, monochromator, analyzer

Procedia PDF Downloads 142
1086 Geometric Optimization of Catalytic Converter

Authors: P. Makendran, M. Pragadeesh, N. Narash, N. Manikandan, A. Rajasri, V. Sanal Kumar

Abstract:

The growing severity of government-obligatory emissions legislation has required continuous improvement in catalysts performance and the associated reactor systems. IC engines emit a lot of harmful gases into the atmosphere. These gases are toxic in nature and a catalytic converter is used to convert these toxic gases into less harmful gases. The catalytic converter converts these gases by Oxidation and reduction reaction. Stoichiometric engines usually use the three-way catalyst (TWC) for simultaneously destroying all of the emissions. CO and NO react to form CO2 and N2 over one catalyst, and the remaining CO and HC are oxidized in a subsequent one. Literature review reveals that typically precious metals are used as a catalyst. The actual reactor is composed of a washcoated honeycomb-style substrate, with the catalyst being contained in the washcoat. The main disadvantage of a catalytic converter is that it exerts a back pressure to the exhaust gases while entering into them. The objective of this paper is to optimize the back pressure developed by the catalytic converter through geometric optimization of catalystic converter. This can be achieved by designing a catalyst with a optimum cone angle and a more surface area of the catalyst substrate. Additionally, the arrangement of the pores in the catalyst substrate can be changed. The numerical studies have been carried out using k-omega turbulence model with varying inlet angle of the catalytic converter and the length of the catalyst substrate. We observed that the geometry optimization is a meaningful objective for the lucrative design optimization of a catalytic converter for industrial applications.

Keywords: catalytic converter, emission control, reactor systems, substrate for emission control

Procedia PDF Downloads 906
1085 Markers for Predicting Overweight or Obesity of Riding Egyptian Broodmares Mares

Authors: Amal Abo El-Maaty, Amira Mohamed, Nashwa Abu-Aita, Hisham Morgan

Abstract:

For estimating markers of overweight or obesity of brood mares used for riding and training, 17 mares of different body conditions were subjected to blood sampling and ultrasound examination to measure rump fat thickness and monitor ovulation for six consecutive weeks. Also length (L), heart girth (G) and withers height (H) were measured to estimate body weight (BW), body fat %, body fat mass (BFM) and body mass index (BMI). Mares were classified into three groups according to both body condition score (BCS) and rump back fat (BF). Overweight mares (O) were having BCS > 7 and BF thickness >7mm, moderate body condition (M) mares were having BCS >3and ≤7and BF <3and <7mm, and emaciated mares (E) were having BCS ≤3 and BF ≤3mm. glucose, triglycerides, nitric oxide, ovarian, thyroid, insulin, insulin like growth factor-I (IGF-1), and leptin hormones were measured. Results revealed that BCS, G, L, L*G*H, BW, BF, fat %, BFM were significantly (P<0.0001) decreasing linearly from O to E. T4 concentrations of E were significantly high (P=0.04) compared to M and O but T3 concentrations tended to decrease in E (P>0.05). Insulin and IGF-1 concentrations tended to be high in O (P>0.05) and decrease with the decrease of body condition. M had (P=0.007) the highest leptin, but E mares had the lowest P4 concentrations (P=0.01). Concentrations of glucose and NO decreased with the decrease of BCS and BF but triglycerides of O were insignificantly high. In conclusion, exercise could prevent the development of metabolic syndrome in horses and back fat and morphometric measurements were the easiest and simple assessment of overweight and deviation to obesity.

Keywords: body condition score, insulin, leptin, mares, rump fat

Procedia PDF Downloads 325
1084 Macroscopic Lesions and Histological Changes Caused by Non-Biodegradable Foreign Bodies in the Rumen of Cattle

Authors: Rouabah Zahra, Tlidjane Madjid, Belkacem Lilia, Hafid Nadia, Mallem Mouna

Abstract:

The goal of the current study was to evaluate the gross and histopathological changes caused by the presence of non-biodegradable foreign bodies (plastic bags) in the rumen-reticulum of cattle. To identify this problem, we conducted this study at a slaughterhouse on a total of 212 cattle without any previous selection. After slaughter and draining of the rumen, foreign bodies and macroscopic lesions were investigated, and rumen samples were taken for histopathological examination. Gross examination of the rumen-reticulum with non-biodegradable foreign bodies revealed congestion, hemorrhage, stunting, sagging, atrophy, and thinning of the papillae had been observed. Areas of erosion and ulceration were also observed in the rumen-reticulum of all cattle harboring a large quantity of plastic bags. Ulcerations and nodular formations were also present. The rumen-reticulum wall was thinner than normal and had a light-mottled wall and compressed papillae. The histopathological examination revealed a wide variety of lesions. We observed especially lesions of fragmentary or segmental ruptures, destruction, necrosis, degeneration and focal hyperplasia of the keratinized epithelium. The papillae are shortened, enlarged, atrophied, folded, and compressed. The length of the taste buds was reduced. These observed histopathological changes can be attributed to mechanical irritation induced by plastic bags or released chemicals by these non-biodegradable foreign bodies.

Keywords: cattle, non-biodegradable foreign bodies, lesions, rumen

Procedia PDF Downloads 65
1083 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording

Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen

Abstract:

It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.

Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration

Procedia PDF Downloads 180
1082 Generalized Limit Equilibrium Solution for the Lateral Pile Capacity Problem

Authors: Tomer Gans-Or, Shmulik Pinkert

Abstract:

The determination of lateral pile capacity per unit length is a key aspect in geotechnical engineering. Traditional approaches for assessing piles lateral capacity in cohesive soils involve the application of upper-bound and lower-bound plasticity theorems. However, a comprehensive solution encompassing the entire spectrum of soil strength parameters, particularly in frictional soils with or without cohesion, is still lacking. This research introduces an innovative implementation of the slice method limit equilibrium solution for lateral capacity assessment. For any given numerical discretization of the soil's domain around the pile, the lateral capacity evaluation is based on mobilized strength concept. The critical failure geometry is then found by a unique optimization procedure which includes both factor of safety minimization and geometrical optimization. The robustness of this suggested methodology is that the solution is independent of any predefined assumptions. Validation of the solution is accomplished through a comparison with established plasticity solutions for cohesive soils. Furthermore, the study demonstrates the applicability of the limit equilibrium method to address unresolved cases related to frictional and cohesive-frictional soils. Beyond providing capacity values, the method enables the utilization of the mobilized strength concept to generate safety-factor distributions for scenarios representing pre-failure states.

Keywords: lateral pile capacity, slice method, limit equilibrium, mobilized strength

Procedia PDF Downloads 61
1081 Determination of Morphological Characteristics of Brassica napus, Sinapis arvensis, Sinapis alba and Camelina sativa

Authors: Betül Gıdık, Fadul Önemli

Abstract:

The Brassicaceae (Cruciferae) is an important family of plants that include many economically important vegetable production, industrial oilseed, spice, fodder crop species and energy production. Canola and mustard species that are in Brassicaceae family have too high contribution to world herbal production. In this study, genotypes of two kinds of (Caravel and Excalibul) canola (Brassica napus), wild mustard (Sinapis arvensis), white mustard (Sinapis alba) and Camelina (Camelina sativa) were grown in the experimental field, and their morphological characteristics were determined. According to the results of the research; plant length was varied between 76.75 cm and 151.50 cm, and the longest plant was belonging to species of Sinapis arvensis. The number of branches varied from 3.75 piece/plant to 17.75 piece/plant and the most numerous branch was counted in species of Sinapis alba. It was determined that the number of grains in one capsule was between 3.75 piece/capsule and 35.75 piece/capsule and the largest amount of grains in the one capsule was in the Excalibul variety of species of Brassica napus. In our research, it has been determined that the plant of Sinapis arvensis is a potential plant for industrial of oil production; such as Brassica napus, Sinapis alba and Camelina (Camelina sativa).

Keywords: Brassica napus, Camelina sativa, canola, Sinapis alba, Sinapis arvensis, wild mustard

Procedia PDF Downloads 199
1080 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator

Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi

Abstract:

With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.

Keywords: offshore wind generator, PMSM, PSO optimization, design optimization

Procedia PDF Downloads 155
1079 TCTN2 Maintains the Transition Zone Stability and Controls the Entrance of the Ciliary Membrane Protein into Primary Cilia

Authors: Rueyhung Weng, Chia-En Huang, Jung-Chi-Liao

Abstract:

The transition zone (TZ) serves as a diffusion barrier to regulate the ins and outs of the proteins recruited to the primary cilia. TCTN2 is one of the TZ proteins and its mutation causes Joubert syndrome, a serious multi-organ disease. Despite its important medical relevance, the functions of TCTN2 remain elusive. Here we created a TCTN2 gene deleted retinal pigment epithelial cells (RPE1) using CRISPR/Cas9-based genome editing technique and used this knockout line to reveal roles of TCTN2. TCTN2 knockout RPE1 cells displayed a significantly reduced ciliogenesis or a shortened primary cilium length in the cilium-remaining population. Intraflagellar transport protein IFT88 aberrantly accumulated at the tip of TCTN2 deficient cells. Guanine nucleotide exchange factor Arl13B was mostly absent from the ciliary compartment, with a small population localizing at the ciliary tip. The deficient TZ was corroborated with the mislocalization of two other TZ proteins TMEM67 and MKS1. In addition, TCTN2 deficiency induced TZ impairment led to the suppression of Sonic hedgehog signaling in response to Smoothened (Smo) agonist. Together, depletion of TCTN2 destabilizes other TZ proteins and considerably alters the localization of key transport and signaling-associated proteins, including IFT88, Arl13B, and Smo.

Keywords: CRISPR/Cas9, primary cilia, Sonic hedgehog signaling, transition zone

Procedia PDF Downloads 351
1078 Parametric Study and Design on under Reamed Pile - An Experimental and Numerical Study

Authors: S. Chandrakaran, Aarthy D.

Abstract:

Abstract: Under reamed piles are piles which are of different types like bored cast in-situ pile or bored compaction concrete piles where one or more bulbs are provided. In this paper, the design procedure of under reamed pile by both experimental study and numerical study using PLAXIS 3D Foundation software was studied. The soil chosen for study was M Sand. The Single and double under reamed pile modelling was made using mild steel. The pile load test experiment was conducted in the laboratory and the ultimate compression load for 25 mm settlement on single and double under reamed pile was observed and finally the result was compared with conventional pile (pile without bulb). The parametric influence on under reamed pile was studied by varying the geometrical parameters like diameter of bulbs, spacing between bulbs, position of bulbs and number of bulbs. The results of the numerical model showed that when the diameter of bulb D u =2.5D, the ultimate compression load for an under-reamed pile with a single bulb increased by 55 % compared to a pile without a bulb. It was observed that when the spacing between the bulbs was S=6D u with three different positions of bulb from bottom of pile as D u , 2D u and 3D u , the ultimate compression load increased by 88%, 94% and 73 % respectively, compared to the ultimate compression load for 25 mm settlement on conventional pile and if spacing was more than 6D u , ultimate compression load for 25 mm settlement started to decrease. It was observed that when the bucket length was more than 2D u , the ultimate compression

Keywords: load capcity, under remed bulb . sand, model study, sand

Procedia PDF Downloads 88
1077 Resin-coated Controlled Release Fertilizer (CRF) for Oil Palm: Laboratory and Main Nursery Evaluation

Authors: Umar Adli Amran, Tan Choon Chek, Mohd Shahkhirat Norizan, Then Kek Hoe

Abstract:

Controlled release fertilizer (CRF) enables a regulated nutrients release for more efficient plant uptake compared to the normal granular fertilizer. It reduces nutrients loss via surface run-off and leaching, hence promotes sustainable agriculture. Although the performance of CRF in providing consistent and timely nutrients supply is well known, its expensive price limits it usage in a large scale plantation. This study is conducted to evaluate the properties and performance of bio-based polyurethane (PU)-coated CRF via laboratory and oil palm main nursery trial. The CRF is produced by coating of a normal commercial compound granular fertilizer from FGV Fertiliser Sdn. Bhd., namely Felda 10 (10.5-8-20-3+0.5B), and designated as CRF FGV10. Based on laboratory evaluation, the CRF FGV10 can sustain nutrients release for more than 6 months. Vegetative growth parameters such as girth size, palm height, third frond length, and the total number of fronds produced were recorded. Besides that, dry biomass of the oil palm seedlings was also determined. From the evaluation, it is proved that at 50% reduction of nutrients application rate and for only two times application (T3), CRF FGV10 enabled the oil palm seedlings to achieve similar vegetative growth with the control samples (T1). It is also proven that only PU-coated CRF FGV10 had allowed the reduction of fertilizer rate and application rounds.

Keywords: nutrition, oil palm seedlings, polyurethane, sustainable manuring, vegetative growth

Procedia PDF Downloads 61
1076 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition

Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang

Abstract:

Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.

Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model

Procedia PDF Downloads 109
1075 The Universal Theory: Role of Imaginary Pressure on Different Relative Motions

Authors: Sahib Dino Naseerani

Abstract:

The presented scientific text discusses the concept of imaginary pressure and its role in different relative motions. It explores how imaginary pressure, which is the combined effect of external atmospheric pressure and real pressure, affects various substances and their physical properties. The study aims to understand the impact of imaginary pressure and its potential applications in different contexts, such as spaceflight. The main objective of this study is to investigate the role of imaginary pressure on different relative motions. Specifically, the researchers aim to examine how imaginary pressure affects the contraction and mass variation of a body when it is in motion at the speed of light. The study seeks to provide insights into the behavior and consequences of imaginary pressure in various scenarios. The data was collected using three research papers. This research contributes to a better understanding of the theoretical implications of imaginary pressure. It elucidates how imaginary pressure is responsible for the contraction and mass variation of a body in motion, particularly at the speed of light. The findings shed light on the behavior of substances under the influence of imaginary pressure, providing valuable insights for future scientific studies. The study addresses the question of how imaginary pressure influences various relative motions and their associated physical properties. It aims to understand the role of imaginary pressure in the contraction and mass variation of a body, particularly at high speeds. By examining different substances in liquid and solid forms, the research explores the consequences of imaginary pressure on their volume, length, and mass.

Keywords: imaginary pressure, contraction, variation, relative motion

Procedia PDF Downloads 112
1074 CFD modelling of Microdrops Manipulation by Microfluidic Oscillator

Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui

Abstract:

Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops, and numerous other functions. For this purpose, several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device have not well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator. The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.

Keywords: fluidic oscillator, microdrops manipulation, VOF (volume of fluid method), microfluidic oscillator

Procedia PDF Downloads 397
1073 A C/T Polymorphism at the 5’ Untranslated Region of CD40 Gene in Patients Associated with Graves’ Disease in Kumaon Region

Authors: Sanjeev Kumar Shukla, Govind Singh, Prabhat Pant Shahzad Ahmad

Abstract:

Background: Graves’ disease is an autoimmune disorder with a genetic predisposition, and CD40 plays a pathogenic role in various autoimmune diseases. A single nucleotide polymorphism at position –1 of the Kozak sequence of the 5 untranslated regions of the CD40 gene of exon 1 has been reported to be associated with the development of Graves’ Disease. Objective: The aim of the present study was to investigate whether CD40 gene polymorphism confers susceptibility to Graves’ disease in the Kumaon region. CD40 gene polymorphisms were studied in Graves’ Disease patients (n=50) and healthy control subjects without anti-thyroid autoantibodies or a family history of autoimmune disorders (n=50). Material and Method: CD40 gene polymorphisms were studied in fifty Graves’ Disease patients and fifty healthy control subjects. All samples were collected from STG Hospital, Haldwani, Nainital. A C/T polymorphism at position –1 of the CD40 gene was measured using the polymerase chain reaction-restriction fragment length polymorphism. Results: There was no significant difference in allele or genotype frequency of the CD40 SNP between Graves’ Disease and control subjects. There was a significant decrease in the TT genotype frequency in the Graves’ Disease patients who developed Graves’ Disease after 40 years old than those under 40 years of age. These data suggest that the SNP of the CD40 gene is associated with susceptibility to the later onset of Graves’ Disease. Conclusion: The CD40 gene was a different susceptibility gene for Graves’ Disease within certain families because it was both linked and associated with Graves’ Disease.

Keywords: autoimmune diseases, pathogenesis, diagnosis, therapy

Procedia PDF Downloads 51
1072 Liquid Bridges in a Complex Geometry: Microfluidic Drop Manipulation Inside a Wedge

Authors: D. Baratian, A. Cavalli, D. van den Ende, F. Mugele

Abstract:

The morphology of liquid bridges inside complex geometries is the subject of interest for many years. These efforts try to find stable liquid configuration considering the boundary condition and the physical properties of the system. On the other hand precise manipulation of droplets is highly significant in many microfluidic applications. The liquid configuration in a complex geometry can be switched by means of external stimuli. We show manipulation of droplets in a wedge structure. The profile and position of a drop in a wedge geometry has been calculated analytically assuming negligible contact angle hysteresis. The characteristic length of liquid bridge and its interfacial tension inside the surrounding medium along with the geometrical parameters of the system determine the morphology and equilibrium position of drop in the system. We use electrowetting to modify one the governing parameters to manipulate the droplet. Electrowetting provides the capability to have precise control on the drop position through tuning the voltage and consequently changing the contact angle. This technique is employed to tune drop displacement and control its position inside the wedge. Experiments demonstrate precise drop movement to its predefined position inside the wedge geometry. Experimental results show promising consistency as it is compared to our geometrical model predictions. For such a drop manipulation, appealing applications in microfluidics have been considered.

Keywords: liquid bridges, microfluidics, drop manipulation, wetting, electrowetting, capillarity

Procedia PDF Downloads 479
1071 Polymorphisms of STAT5A and DGAT1 Genes and Their Associations with Milk Trait in Egyptian Goats

Authors: Othman Elmahdy Othman

Abstract:

The objectives of this study were to identify polymorphisms in the STAT5A using Restriction Fragment Length Polymorphism and DGAT1 using Single-Strand Conformation Polymorphism genes among three Egyptian goat breeds (Barki, Zaraibi, and Damascus) as well as investigate the effect of their genotypes on milk composition traits of Zaraibi goats. One hundred and fifty blood samples were collected for DNA extraction, 60 from Zaraibi, 40 from Damascus and 50 from Barki breeds. Fat, protein and lactose percentages were determined in Zaraibi goat milk using an automatic milk analyzer. Two genotypes, CC and CT (for STAT5A) and C-C- and C-C+ (for DGAT1), were identified in the three Egyptian goat breeds with different frequencies. The associations between these genotypes and milk fat, protein and lactose were determined in Zaraibi breed. The results showed that the STAT5A genotypes had significant effects on milk yield, protein, fat and lactose with the superiority of CT genotype over CC. Regarding DGAT1 polymorphism, the result showed the only association between it with milk fat where the animals with C-C+ genotype had greater milk fat than animals possess C-C- genotype. The association of combined genotypes with milk trait declared that the does with heterozygous genotypes for both genes are preferred than does with homozygous genotypes where the animals with CTC-C+ have more milk yield, fat and protein than those with CCC-C- genotype. In conclusion, the result showed that C/T and C-/C+ SNPs of STAT5A and DGAT1 genes respectively may be useful markers for assisted selection programs to improve goat milk composition

Keywords: DGAT1, genetic polymorphism, milk trait, STAT5A

Procedia PDF Downloads 163
1070 Structural Analysis of Sheep and Goat Farms in Konya Province

Authors: Selda Uzal Seyfi

Abstract:

Goat milk is a quite important in human nutrition. In order to meet the demand to the goat and sheep milk occurring in the recent years, an increase is seen in the demand to housing projects, which will enable animals to be sheltered in the suitable environments. This study was carried out in between 2012 and 2013, in order to identify the existing cases of sheep and goat housings in the province Konya and their possibilities to be developed. In the study, in the province Konya, 25 pieces of sheep and goat farms and 46 pieces of sheep and goat housings (14 sheep housings, 3 goat housings, and 29 housings, in which both sheep and goat are bred ) that are present in the farm were investigated as material. In the study, examining the general features of the farms that are present in the region and structural features of housings that are present in the farms, it is studied whether or not they are suitable for animal breeding. As a result of the study, the barns were evaluated as insufficient in terms of barn design, although 48% of they were built after 2000. In 63% of housings examined, stocking density of resting area was below the value of 1 m2/animal and in 59% of the housings, stocking density of courtyard area was below the 2 m2/animal. Feeding length, in 57% of housings has a value of 0.30 m and below. In the region, it will be possible to obtain the desired productivity level by building new barn designs, developed in accordance with the animal behaviors and welfare. Carrying out the necessary works is an important issue in terms of country and regional economy.

Keywords: barn design, goat housing, sheep housing, structural analysis

Procedia PDF Downloads 285
1069 Student Project on Using a Spreadsheet for Solving Differential Equations by Euler's Method

Authors: Andriy Didenko, Zanin Kavazovic

Abstract:

Engineering students often have certain difficulties in mastering major theoretical concepts in mathematical courses such as differential equations. Student projects were proposed to motivate students’ learning and can be used as a tool to promote students’ interest in the material. Authors propose a student project that includes the use of Microsoft Excel. This instructional tool is often overlooked by both educators and students. An integral component of the experimental part of such a project is the exploration of an interactive spreadsheet. The aim is to assist engineering students in better understanding of Euler’s method. This method is employed to numerically solve first order differential equations. At first, students are invited to select classic equations from a list presented in a form of a drop-down menu. For each of these equations, students can select and modify certain key parameters and observe the influence of initial condition on the solution. This will give students an insight into the behavior of the method in different configurations as solutions to equations are given in numerical and graphical forms. Further, students could also create their own equations by providing functions of their own choice and a variety of initial conditions. Moreover, they can visualize and explore the impact of the length of the time step on the convergence of a sequence of numerical solutions to the exact solution of the equation. As a final stage of the project, students are encouraged to develop their own spreadsheets for other numerical methods and other types of equations. Such projects promote students’ interest in mathematical applications and further improve their mathematical and programming skills.

Keywords: student project, Euler's method, spreadsheet, engineering education

Procedia PDF Downloads 135