Search results for: jointed rock mass
1919 Assessment of Heavy Metal Contamination in Ground Water in the Coastal Part of Cauvery Deltaic Region, South India
Authors: Gnanachandrasamy G., Zhou Y., Ramkumar T., Venkatramanan S., Wang S., Mo Liping, Jingru Zhang
Abstract:
In order to assess the heavy metal contamination totally fourty five groundwater samples were collected from the coastal part of Cauvery deltaic region, South India, during monsoon season in the year of 2017. The study area lies between longitudes 79º15’ to 79º 50’ E and latitudes 10º10’ to 11º20’ N with total area of 2,569 km². The concentration of As, Ba, Cd, Cr, Co, Cu, Ni, Pb, Se, and Zn were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The heavy metals ranged between 0.007-117.8 µg/l for As, 8.503-1281 µg/l for Ba, 0.006-0.12 µg/l for Cd, 0.23-5.572µg/l for Cr, 0.44-17.9 µg/l for Co, 0.633-11.56 µg/l for Cu, 0.467-29.34 µg/l for Ni, 0.008-5.756 µg/l for Pb, 0.979 to 45.49 µg/l for Se, and 2.712-10480 µg/l for Zn in the groundwaters. A comparison of heavy metal concentration with WHO and BIS drinking water standards shows that Ni, Zn, As, Se, and Ba level is higher than the drinking water standards in some of the groundwater samples, and the concentrations of all the other heavy metals were lower than the drinking water standards. The present levels of heavy metal concentration in the studied area groundwaters are moderate to severe to public health and environmental concerns and need attention.Keywords: cauvery delta, drinking water, groundwater, heavy metals
Procedia PDF Downloads 3451918 Two Component Source Apportionment Based on Absorption and Size Distribution Measurement
Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Gábor Szabó, Zoltán Bozóki
Abstract:
Beyond its climate and health related issues ambient light absorbing carbonaceous particulate matter (LAC) has also become a great scientific interest in terms of its regulations recently. It has been experimentally demonstrated in recent studies, that LAC is dominantly composed of traffic and wood burning aerosol particularly under wintertime urban conditions, when the photochemical and biological activities are negligible. Several methods have been introduced to quantitatively apportion aerosol fractions emitted by wood burning and traffic but most of them require costly and time consuming off-line chemical analysis. As opposed to chemical features, the microphysical properties of airborne particles such as optical absorption and size distribution can be easily measured on-line, with high accuracy and sensitivity, especially under highly polluted urban conditions. Recently a new method has been proposed for the apportionment of wood burning and traffic aerosols based on the spectral dependence of their absorption quantified by the Aerosol Angström Exponent (AAE). In this approach the absorption coefficient is deduced from transmission measurement on a filter accumulated aerosol sample and the conversion factor between the measured optical absorption and the corresponding mass concentration (the specific absorption cross section) are determined by on-site chemical analysis. The recently developed multi-wavelength photoacoustic instruments provide novel, in-situ approach towards the reliable and quantitative characterization of carbonaceous particulate matter. Therefore, it also opens up novel possibilities on the source apportionment through the measurement of light absorption. In this study, we demonstrate an in-situ spectral characterization method of the ambient carbon fraction based on light absorption and size distribution measurements using our state-of-the-art multi-wavelength photoacoustic instrument (4λ-PAS) and Single Mobility Particle Sizer (SMPS) The carbonaceous particulate selective source apportionment study was performed for ambient particulate matter in the city center of Szeged, Hungary where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. The proposed model is based on the parallel, in-situ measurement of optical absorption and size distribution. AAEff and AAEwb were deduced from the measured data using the defined correlation between the AOC(1064nm)/AOC(266nm) and N100/N20 ratios. σff(λ) and σwb(λ) were determined with the help of the independently measured temporal mass concentrations in the PM1 mode. Furthermore, the proposed optical source apportionment is based on the assumption that the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed here by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data. The results by the proposed novel optical absorption based source apportionment method prove its applicability whenever measurements are performed at an urban site where traffic and wood burning are the dominant carbonaceous sources of emission.Keywords: absorption, size distribution, source apportionment, wood burning, traffic aerosol
Procedia PDF Downloads 2281917 Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme
Authors: Arun Kumar Yadav, Badam Singh Kushvah
Abstract:
In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model.Keywords: solar electric sail, circular restricted three-body problem (CRTBP), displaced orbit, feedback linearization control
Procedia PDF Downloads 1891916 Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation
Authors: Ahmed H. Elkholy
Abstract:
The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small.Keywords: sinusoidal excitation, pump, shear stress, flow
Procedia PDF Downloads 3151915 Comparison of Mean Monthly Soil Temperature at (5 and 30 cm) Depths at Compton Experimental Site, West Midlands (UK), between 1976-2008
Authors: Aminu Mansur
Abstract:
A comparison of soil temperature at (5 and 30 cm) depths at a research site over the period (1976-2008) was analyzed. Based on the statistical analysis of the database of (12,045) days of individual soil temperature measurements in sandy-loam of the (salwick series) soils, the mean soil temperature revealed a statistically significant increase of about -1.1 to 10.9°C at 5 cm depth in 1976 compared to 2008. Similarly, soil temperature at 30 cm depth increased by -0.1 to 2.1°C in 2008 compared to 1976. Although, rapid increase in soil temperature at all depths was observed during that period, but a thorough assessment of these conditions suggested that the soil temperature at 5 cm depth are progressively increasing over time. A typical example of those increases in soil temperature was provided for agriculture where Miscanthus (elephant) plant that grows within the study area is adversely affected by the mean soil temperature increase. The study concluded that these observations contribute to the growing mass of evidence of global warming and knowledge on secular trends. Therefore, there was statistically significant increase in soil temperature at Compton Experimental Site between 1976-2008.Keywords: soil temperature, warming trend, environment science, climate and atmospheric sciences
Procedia PDF Downloads 2981914 Controlling the Fluid Flow in Hydrogen Fuel Cells through Material Porosity Designs
Authors: Jamal Hussain Al-Smail
Abstract:
Hydrogen fuel cells (HFCs) are environmentally friendly, energy converter devices that convert the chemical energy of the reactants (oxygen and hydrogen) to electricity through electrochemical reactions. The level of the electricity production of HFCs mainly increases depending on the oxygen distribution in the HFC’s cathode gas diffusion layer (GDL). With a constant porosity of the GDL, the electrochemical reaction can have a great variation that reduces the cell’s productivity and stability. Our findings bring a methodology in finding porosity designs of the diffusion layer to improve the oxygen distribution such that it results in a stable oxygen-hydrogen reaction. We first introduce a mathematical model involving the mass and momentum transport equations, in which a porosity function of the GDL is incorporated as a control for the fluid flow. We then derive numerical methods for solving the mathematical model. In conclusion, we present our numerical results to show how to design the GDL porosity to result in a uniform oxygen distribution.Keywords: fuel cells, material porosity design, mathematical modeling, porous media
Procedia PDF Downloads 1531913 Performance of Axially Loaded Single Pile Embedded in Cohesive Soil with Cavities
Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh
Abstract:
The stability of a single model pile located adjacent to a continuous cavity was studied. This paper is an attempt to understand the behaviour of axially loaded single pile embedded in clayey soil with the presences of cavities. The performance of piles located in such soils was studied analytically. A verification analysis was carried out on available studies to assess the ability of analytical model to correctly interpret the system behaviour. The study was adopted by finite element program (PLAXIS). The study included many cases; in each case, there is a critical value in which the presence of cavities has shown minimum effect on the pile performance. Figures including the load carrying capacity of pile with the affecting factors are presented. These figures provide beneficial information for pile design constructed close to underground cavities. It was concluded that the load carrying capacity of the pile is reduced by the presence of the cavity within the soil mass. This reduction varies according to the size and location of cavity.Keywords: axial load, cavity, clay, pile, ultimate capacity
Procedia PDF Downloads 2711912 Anthropometry in Macedonian Senior Football and Basketball Players
Authors: L. Todorovska, E. Sivevska, B. Dejanova, J. Pluncevic, S. Petrovska, V. Antevska, S. Mancevska, I. Karadjozova
Abstract:
Objective: The aim of this longitudinal study was to describe anthropometric and performance characteristics and to explore their differences between senior football (F) and basketball (B) players. Subjects and methods: 25 F (aged 23±2.5 y) and 25 B (aged 22±4.2 y) from Macedonian national teams and elite sport clubs were annually tested during 2 consecutive years. Full anthropometric profiles (stature, weight, five circumferences, four bone diameters, seven skin-folds and nine calculated parameters with standard formulas) were collected. Body composition was determined with InBody720 System. Physical capacity was tested with ergo metric test of Bruce (Custo med GmbH, Germany). Results: B were taller (p<0.001) and heavier (p<0.01), but leaner (p<0.001). F had higher percentage of muscle mass (p<0.01) and body fat (p< 0.001). F had higher VO2max (p<0.05) and lower hard rate (p<0.01). The differences in physical performance were not significant (p>0.05) within the groups during the 2-years period. Conclusions: These results suggest that there are distinct differences in anthropometric profile between Macedonian senior football and basketball players during the two competitive seasons.Keywords: anthropometry, basketball players, football players, Macedonia
Procedia PDF Downloads 4891911 Genome of Bio-Based Construction Adhesives and Complex Rheological Behavior
Authors: Ellie Fini, Mahour Parast, Daniel Oldham, Shahrzad Hosseinnezhad
Abstract:
This paper investigates the relationship between molecular species of four different bio-based adhesives (made from Swine Manure, Miscanthus Pellet, Corn Stover, and Wood Pellet) and their rheological behavior before and after they undergo extensive oxidative aging. To study the effect of oxidative aging on the chemical structure of bio-adhesives, Infrared Attenuated Total Reflectance Spectroscopy (Fourier transform infrared) was utilised. In addition, a Drop Shape Analyser, Rotational Viscometer, and Dynamic Shear Rheometer were used to evaluate the surface properties and rheological behaviour of each bio-adhesive. Overall, bio-adhesives were found to be significantly different in terms of their ageing characteristics. Accordingly, their surface and rheological properties were found to be ranked differently before and after ageing. The results showed that the bio-adhesive from swine manure is less susceptible to aging compared to plant-based bio-oils. This can be further attributed to the chemical structure and the high lipid contents of the bio-adhesive from swine manure, making it less affected by oxidative ageing.Keywords: bio-adhesive, rheology, bio-mass, material genome
Procedia PDF Downloads 2621910 Factors Predicting Food Insecurity in Older Thai Women
Authors: Noppawan Piaseu, Surat Komindr
Abstract:
This study aimed to determine factors predicting food insecurity in older Thai women living in crowded urban communities. Through purposive sampling, 315 participants were recruited from community dwelling older women in Bangkok, Thailand. Data collection included interview from questionnaires and anthropometric measurement. Results showed that approximately half of the sample were 60-69 years old (51.1%), married (50.6%), obtained primary education (52.3%), had low family income (51.7%), lived in poor physical environment (49.9%) with normal body mass index (51.0%). Logistic regression analysis revealed that older women who were widowed/divorced/separated (OR = 1.804, 95% CI = 1.052-3.092, p = .032), who reported low family income (OR =.654, 95% CI = .523-.817, p < .001), and who had poor physical environment surrounding home (OR = 2.338, 95% CI = 1.057-5.171, p = .036) were more likely to have food insecurity. Results support that social and environmental factors are major factors predicting food insecurity in older women living in the urban community. Health professionals need to identify and monitor psychosocial, economic and environmental dimensions of food insecurity among them.Keywords: food insecurity, older women, urban communities, Thailand
Procedia PDF Downloads 4061909 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration
Authors: Shi Qi Koo, Ahmad Beng Hong Kueh
Abstract:
In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90˚/0˚] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of sub-elements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.Keywords: dynamic finite element, localized interface degeneration, proportional damping, state-space modeling
Procedia PDF Downloads 2961908 Path Integrals and Effective Field Theory of Large Scale Structure
Authors: Revant Nayar
Abstract:
In this work, we recast the equations describing large scale structure, and by extension all nonlinear fluids, in the path integral formalism. We first calculate the well known two and three point functions using Schwinger Keldysh formalism used commonly to perturbatively solve path integrals in non- equilibrium systems. Then we include EFT corrections due to pressure, viscosity, and noise as effects on the time-dependent propagator. We are able to express results for arbitrary two and three point correlation functions in LSS in terms of differential operators acting on a triple K master intergral. We also, for the first time, get analytical results for more general initial conditions deviating from the usual power law P∝kⁿ by introducing a mass scale in the initial conditions. This robust field theoretic formalism empowers us with tools from strongly coupled QFT to study the strongly non-linear regime of LSS and turbulent fluid dynamics such as OPE and holographic duals. These could be used to capture fully the strongly non-linear dynamics of fluids and move towards solving the open problem of classical turbulence.Keywords: quantum field theory, cosmology, effective field theory, renormallisation
Procedia PDF Downloads 1351907 An Experimental Investigation on the Droplet Behavior Impacting a Hot Surface above the Leidenfrost Temperature
Authors: Khaleel Sami Hamdan, Dong-Eok Kim, Sang-Ki Moon
Abstract:
An appropriate model to predict the size of the droplets resulting from the break-up with the structures will help in a better understanding and modeling of the two-phase flow calculations in the simulation of a reactor core loss-of-coolant accident (LOCA). A droplet behavior impacting on a hot surface above the Leidenfrost temperature was investigated. Droplets of known size and velocity were impacted to an inclined plate of hot temperature, and the behavior of the droplets was observed by a high-speed camera. It was found that for droplets of Weber number higher than a certain value, the higher the Weber number of the droplet the smaller the secondary droplets. The COBRA-TF model over-predicted the measured secondary droplet sizes obtained by the present experiment. A simple model for the secondary droplet size was proposed using the mass conservation equation. The maximum spreading diameter of the droplets was also compared to previous correlations and a fairly good agreement was found. A better prediction of the heat transfer in the case of LOCA can be obtained with the presented model.Keywords: break-up, droplet, impact, inclined hot plate, Leidenfrost temperature, LOCA
Procedia PDF Downloads 3991906 Numerical Analysis of the Effects of Transpiration on Transient/Steady Natural Convection Flow of Reactive Viscous Fluid in a Vertical Channel Formed by Two Vertical Porous Plates
Authors: Ahmad K. Samaila, Basant K. Jha
Abstract:
This study is devoted to investigate the effect of transpiration on transient as well as steady-state natural convection flow of a reactive viscous fluid in a vertical channel formed by two infinite vertical parallel porous plates. The Boussinesq assumption is applied and the nonlinear governing equations of energy and momentum are developed. The problem is solved numerically using implicit finite difference method and analytically for steady-state case using perturbation method. Solutions are presented in graphical form for fluid temperature, velocity, and skin-friction and wall heat transfer rate for various parametric values. It is found that velocity, temperature, rate of heat transfer as well as skin-friction are strongly affected by mass leakage through the porous plates.Keywords: transpiration, reactive viscous fluid, porous plates, natural convection, suction/injection
Procedia PDF Downloads 3731905 Permissible Horizontal Displacements during the Construction of Vertical Shafts in Soft Soils at the Valley of Mexico: Case History
Authors: Joel M. De La Rosa R.
Abstract:
In this paper, the results obtained when monitoring the horizontal deformations of the soil mass are detailed, during each of the construction stages of several vertical shafts located in the soft soils of the Valley of Mexico, by means of the flotation method. From the analysis of these results, the magnitude and percentage relationship with respect to the diameter and depth of excavation of the horizontal deformations that occurred during the monitoring period is established. Based on the horizontal deformation monitoring system and the information provided by the supervisor's site log, the construction stages that have the greatest impact on deformations are established. Additionally, an analysis of the deformations is carried out, which takes into account the resistance and deformability characteristics of the excavated soils, as well as the prevailing hydraulic conditions. This work will allow construction engineers and institutions in charge of infrastructure works in the Valley of Mexico to establish permissible ranges for horizontal deformations that can occur in very soft and saturated soils, during the different construction stages; improving response protocols to potentially dangerous behaviors.Keywords: vertical shaft, flotation method, very soft clays, construction supervision
Procedia PDF Downloads 1891904 Study of Palung Granite in Central Nepal with Special Reference to Field Occurrence, Petrography and Mineralization
Authors: Narayan Bhattarai, Arjun Bhattarai, Kabi Raj Paudyal, Lalu Paudel
Abstract:
Palung granite is leucocratic, alkali feldspar granite, which is one of the six major granite bodies of the Lesser Himalaya of Nepal. The Cambro-Ordovician granite body has intruded on the Palaeozoic metasedimentary rock of the Kathmandu Complex in Central Nepal. The granite crystallized from magma that was mainly generated by anatexis of the Precambrian continental crust. The magma is heterogeneous with respect to the primary ages and/or metamorphic histories of the magma source rocks. This indicates either a derivation from (meta-) sediments or an intense mixing of different crustally derived magmas. The genesis of the Palung granite is possibly related to an orogeny which affected the Indian shield in lower Paleozoic times. The granite body has been mapped into different zones with visual inspection and petrographical study: i. Quartz rich granite: Quartz is smokey to grayish, euhedral to subherdal, 0.2 to 0.7 cm, and constitutes 30 to 40%. Feldspar is white to brownish, subhedral to euhedral, more than 3 cm, and constitutes 20–30%. Tourmaline is black, 0.1 to 0.2 cm in size, and consists of 10 to 20%. Biotite is black flakes up to o.2 cm, representing 5-8%. ii. Feldspar rich granite: white to grayish, medium to coarse-grained, containing feldspar, quartz, biotite, muscovite and tourmaline. Feldspar porphyritic crystals up to 2.5 cm subherdral represent 50–60%, quartz is smokey transparent and represents 30–40%, biotite is dark brown to black, crystals are irregular, 0.5 cm and represent 8–20%, tourmaline is black fractured, small needles represent 5–10%, and muscovite is white to brown and represents 1-4%. iii. Biotite granite: grey to white, medium to coarse-grained, containing quartz, feldspar, biotite and tourmaline. Feldspar crystals up to 2.5 cm represent 40–50%, quartz is smokey, representing 30–40%, biotite is dark brown to black, crystal size 0.5cm, representing 10–20%, tourmaline is black, small needle, 5–10%, and muscovite is white to brown, representing 3-5%. and iv. Muscovite granite: medium-coarse-grained, brown and gray, containing quartz, feldspar, muscovite and tourmaline. Feldspar is white to brown; crystal sizes 0.2–0.4 cm represents 40–50%; quartz is brown and white, transparent, crystals up to 1 cm represent 35–50%; tourmaline is black, opaque, needle shaped; size up to 7–20%; and muscovite is brownish to white, with flakes up to 0.3 cm representing 5–10%. The xenoliths are very common and are not genetically related. Xenoliths are composed mostly of fine-grained, grayish quartz biotite (muscovite) schist and garnetiferous quartz mica schist.Keywords: leucocratic granite, cambro-ordovician granite, lesser himalayan granite, pegmatite
Procedia PDF Downloads 711903 Effect of Inclination Angle on Productivity of a Direct Contact Membrane Distillation (Dcmd) Process
Authors: Adnan Alhathal Alanezi, Alanood A. Alsarayreh
Abstract:
A direct contact membrane distillation (DCMD) system was modeled using various angles for the membrane unit and a Reynolds number range of 500 to 2000 in this numerical analysis. The Navier-Stokes, energy, and species transport equations were used to create a two-dimensional model. The finite volume method was used to solve the governing equations (FVM). The results showed that as the Reynolds number grows up to 1500, the heat transfer coefficient increases for all membrane angles except the 60ᵒ inclination angle. Additionally, increasing the membrane angle to 90ᵒreduces the exit influence while increasing heat transfer. According to these data, a membrane with a 90o inclination angle (also known as a vertical membrane) and a Reynolds number of 2000 might have the smallest temperature differential. Similarly, decreasing the inclination angle of the membrane keeps the temperature difference constant between Reynolds numbers 1000 and 2000; however, between Reynolds numbers 500 and 1000, the temperature difference decreases dramatically.Keywords: direct contact membrane distillation, membrane inclination angle, heat and mass transfer, reynolds number
Procedia PDF Downloads 1201902 Investigations of Inclusion Complexes of Imazapyr with 2-Hydroxypropyl(β/γ) Cyclodextrin Experimental and Molecular Modeling Approach
Authors: Abdalla A. Elbashir, Maali Saad Mokhtar, FakhrEldin O. Suliman
Abstract:
The inclusion complexes of imazapyr (IMA) with 2-hydroxypropyl(β/γ) cyclodextrins (HP β/γ-CD), have been studied in aqueous media and in the solid state. In this work, fluorescence spectroscopy, electrospray-ionization mass spectrometry (ESI-MS), and HNMR were used to investigate and characterize the inclusion complexes of IMA with the cyclodextrins in solutions. The solid-state complexes were obtained by freeze-drying and were characterized by Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD). The most predominant complexes of IMA with both hosts are the 1:1 guest: host complexes. The association constants of IMA-HP β-CD and IMA-HP γ -CD were 115 and 215 L mol⁻¹, respectively. Molecular dynamic (MD) simulations were used to monitor the mode of inclusion and also to investigate the stability of these complexes in aqueous media at atomistic levels. The results obtained have indicated that these inclusion complexes are highly stable in aqueous media, thereby corroborating the experimental results. Additionally, it has been demonstrated that in addition to hydrophobic interactions and van der Waals interactions the presence of hydrogen bonding interactions of the type H---O and CH---O between the guest and the host have enhanced the stability of these complexes remarkably.Keywords: imazapyr, inclusion complex, herbicides, 2-hydroxypropyl-β/γ-cyclodextrin
Procedia PDF Downloads 1711901 Effect of Rotation Rate on Chemical Segregation during Phase Change
Authors: Nouri Sabrina, Benzeghiba Mohamed, Ghezal Abderrahmane
Abstract:
Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in vertical Bridgman (VB) crystal growth. Calculations were performed in unsteady state. The extended Darcy model, which includes the time derivative and Coriolis terms, has been employed in the momentum equation. It was found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetic field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axially. When the convection is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.Keywords: numerical simulation, heat and mass transfer, vertical solidification, chemical segregation
Procedia PDF Downloads 3481900 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization
Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson
Abstract:
A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.Keywords: FCCU modeling, optimization, oxy-combustion, post-combustion
Procedia PDF Downloads 2111899 Accumulation of Phlorotannins in Abalone Haliotis discus Hannai after Feeding with Eisenia bicyclis
Authors: Bangoura Issa, Ji-Young Kang, M. T. H. Chowdhury, Ji-Eun Lee, Yong-Ki Hong
Abstract:
Investigation was carried out for the production of value-added abalone Haliotis discus hannai containing bioactive phlorotannin by feeding phlorotannin-rich seaweed Eisenia bicyclis 2 weeks prior to harvesting. Accumulation of phlorotannins was proceded by feeding with E. bicyclis after 4 days of starvation. HPLC purification afforded two major phlorotannins. Mass spectrometry and 1H-nuclear magnetic resonance analysis clarified their structures to be as 7-phloroeckol and eckol. Throughout the feeding period of 20 days, 7-phloroeckolol was accumulated in the muscle (foot muscle tissue) up to 0.18±0.12 mg g-1 dry weight of tissue after 12 days. Eckol reached 0.21±0.03 mg g-1 dry weight of tissue after 18 days. By feeding Laminaria japonica as reference, abalone showed no detection of phlorotannins in the muscle tissue. Seaweed consumption and growth rate of abalone revealed almost similar when feed with E. bicyclis or L. japonicain 20 days. Phlorotannins reduction to half-maximal accumulation values took 1.0 day and 2.7 days for 7-phloroeckol and eckol respectively, after replacing the feed to L. japonica.Keywords: abalone, accumulation, eisenia bicyclis, phlorotannins
Procedia PDF Downloads 3821898 Spray Characteristics of a Urea Injector Chamber to Improve NOx Conversion Efficiency for Diesel Engines Fueled with Biodiesels
Authors: Kazem Bashirnezhad, Seyed Ahmad Kebriyaee, saeed hoseyngholizadeh moghadam
Abstract:
The urea–SCR catalyst system has the advantages of high NOx conversion efficiency and a wide range of operating conditions. The key factors for successful implementation of urea–SCR technology is good mixing of urea (ammonia) and gas to reduce ammonia slip. Urea mixer components are required to facilitate evaporation and mixing, because it is difficult to evaporate urea in the liquid state; the injection parameters are the most critical factors affecting mixer performance. In this study, The effect of urea injection on NOx emissions in a six-cylinder, four-stroke internal combustion engine fueled with B80 biodiesel has been experimentally investigated. The results reveal that urea injection leads to a reduction of NOx emissions of B80 biodiesel fuel. Moreover, the influence of injection parameters on NOx reductions has been studied. The findings show that by increasing the injection temperature, more reduction in NOx emissions has been occurred. Also, urea mass flow rate increment leads to more NOx reduction. The same result has been obtained by an increase in spray angle.Keywords: urea, NOx emissions, diesel engines, biodiesels
Procedia PDF Downloads 4951897 Phosphoproteomic Analysis of the Response of Rice Leaves to Chitosan under Drought Stress
Authors: Narumon Phaonakrop, Janthima Jaresitthikunchai, Sittiruk Roytrakul, Wasinee Pongprayoon
Abstract:
Chitosan has been proposed as a natural polymer, and it is derived from chitin. The objective of this research was to determine the growth promoting responses induced by chitosan at the molecular physiology level in Khao Dawk Mali 105 (KDML 105) rice (Oryza sativa L.) seedlings under drought stress by adding of 2% polyethylene glycol 4000 (PEG4000) to the nutrient solution and after removal of the drought stress (re-water). Oligomeric chitosan at 40 ppm could enhance shoot fresh weight and shoot dry weight during drought stress and re-water. After 7 days of drought stress and re-water, significant increases in chlorophyll a and chlorophyll b contents in KDML 105 cultivar were observed. The 749 phosphoproteins in rice leaf treated with chitosan could be resolved by phosphoprotein enrichment, tryptic digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. They can be classified into 10 groups. Proteins involved in the metabolic process and biological regulation were upregulated in response to chitosan during drought stress. This work will help us to understand protein phosphorylation relating to chitosan response during drought stress in aromatic rice seedlings.Keywords: Chitosan, drought, phosphoproteome, rice
Procedia PDF Downloads 1641896 Optimization of Ultrasound-Assisted Extraction and Microwave-Assisted Acid Digestion for the Determination of Heavy Metals in Tea Samples
Authors: Abu Harera Nadeem, Kingsley Donkor
Abstract:
Tea is a popular beverage due to its flavour, aroma and antioxidant properties—with the most consumed varieties being green and black tea. Antioxidants in tea can lower the risk of Alzheimer’s and heart disease and obesity. However, these teas contain heavy metals such as Hg, Cd, or Pb, which can cause autoimmune diseases like Graves disease. In this study, 11 heavy metals in various commercial green, black, and oolong tea samples were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Two methods of sample preparation were compared for accuracy and precision, which were microwave-assisted digestion and ultrasonic-assisted extraction. The developed method was further validated by detection limit, precision, and accuracy. Results showed that the proposed method was highly sensitive with detection limits within parts-per-billion levels. Reasonable method accuracy was obtained by spiked experiments. The findings of this study can be used to delve into the link between tea consumption and disease and to provide information for future studies on metal determination in tea.Keywords: ICP-MS, green tea, black tea, microwave-assisted acid digestion, ultrasound-assisted extraction
Procedia PDF Downloads 1231895 Cell-free Bioconversion of n-Octane to n-Octanol via a Heterogeneous and Bio-Catalytic Approach
Authors: Shanna Swart, Caryn Fenner, Athanasios Kotsiopoulos, Susan Harrison
Abstract:
Linear alkanes are produced as by-products from the increasing use of gas-to-liquid fuel technologies for synthetic fuel production and offer great potential for value addition. Their current use as low-value fuels and solvents do not maximize this potential. Therefore, attention has been drawn towards direct activation of these aliphatic alkanes to more useful products such as alcohols, aldehydes, carboxylic acids and derivatives. Cytochrome P450 monooxygenases (P450s) can be used for activation of these aliphatic alkanes using whole-cells or cell-free systems. Some limitations of whole-cell systems include reduced mass transfer, stability and possible side reactions. Since the P450 systems are little studied as cell-free systems, they form the focus of this study. Challenges of a cell-free system include co-factor regeneration, substrate availability and enzyme stability. Enzyme immobilization offers a positive outlook on this dilemma, as it may enhance stability of the enzyme. In the present study, 2 different P450s (CYP153A6 and CYP102A1) as well as the relevant accessory enzymes required for electron transfer (ferredoxin and ferredoxin reductase) and co-factor regeneration (glucose dehydrogenase) have been expressed in E. coli and purified by metal affinity chromatography. Glucose dehydrogenase (GDH), was used as a model enzyme to assess the potential of various enzyme immobilization strategies including; surface attachment on MagReSyn® microspheres with various functionalities and on electrospun nanofibers, using self-assembly based methods forming Cross Linked Enzymes (CLE), Cross Linked Enzyme Aggregates (CLEAs) and spherezymes as well as in a sol gel. The nanofibers were synthesized by electrospinning, which required the building of an electrospinning machine. The nanofiber morphology has been analyzed by SEM and binding will be further verified by FT-IR. Covalent attachment based methods showed limitations where only ferredoxin reductase and GDH retained activity after immobilization which were largely attributed to insufficient electron transfer and inactivation caused by the crosslinkers (60% and 90% relative activity loss for the free enzyme when using 0.5% glutaraldehyde and glutaraldehyde/ethylenediamine (1:1 v/v), respectively). So far, initial experiments with GDH have shown the most potential when immobilized via their His-tag onto the surface of MagReSyn® microspheres functionalized with Ni-NTA. It was found that Crude GDH could be simultaneously purified and immobilized with sufficient activity retention. Immobilized pure and crude GDH could be recycled 9 and 10 times, respectively, with approximately 10% activity remaining. The immobilized GDH was also more stable than the free enzyme after storage for 14 days at 4˚C. This immobilization strategy will also be applied to the P450s and optimized with regards to enzyme loading and immobilization time, as well as characterized and compared with the free enzymes. It is anticipated that the proposed immobilization set-up will offer enhanced enzyme stability (as well as reusability and easy recovery), minimal mass transfer limitation, with continuous co-factor regeneration and minimal enzyme leaching. All of which provide a positive outlook on this robust multi-enzyme system for efficient activation of linear alkanes as well as the potential for immobilization of various multiple enzymes, including multimeric enzymes for different bio-catalytic applications beyond alkane activation.Keywords: alkane activation, cytochrome P450 monooxygenase, enzyme catalysis, enzyme immobilization
Procedia PDF Downloads 2271894 Effect of Fly Ash Fineness on Sorption Properties of Geopolymers Based on Liquid Glass
Authors: Miroslava Zelinkova, Marcela Ondova
Abstract:
Fly ash (FA) thanks to the significant presence of SiO2 and Al2O3 as the main components is a potential raw material for geopolymers production. Mechanical activation is a method for improving FA reactivity and also the porosity of final mixture; those parameters can be analysed through sorption properties. They have direct impact on the durability of fly ash based geopolymer mortars. In the paper, effect of FA fineness on sorption properties of geopolymers based on sodium silicate, as well as relationship between fly ash fineness and apparent density, compressive and flexural strength of geopolymers are presented. The best results in the evaluated area reached the sample H1, which contents the highest portion of particle under 20μm (100% of GFA). The interdependence of individual tested properties was confirmed for geopolymer mixtures corresponding to those in the cement based mixtures: higher is portion of fine particles < 20μm, higher is strength, density and lower are sorption properties. The compressive strength as well as sorption parameters of the geopolymer can be reasonably controlled by grinding process and also ensured by the higher share of fine particle (to 20μm) in total mass of the material.Keywords: alkali activation, geopolymers, fly ash, particle fineness
Procedia PDF Downloads 2211893 Combined Model Predictive Controller Technique for Enhancing NAO Gait Stabilization
Authors: Brahim Brahmi, Mohammed Hamza Laraki, Mohammad Habibur Rahman, Islam M. Rasedul, M. Assad Uz-Zaman
Abstract:
The humanoid robot, specifically the NAO robot must be able to provide a highly dynamic performance on the soccer field. Maintaining the balance of the humanoid robot during the required motion is considered as one of a challenging problems especially when the robot is subject to external disturbances, as contact with other robots. In this paper, a dynamic controller is proposed in order to ensure a robust walking (stabilization) and to improve the dynamic balance of the robot during its contact with the environment (external disturbances). The generation of the trajectory of the center of mass (CoM) is done by a model predictive controller (MPC) conjoined with zero moment point (ZMP) technique. Taking into account the properties of the rotational dynamics of the whole-body system, a modified previous control mixed with feedback control is employed to manage the angular momentum and the CoM’s acceleration, respectively. This latter is dedicated to provide a robust gait of the robot in the presence of the external disturbances. Simulation results are presented to show the feasibility of the proposed strategy.Keywords: preview control, Nao robot, model predictive control
Procedia PDF Downloads 1281892 Sustainability of Carbon Nanotube-Reinforced Concrete
Authors: Rashad Al Araj, Adil K. Tamimi
Abstract:
Concrete, despite being one of the most produced materials in the world, still has weaknesses and drawbacks. Significant concern of the cementitious materials in structural applications is their quasi-brittle behavior, which causes the material to crack and lose its durability. One of the very recently proposed mitigations for this problem is the implementation of nanotechnology in the concrete mix by adding carbon nanotubes (CNTs) to it. CNTs can enhance the critical mechanical properties of concrete as a structural material. Thus, this paper demonstrates a state-of-the-art review of reinforcing concrete with CNTs, emphasizing on the structural performance. It also goes over the properties of CNTs alone, the present methods and costs associated with producing them, the possible special applications of concretes reinforced with CNTs, the key challenges and drawbacks that this new technology still encounters, and the most reliable practices and methodologies to produce CNT-reinforced concrete in the lab. This work has shown that the addition of CNTs to the concrete mix in percentages as low as 0.25% weight of cement could increase the flexural strength and toughness of concrete by more than 45% and 25%, respectively, and enhance other durability-related properties, given that an effective dispersion of CNTs in the cementitious mix is achieved. Since nano reinforcement for cementitious materials is a new technology, many challenges have to be tackled before it becomes practiced at the mass level.Keywords: sustainability, carbon nano tube, microsilica, concrete
Procedia PDF Downloads 3381891 Research on Straightening Process Model Based on Iteration and Self-Learning
Authors: Hong Lu, Xiong Xiao
Abstract:
Shaft parts are widely used in machinery industry, however, bending deformation often occurred when this kind of parts is being heat treated. This parts needs to be straightened to meet the requirement of straightness. As for the pressure straightening process, a good straightening stroke algorithm is related to the precision and efficiency of straightening process. In this paper, the relationship between straightening load and deflection during the straightening process is analyzed, and the mathematical model of the straightening process has been established. By the mathematical model, the iterative method is used to solve the straightening stroke. Compared to the traditional straightening stroke algorithm, straightening stroke calculated by this method is much more precise; because it can adapt to the change of material performance parameters. Considering that the straightening method is widely used in the mass production of the shaft parts, knowledge base is used to store the data of the straightening process, and a straightening stroke algorithm based on empirical data is set up. In this paper, the straightening process control model which combine the straightening stroke method based on iteration and straightening stroke algorithm based on empirical data has been set up. Finally, an experiment has been designed to verify the straightening process control model.Keywords: straightness, straightening stroke, deflection, shaft parts
Procedia PDF Downloads 3281890 Turkey Disaster Risk Management System Project (TAFRISK)
Authors: Ahmet Parlak, Celalettin Bilgen
Abstract:
In order to create an effective early warning system, Identification of the risks, preparation and carrying out risk modeling of risk scenarios, taking into account the shortcomings of the old disaster scenarios should be used to improve the system. In the light of this, the importance of risk modeling in creating an effective early warning system is understood. In the scope of TAFRISK project risk modeling trend analysis report on risk modeling developed and a demonstration was conducted for Risk Modeling for flood and mass movements. For risk modeling R&D, studies have been conducted to determine the information, and source of the information, to be gathered, to develop algorithms and to adapt the current algorithms to Turkey’s conditions for determining the risk score in the high disaster risk areas. For each type of the disaster; Disaster Deficit Index (DDI), Local Disaster Index (LDI), Prevalent Vulnerability Index (PVI), Risk Management Index (RMI) have been developed as disaster indices taking danger, sensitivity, fragility, and vulnerability, the physical and economic damage into account in the appropriate scale of the respective type.Keywords: disaster, hazard, risk modeling, sensor
Procedia PDF Downloads 428