Search results for: fine particle losses
1474 A Novel Way to Create Qudit Quantum Error Correction Codes
Authors: Arun Moorthy
Abstract:
Quantum computing promises to provide algorithmic speedups for a number of tasks; however, similar to classical computing, effective error-correcting codes are needed. Current quantum computers require costly equipment to control each particle, so having fewer particles to control is ideal. Although traditional quantum computers are built using qubits (2-level systems), qudits (more than 2-levels) are appealing since they can have an equivalent computational space using fewer particles, meaning fewer particles need to be controlled. Currently, qudit quantum error-correction codes are available for different level qudit systems; however, these codes have sometimes overly specific constraints. When building a qudit system, it is important for researchers to have access to many codes to satisfy their requirements. This project addresses two methods to increase the number of quantum error correcting codes available to researchers. The first method is generating new codes for a given set of parameters. The second method is generating new error-correction codes by using existing codes as a starting point to generate codes for another level (i.e., a 5-level system code on a 2-level system). So, this project builds a website that researchers can use to generate new error-correction codes or codes based on existing codes.Keywords: qudit, error correction, quantum, qubit
Procedia PDF Downloads 1611473 Tga Analysis on the Decomposition of Active Material of Aquilaria Malaccencis
Authors: Nurshafika Adira Bt Audi Ashraf, Habsah Alwi
Abstract:
This study describes the series of analysis conducted after the use of Vacuum far Infra Red. Parameter including the constant drying temperature at 40°C with pressure difference (-400 bar, -500 bar and -600 bar) and constant drying pressure at -400 bar with difference temperature (40°C, 50°C and 60°C). The dried leaves with constant temperature and constant pressure is compared with the fresh leaves via several analysis including TGA, FTIR and Chromameter. Results indicated that the fresh leaves shows three degradation stages while temperature constant shows four stages of degradation and at constant pressure of -400 bar, five stages of degradation is shown. However, at the temperature constant with pressure -500 bar, five degradation stages are identified and at constant pressure with temperature 40°C, three stage of degradation is presence. It is assumed that it is due to the difference size of the sample as the particle size is decrease, the peak temperature shown in TG curves is also decrease which lead to the rapid ignition. Based on the FTIR analysis, fresh leaves gives the high presence of O-H and C=O group where both of the constant parameters give the absence of those due to the drying effects. In color analysis, the constant drying parameters (pressure and temperature) both shows that as the temperature increases, the average total of color change is also increases.Keywords: chromameter, FTIR, TGA, Vaccum far infrared dying
Procedia PDF Downloads 3651472 The Transcriptome of Carnation (Dianthus Caryophyllus) of Elicited Cells with Fusarium Oxysporum f.sp. Dianthi
Authors: Juan Jose Filgueira, Daniela Londono-Serna, Liliana Maria Hoyos
Abstract:
Carnation (Dianthus caryophyllus) is one of the most important products of exportation in the floriculture industry worldwide. Fusariosis is the disease that causes the highest losses on farms, in particular the one produced by Fusarium oxysporum f.sp. dianthi, called vascular wilt. Gene identification and metabolic routes of the genes that participate in the building of the plant response to Fusarium are some of the current targets in the carnation breeding industry. The techniques for the identifying of resistant genes in the plants, is the analysis of the transcriptome obtained during the host-pathogen interaction. In this work, we report the cell transcriptome of different varieties of carnation that present differential response from Fusarium oxysporum f.sp. dianthi attack. The cells of the different hybrids produced in the outbreeding program were cultured in vitro and elicited with the parasite in a dual culture. The isolation and purification of mRNA was achieved by using affinity chromatography Oligo dT columns and the transcriptomes were obtained by using Illumina NGS techniques. A total of 85,669 unigenes were detected in all the transcriptomes analyzed and 31,000 annotations were found in databases, which correspond to 36.2%. The library construction of genic expression techniques used, allowed to recognize the variation in the expression of genes such as Germin-like protein, Glycosyl hydrolase family and Cinnamate 4-hydroxylase. These have been reported in this study for the first time as part of the response mechanism to the presence of Fusarium oxysporum.Keywords: Carnation, Fusarium, vascular wilt, transcriptome
Procedia PDF Downloads 1501471 Characterization of a Hypoeutectic Al Alloy Obtained by Selective Laser Melting
Authors: Jairo A. Muñoz, Alexander Komissarov, Alexander Gromov
Abstract:
In this investigation, a hypoeutectic AlSi11Cu alloy was printed. This alloy was obtained in powder form with an average particle size of 40 µm. Bars 20 mm in diameter and 100 mm in length were printed with the building direction parallel to the bars' longitudinal direction. The microstructural characterization demonstrated an Al matrix surrounded by a Si network forming a coral-like pattern. The microstructure of the alloy showed a heterogeneous behavior with a mixture of columnar and equiaxed grains. Likewise, the texture indicated that the columnar grains were preferentially oriented towards the building direction, while the equiaxed followed a texture dominated by the cube component. On the other hand, the as-printed material strength showed higher values than those obtained in the same alloy using conventional processes such as casting. In addition, strength and ductility differences were found in the printed material, depending on the measurement direction. The highest values were obtained in the radial direction (565 MPa maximum strength and 4.8% elongation to failure). The lowest values corresponded to the transverse direction (508 MPa maximum strength and 3.2 elongation to failure), which corroborate the material anisotropy.Keywords: additive manufacturing, aluminium alloy, melting pools, tensile test
Procedia PDF Downloads 1551470 AutoML: Comprehensive Review and Application to Engineering Datasets
Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili
Abstract:
The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.Keywords: automated machine learning, uncertainty, engineering dataset, regression
Procedia PDF Downloads 611469 Feasibility Studies on the Removal of Fluoride from Aqueous Solution by Adsorption Using Agro-Based Waste Materials
Authors: G. Anusha, J. Raja Murugadoss
Abstract:
In recent years, the problem of water contaminant is drastically increasing due to the disposal of industrial wastewater containing iron, fluoride, mercury, lead, cadmium, phosphorus, silver etc. into water bodies. The non-biodegradable heavy metals could accumulate in the human system through food chain and cause various dreadful diseases and permanent disabilities and in worst cases it leads to casual losses. Further, the presence of the excess quantity of such heavy metals viz. Lead, Cadmium, Chromium, Nickel, Zinc, Copper, Iron etc. seriously affect the natural quality of potable water and necessitates the treatment process for removal. Though there are dozens of standard procedures available for the removal of heavy metals, their cost keeps the industrialists away from adopting such technologies. In the present work, an attempt has been made to remove such contaminants particularly fluoride and to study the efficiency of the removal of fluoride by adsorption using a new agro-based materials namely Limonia acidissima and Emblica officinalis which is commonly referred as wood apple and gooseberry respectively. Accordingly a set of experiments has been conducted using batch and column processes, with the help of activated carbon prepared from the shell of wood apple and seeds of gooseberries. Experiments reveal that the adsorption capacity of the shell of wood apple is significant to yield promising solutions.Keywords: adsorption, fluoride, agro-based waste materials, Limonia acidissima, Emblica officinalis
Procedia PDF Downloads 4281468 Preparation of 1D Nano-Polyaniline/Dendritic Silver Composites
Authors: Wen-Bin Liau, Wan-Ting Wang, Chiang-Jen Hsiao, Sheng-Mao Tseng
Abstract:
In this paper, an interesting and easy method to prepare one-dimensional nanostructured polyaniline/dendritic silver composites is reported. It is well known that the morphology of metal particle is a very important factor to influence the properties of polymer-metal composites. Usually, the dendritic silver is prepared by kinetic control in reduction reaction. It is not a thermodynamically stable structure. It is the goal to reduce silver ion to dendritic silver by polyaniline polymer via kinetic control and form one-dimensional nanostructured polyaniline/dendritic silver composites. The preparation is a two steps sequential reaction. First step, the polyaniline networks composed of nano fibrillar polyaniline are synthesized from aniline monomers aqueous with ammonium persulfate as the initiator at room temperature. In second step, the silver nitrate is added into polyaniline networks dispersed in deionized water. The dendritic silver is formed via reduction by polyaniline networks under the kinetic control. The formation of polyaniline is discussed via transmission electron microscopy (TEM). Nanosheets, nanotubes, nanospheres, nanosticks, and networks are observed via TEM. Then, the mechanism of formation of one-dimensional nanostructured polyaniline/dendritic silver composites is discussed. The formation of dendritic silver is observed by TEM and X-ray diffraction.Keywords: 1D nanostructured polyaniline, dendritic silver, synthesis
Procedia PDF Downloads 5001467 Target Drug Delivery of Pamidronate Nanoparticles for Enhancing Osteoblastic Activity in Osteoporosis
Authors: Purnima Rawat, Divya Vohora, Sarika Gupta, Farhan J. Ahmad, Sushama Talegaonkar
Abstract:
Nanoparticles (NPs) that target bone tissue were developed using PLGA–mPEG (poly(lactic-co-glycolic-acid)–polyethylene glycol) diblock copolymers by using pamidronate as a bone-targeting moieties. These NPs are expected to enable the transport of hydrophilic drugs. The NP was prepared by in situ polymerization method, and their in- vitro characteristics were evaluated using dynamic light scattering, transmission electron microscopy (TEM) and in phosphate-buffered solution. The bone targeting potential of the NP was also evaluated on in-vitro pre-osteoblast MCT3E1 cell line using ALP activity, degree of mineralization and RT-PCR assay. The average particle size of the NP was 101.6 ± 3.7nm, zeta potential values were negative (-25±0.34mV) of the formulations and the entrapment efficiency was 93± 3.1 % obtained. The moiety of the PLGA–mPEG–pamidronate NPs exhibited the best apatite mineral binding ability in-vitro MCT3E1 pre-osteoblast cell line. Our results suggested that the developed nanoparticles may use as a delivery system for Pamidronate in bone repair and regeneration, warranting further evaluation of the treatment of bone disease.Keywords: nanoparticle, pamidronate, in-situ polymerization, osteoblast
Procedia PDF Downloads 4821466 Localized Dynamic Lensing with Extended Depth of Field via Enhanced Light Sound Interaction
Authors: Hamid R. Chabok, Demetrios N. Christodoulides, Mercedeh Khajavikhan
Abstract:
In recent years, acousto-optic (AO) lenses with tunable foci have emerged as a powerful tool for optical beam shaping, imaging, and particle manipulation. In most current AO lenses, the incident light that propagates orthogonally to a standing ultrasonic wave converts to a Bessel-like beam pattern due to the Raman-Nath effect, thus forming annular fringes that result in compromised focus response. Here, we report a new class of AO dynamic lensing based on generating a 3D-variable refractive index profile via a z-axis-scan ultrasound transducer. By utilizing the co- /counter propagation of light and acoustic waves that interact over a longer distance, the laser beam can be strongly focused in a fully controllable manner. Using this approach, we demonstrate AO lenses with instantaneous extended depth of field (DoF) and laterally localized dynamic focusing. This new light-sound interaction scheme may pave the way towards applications that require remote focusing, 3D micromanipulation, and deep tissue therapy/imaging.Keywords: acousto-optic, optical beam shaping, dynamic lensing, ultrasound
Procedia PDF Downloads 1021465 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 1621464 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 1901463 Acceleration of Lagrangian and Eulerian Flow Solvers via Graphics Processing Units
Authors: Pooya Niksiar, Ali Ashrafizadeh, Mehrzad Shams, Amir Hossein Madani
Abstract:
There are many computationally demanding applications in science and engineering which need efficient algorithms implemented on high performance computers. Recently, Graphics Processing Units (GPUs) have drawn much attention as compared to the traditional CPU-based hardware and have opened up new improvement venues in scientific computing. One particular application area is Computational Fluid Dynamics (CFD), in which mature CPU-based codes need to be converted to GPU-based algorithms to take advantage of this new technology. In this paper, numerical solutions of two classes of discrete fluid flow models via both CPU and GPU are discussed and compared. Test problems include an Eulerian model of a two-dimensional incompressible laminar flow case and a Lagrangian model of a two phase flow field. The CUDA programming standard is used to employ an NVIDIA GPU with 480 cores and a C++ serial code is run on a single core Intel quad-core CPU. Up to two orders of magnitude speed up is observed on GPU for a certain range of grid resolution or particle numbers. As expected, Lagrangian formulation is better suited for parallel computations on GPU although Eulerian formulation represents significant speed up too.Keywords: CFD, Eulerian formulation, graphics processing units, Lagrangian formulation
Procedia PDF Downloads 4171462 Palygorskite Bearing Calcic-Soils from Western Thar Desert: Implications for Late Quaternary Monsoonal Fluctuations
Authors: A. Hameed, N. Upreti, P. Srivastava
Abstract:
Main objective the present study is to investigate microscopic, sub-microscopic, clay mineralogical and geochemical characteristics of three calcic soil profiles from the western Thar Desert for the last 30 ka paleoclimatic information. Thin-sections of the soils show weakly to moderately developed pedofeatures dominated by powdery to well-indurated pedogenic calcium carbonate. Sub-microscopy of the representative calcretes show extensive growth of fibrous palygorskite in pore spaces of micritic and sparitic nodules. XRD of the total clay ( < 2 µm) and fine clay ( < 0.2 µm) fractions of the soils show dominance of smectite, palygorskite, chlorite, mica, kaolinite and small amounts of quartz and feldspar. Formation of the palygorskite is attributed to pedogenic processes associated with Bw, Bss and Bwk horizons during drier conditions over the last 30 ka. Formation of palygorskite was mainly favoured by strongly evaporating percolating water and precipitation of secondary calcite, high pH (9-10), high Mg, Si and low Al activities during pedogenesis. Age estimate and distribution of calcretes, palygorskite, and illuvial features indicate fluctuating monsoonal strength during MIS3-MIS1 stages. The pedogenic features in calcic soils of western Thar suggest relatively arid conditions during MIS3-MIS2 transition and LGM time that changed to relatively wetter conditions during post LGM time and again returned to dry conditions at ~4 ka in MIS1.Keywords: palygorskite, clay minerals, Thar, aridisol, late quaternary
Procedia PDF Downloads 1621461 Effect of Ultrasound and Enzyme on the Extraction of Eurycoma longifolia (Tongkat Ali)
Authors: He Yuhai, Ahmad Ziad Bin Sulaiman
Abstract:
Tongkat Ali, or Eurycoma longifolia, is a traditional Malay and Orang Asli herb used as aphrodisiac, general tonic, anti-Malaria, and anti-Pyretic. It has been recognized as a cashcrop by Malaysia due to its high value for the pharmaceutical use. In Tongkat Ali, eurycomanone, a quassinoid is usually chosen as a marker phytochemical as it is the most abundant phytochemical. In this research, ultrasound and enzyme were used to enhance the extraction of Eurycomanone from Tongkat Ali. Ultrasonic assisted extraction (USE) enhances extraction by facilitating the swelling and hydration of the plant material, enlarging the plant pores, breaking the plant cell, reducing the plant particle size and creating cavitation bubbles that enhance mass transfer in both the washing and diffusion phase of extraction. Enzyme hydrolyses the cell wall of the plant, loosening the structure of the cell wall, releasing more phytochemicals from the plant cell, enhancing the productivity of the extraction. Possible effects of ultrasound on the activity of the enzyme during the hydrolysis of the cell wall is under the investigation by this research. The extracts was analysed by high performance liquid chromatography for the yields of Eurycomanone. In this whole process, the conventional water extraction was used as a control of comparing the performance of the ultrasound and enzyme assisted extraction.Keywords: ultrasound, enzymatic, extraction, Eurycoma longifolia
Procedia PDF Downloads 4181460 The Influence of Colloidal Metal Nanoparticles on Growth and Proliferation of in Vitro Cultures of Potato
Authors: Przewodowski Włodzimierz, Przewodowska Agnieszka, Sekrecka Danuta, Michałowska Dorota
Abstract:
Colloidal metal nanoparticles are widely applied in various areas and have great potential in different biotechnological applications. Their particular properties associated with both the antiseptic, antioxidant and anti aging properties as well as ability to penetrate most of the biological barriers, synergy in the absorption of nutrients and nontoxic to plants. The properties make them potentially useful in the fast and safe production of healthy, certified starting material in the production of plants exposed to many pathogenic microorganisms causing serious diseases, significantly affecting yield and causing the economic losses. In this case it is crucial to provide appropriate conditions for the production, storage and distribution of the plant material. Therefore, the aim of the proposed research was to develop and identify the influence of four colloidal metal nanoparticles on growth and proliferation of in vitro cultures of potato (Solanum tuberosum) - one of the most economically important strategic crops in the world. The research on different varieties of potato was performed by placing the explants of the in vitro cultures on sterile Murashige and Skoog (MS) type medium. The influence of the nanocolloids was evaluated using the MS medium impregnated with the examinated nanoparticles. The vigour of growth and the rate of proliferation was examinated for 6-8 weeks with both night/day-length and temperature over the ranges 8/16 h and 20–22 °C respectively. The results of our preliminary work confirmed high usefulness of the nanocolloids in the safe production of the examinated in vitro cultures.Keywords: colloidal metal nanoparticles, in vitro cultures, potato, propagation
Procedia PDF Downloads 3461459 The Impact of the Corona Virus Outbreak Crisis on Startups
Authors: Mohammad Mehdizadeh, Sara Miri
Abstract:
Due to the recent events surrounding the global health crisis and the spread of the coronavirus (COVID-19), the activities of many businesses and start-up companies have been disrupted. It solves many economic problems and can reduce unemployment in countries because governments can take advantage of their potential without direct investment. However, with the help of their innovative ideas and new technologies, these companies can develop and grow the economy. But it is essential to consider that there will be no guarantee of their success in the event of unforeseen events, as the coronavirus outbreak in the last two years has seriously damaged these companies and, like other businesses, challenges and stagnation have started. The startup companies' challenge in the face of coronavirus begins with its impact on customers. Changing customer behavior can affect their products and distribution channels. On the other hand, to prevent countless losses in this crisis, startup companies require creative solutions to address challenges in various areas of human capital, supply chain management, sales and marketing, and so on. Therefore, all business leaders must consider and plan for the current crisis and the future; after overcoming these conditions and returning to regular business routines, it will no longer be an option, and new situations will prevail in a competitive environment. The essential strategies for developing and growing startups during the Coronavirus outbreak can be connecting with the global startup ecosystem, hosting webinars, providing podcasts and free question and answer sessions, mentoring services to growing teams, and consulting pointed out this to firms for digitalization.Keywords: business, COVID-19, digitalization, startups
Procedia PDF Downloads 1641458 Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry
Authors: Abhishek Khupsare, Ajay Parmar, Ajay Agarwal, Swapnil Wanjari
Abstract:
The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash.Keywords: polymer sand, fly ash, bottom ash, HSPCE plasticizer, river sand mining
Procedia PDF Downloads 771457 Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment
Authors: Yousaf Ayub
Abstract:
A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations.Keywords: blue hydrogen, green hydrogen, co-gasification, waste valorization, exergy analysis
Procedia PDF Downloads 661456 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis
Authors: Mennatallah M. Hussein, Olivier de Weck
Abstract:
The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics
Procedia PDF Downloads 311455 Electrokinetics and Stability of Solder Powders in Aqueous Media
Authors: Terence Lucero F. Menor, Manolo G. Mena, Herman D. Mendoza
Abstract:
Solder pastes are widely used in creating mechanical, thermal and electrical connection between electronic components. Continued miniaturization of consumer electronics drives manufacturers to achieve smaller, lighter, and faster electronic packages at low cost. This faces them to the difficult challenge of dispensing solder pastes in extremely precise and repeatable manner. The most common problem in solder paste dispensing is the clogging of dispensers which results from agglomeration and settling of solder powders leading to increase on the effective particle size and uneven distribution of particles in the mixture. In this work, microelectrophoresis was employed to investigate the effect of pH and KNO₃ concentration on the electrokinetic behavior and stability of SAC305, PbSn5Ag2.5 and Sn powders in aqueous media. Results revealed that the electrokinetic behavior of the three types of solder powders are similar, which was attributed to high SnO₂ content on the surface of the particles. Electrokinetic measurements showed that the zeta potentials of the solder powders are highly dependent on pH and KNO₃ concentration with isoelectric points ranging from 3.5 to 5.5. Results were verified using stability tests.Keywords: electrokinetic behavior, isoelectric point, solder powder, stability, surface analysis
Procedia PDF Downloads 2301454 Gloria Naylor's Linden Hills: A Fine Description of Burdens and Misguided Notions of the Middle Black Community
Authors: Kalluru Maheswaramma, Putta Padma
Abstract:
This study makes an attempt to demonstrate the wondrous world of the upwardly middle black community in Gloria Naylor’s Linden Hills. Gloria Naylor’s first novel The Women of Brewster Place is about the working class and Linden Hills about middle-class Black America. Naylor believes their serenity that is lost in the middle or working class black people as they move into the upper patriarchal society. Naylor challenges the different forms of superiority, homophobia, and chauvinism, interracial bias, and the like, which plague a community so significantly trying to be acceptable in the larger white community. In an ironic twist, Naylor creates characters that recognize their desire for a solid black community but who in reality ignore blackness and negate any emergent sign of its development. Linden Hills is an expose of the wealthy and spiritually dissolute upper class. Linden Hills is an examination of an upper-middle-class African American community in which women are largely exploited or invisible and in which men have, in the course of upward mobility, sacrificed their racial identity and their essence. Linden Hills is a social world, which includes firm stratification, false values, and an immobilizing impact on its residents. Touching a brief note upon the origin and development of African American Literature as well a note on the chosen writer and her works, the paper proceeds to depict the middle-class black community of Linden Hills.Keywords: gloria naylor, linden hills, African American community, the middle black community
Procedia PDF Downloads 5641453 Surfactant-Free O/W-Emulsion as Drug Delivery System
Authors: M. Kumpugdee-Vollrath, J.-P. Krause, S. Bürk
Abstract:
Most of the drugs used for pharmaceutical purposes are poorly water-soluble drugs. About 40% of all newly discovered drugs are lipophilic and the numbers of lipophilic drugs seem to increase more and more. Drug delivery systems such as nanoparticles, micelles or liposomes are applied to improve their solubility and thus their bioavailability. Besides various techniques of solubilization, oil-in-water emulsions are often used to incorporate lipophilic drugs into the oil phase. To stabilize emulsions surface active substances (surfactants) are generally used. An alternative method to avoid the application of surfactants was of great interest. One possibility is to develop O/W-emulsion without any addition of surface active agents or the so called “surfactant-free emulsion or SFE”. The aim of this study was to develop and characterize SFE as a drug carrier by varying the production conditions. Lidocaine base was used as a model drug. The injection method was developed. Effects of ultrasound as well as of temperature on the properties of the emulsion were studied. Particle sizes and release were determined. The long-term stability up to 30 days was performed. The results showed that the surfactant-free O/W emulsions with pharmaceutical oil as drug carrier can be produced.Keywords: emulsion, lidocaine, Miglyol, size, surfactant, light scattering, release, injection, ultrasound, stability
Procedia PDF Downloads 4881452 Effect of Channel Variation of Two-Dimensional Water Tunnel to Study Fluid Dynamics Phenomenon
Authors: Rizka Yunita, Mas Aji Rizki Wijayanto
Abstract:
Computational fluid dynamics (CFD) is the solution to explain how fluid dynamics behavior. In this work, we obtain the effect of channel width of two-dimensional fluid visualization. Using a horizontal water tunnel and flowing soap film, we got a visualization of continuous film that can be observe a graphical overview of the flow that occurs on a space or field in which the fluid flow. The horizontal water tunnel we used, divided into three parts, expansion area, parallel area that used to test the data, and contraction area. The width of channel is the boundary of parallel area with the originally width of 7.2 cm, and the variation of channel width we observed is about 1 cm and its times. To compute the velocity, vortex shedding, and other physical parameters of fluid, we used the cyclinder circular as an obstacle to create a von Karman vortex in fluid and analyzed that phenomenon by using Particle Imaging Velocimetry (PIV) method and comparing Reynolds number and Strouhal number from the visualization we got. More than width the channel, the film is more turbulent and have a separation zones that occurs of uncontinuous flowing fluid.Keywords: flow visualization, width of channel, vortex, Reynolds number, Strouhal number
Procedia PDF Downloads 3791451 Mid-Temperature Methane-Based Chemical Looping Reforming for Hydrogen Production via Iron-Based Oxygen Carrier Particles
Authors: Yang Li, Mingkai Liu, Qiong Rao, Zhongrui Gai, Ying Pan, Hongguang Jin
Abstract:
Hydrogen is an ideal and potential energy carrier due to its high energy efficiency and low pollution. An alternative and promising approach to hydrogen generation is the chemical looping steam reforming of methane (CL-SRM) over iron-based oxygen carriers. However, the process faces challenges such as high reaction temperature (>850 ℃) and low methane conversion. We demonstrate that Ni-mixed Fe-based oxygen carrier particles have significantly improved the methane conversion and hydrogen production rate in the range of 450-600 ℃ under atmospheric pressure. The effect on the reaction reactivity of oxygen carrier particles mixed with different Ni-based particle mass ratios has been determined in the continuous unit. More than 85% of methane conversion has been achieved at 600 ℃, and hydrogen can be produced in both reduction and oxidation steps. Moreover, the iron-based oxygen carrier particles exhibited good cyclic performance during 150 consecutive redox cycles at 600 ℃. The mid-temperature iron-based oxygen carrier particles, integrated with a moving-bed chemical looping system, might provide a powerful approach toward more efficient and scalable hydrogen production.Keywords: chemical looping, hydrogen production, mid-temperature, oxygen carrier particles
Procedia PDF Downloads 1441450 Hybrid Temporal Correlation Based on Gaussian Mixture Model Framework for View Synthesis
Authors: Deng Zengming, Wang Mingjiang
Abstract:
As 3D video is explored as a hot research topic in the last few decades, free-viewpoint TV (FTV) is no doubt a promising field for its better visual experience and incomparable interactivity. View synthesis is obviously a crucial technology for FTV; it enables to render images in unlimited numbers of virtual viewpoints with the information from limited numbers of reference view. In this paper, a novel hybrid synthesis framework is proposed and blending priority is explored. In contrast to the commonly used View Synthesis Reference Software (VSRS), the presented synthesis process is driven in consideration of the temporal correlation of image sequences. The temporal correlations will be exploited to produce fine synthesis results even near the foreground boundaries. As for the blending priority, this scheme proposed that one of the two reference views is selected to be the main reference view based on the distance between the reference views and virtual view, another view is chosen as the auxiliary viewpoint, just assist to fill the hole pixel with the help of background information. Significant improvement of the proposed approach over the state-of –the-art pixel-based virtual view synthesis method is presented, the results of the experiments show that subjective gains can be observed, and objective PSNR average gains range from 0.5 to 1.3 dB, while SSIM average gains range from 0.01 to 0.05.Keywords: fusion method, Gaussian mixture model, hybrid framework, view synthesis
Procedia PDF Downloads 2501449 Status Report of the GERDA Phase II Startup
Authors: Valerio D’Andrea
Abstract:
The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter 76Ge(enrGe) are exposed being both source and detectors of 0νββ decay. Neutrinoless double beta decay is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, just after the completion of the first part of its experimental program (Phase I), the GERDA setup has been upgraded to perform its next step in the 0νββ searches (Phase II). Phase II aims to reach a sensitivity to the 0νββ decay half-life larger than 1026 yr in about 3 years of physics data taking. This exposing a detector mass of about 35 kg of enrGe and with a background index of about 10^−3 cts/(keV·kg·yr). One of the main new implementations is the liquid argon scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper, the GERDA Phase II expected goals, the upgrade work and few selected features from the 2015 commissioning and 2016 calibration runs will be presented. The main Phase I achievements will be also reviewed.Keywords: gerda, double beta decay, LNGS, germanium
Procedia PDF Downloads 3681448 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk
Authors: Yilin Liao, Hewen Li, Paula McConvey
Abstract:
Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.Keywords: artificial neural networks, concussion, machine learning, impact, speed skater
Procedia PDF Downloads 1091447 Precision Pest Management by the Use of Pheromone Traps and Forecasting Module in Mobile App
Authors: Muhammad Saad Aslam
Abstract:
In 2021, our organization has launched our proprietary mobile App i.e. Farm Intelligence platform, an industrial-first precision agriculture solution, to Pakistan. It was piloted at 47 locations (spanning around 1,200 hectares of land), addressing growers’ pain points by bringing the benefits of precision agriculture to their doorsteps. This year, we have extended its reach by more than 10 times (nearly 130,000 hectares of land) in almost 600 locations across the country. The project team selected highly infested areas to set up traps, which then enabled the sales team to initiate evidence-based conversations with the grower community about preventive crop protection products that includes pesticides and insecticides. Mega farmer meeting field visits and demonstrations plots coupled with extensive marketing activities, were setup to include farmer community. With the help of App real-time pest monitoring (using heat maps and infestation prediction through predictive analytics) we have equipped our growers with on spot insights that will help them optimize pesticide applications. Heat maps allow growers to identify infestation hot spots to fine-tune pesticide delivery, while predictive analytics enable preventive application of pesticides before the situation escalates. Ultimately, they empower growers to keep their crops safe for a healthy harvest.Keywords: precision pest management, precision agriculture, real time pest tracking, pest forecasting
Procedia PDF Downloads 911446 A BERT-Based Model for Financial Social Media Sentiment Analysis
Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe
Abstract:
The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural language processing in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.Keywords: BERT, financial markets, Twitter, sentiment analysis
Procedia PDF Downloads 1521445 Oil Extraction from Microalgae Dunalliela sp. by Polar and Non-Polar Solvents
Authors: A. Zonouzi, M. Auli, M. Javanmard Dakheli, M. A. Hejazi
Abstract:
Microalgae are tiny photosynthetic plants. Nowadays, microalgae are being used as nutrient-dense foods and sources of fine chemicals. They have significant amounts of lipid, carotenoids, vitamins, protein, minerals, chlorophyll, and pigments. Oil extraction from algae is a hotly debated topic currently because introducing an efficient method could decrease the process cost. This can determine the sustainability of algae-based foods. Scientific research works show that solvent extraction using chloroform/methanol (2:1) mixture is one of the efficient methods for oil extraction from algal cells, but both methanol and chloroform are toxic solvents, and therefore, the extracted oil will not be suitable for food application. In this paper, the effect of two food grade solvents (hexane and hexane/ isopropanol) on oil extraction yield from microalgae Dunaliella sp. was investigated and the results were compared with chloroform/methanol (2:1) extraction yield. It was observed that the oil extraction yield using hexane, hexane/isopropanol (3:2) and chloroform/methanol (2:1) mixture were 5.4, 13.93, and 17.5 (% w/w, dry basis), respectively. The fatty acid profile derived from GC illustrated that the palmitic (36.62%), oleic (18.62%), and stearic acids (19.08%) form the main portion of fatty acid composition of microalgae Dunalliela sp. oil. It was concluded that, the addition of isopropanol as polar solvent could increase the extraction yield significantly. Isopropanol solves cell wall phospholipids and enhances the release of intercellular lipids, which improves accessing of hexane to fatty acids.Keywords: fatty acid profile, microalgae, oil extraction, polar solvent
Procedia PDF Downloads 376