Search results for: adjusted network
3177 Resilience of Infrastructure Networks: Maintenance of Bridges in Mountainous Environments
Authors: Lorenza Abbracciavento, Valerio De Biagi
Abstract:
Infrastructures are key elements to ensure the operational functionality of the transport system. The collapse of a single bridge or, equivalently, a tunnel can leads an entire motorway to be considered completely inaccessible. As a consequence, the paralysis of the communications network determines several important drawbacks for the community. Recent chronicle events have demonstrated that ensuring the functional continuity of the strategic infrastructures during and after a catastrophic event makes a significant difference in terms of life and economical losses. Moreover, it has been observed that RC structures located in mountain environments show a worst state of conservation compared to the same typology and aging structures located in temperate climates. Because of its morphology, in fact, the mountain environment is particularly exposed to severe collapse and deterioration phenomena, generally: natural hazards, e.g. rock falls, and meteorological hazards, e.g. freeze-thaw cycles or heavy snows. For these reasons, deep investigation on the characteristics of these processes becomes of fundamental importance to provide smart and sustainable solutions and make the infrastructure system more resilient. In this paper, the design of a monitoring system in mountainous environments is presented and analyzed in its parts. The method not only takes into account the peculiar climatic conditions, but it is integrated and interacts with the environment surrounding.Keywords: structural health monitoring, resilience of bridges, mountain infrastructures, infrastructural network, maintenance
Procedia PDF Downloads 773176 Translation Quality Assessment in Fansubbed English-Chinese Swearwords: A Corpus-Based Study of the Big Bang Theory
Authors: Qihang Jiang
Abstract:
Fansubbing, the combination of fan and subtitling, is one of the main branches of Audiovisual Translation (AVT) having kindled more and more interest of researchers into the AVT field in recent decades. In particular, the quality of so-called non-professional translation seems questionable due to the non-transparent qualification of subtitlers in a huge community network. This paper attempts to figure out how YYeTs aka 'ZiMuZu', the largest fansubbing group in China, translates swearwords from English to Chinese for its fans of the prevalent American sitcom The Big Bang Theory, taking cultural, social and political elements into account in the context of China. By building a bilingual corpus containing both the source and target texts, this paper found that most of the original swearwords were translated in a toned-down manner, probably due to Chinese audiences’ cultural and social network features as well as the strict censorship under the Chinese government. Additionally, House (2015)’s newly revised model of Translation Quality Assessment (TQA) was applied and examined. Results revealed that most of the subtitled swearwords achieved their pragmatic functions and exerted a communicative effect for audiences. In conclusion, this paper enriches the empirical research concerning House’s new TQA model, gives a full picture of the subtitling of swearwords in AVT field and provides a practical guide for the practitioners in their career of subtitling.Keywords: corpus-based approach, fansubbing, pragmatic functions, swearwords, translation quality assessment
Procedia PDF Downloads 1433175 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor
Authors: Panupong Makvichian
Abstract:
Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor
Procedia PDF Downloads 1983174 Design of a Real Time Closed Loop Simulation Test Bed on a General Purpose Operating System: Practical Approaches
Authors: Pratibha Srivastava, Chithra V. J., Sudhakar S., Nitin K. D.
Abstract:
A closed-loop system comprises of a controller, a response system, and an actuating system. The controller, which is the system under test for us, excites the actuators based on feedback from the sensors in a periodic manner. The sensors should provide the feedback to the System Under Test (SUT) within a deterministic time post excitation of the actuators. Any delay or miss in the generation of response or acquisition of excitation pulses may lead to control loop controller computation errors, which can be catastrophic in certain cases. Such systems categorised as hard real-time systems that need special strategies. The real-time operating systems available in the market may be the best solutions for such kind of simulations, but they pose limitations like the availability of the X Windows system, graphical interfaces, other user tools. In this paper, we present strategies that can be used on a general purpose operating system (Bare Linux Kernel) to achieve a deterministic deadline and hence have the added advantages of a GPOS with real-time features. Techniques shall be discussed how to make the time-critical application run with the highest priority in an uninterrupted manner, reduced network latency for distributed architecture, real-time data acquisition, data storage, and retrieval, user interactions, etc.Keywords: real time data acquisition, real time kernel preemption, scheduling, network latency
Procedia PDF Downloads 1473173 Resistance Spot Welding of Boron Steel 22MnB5 with Complex Welding Programs
Authors: Szymon Kowieski, Zygmunt Mikno
Abstract:
The study involved the optimization of process parameters during resistance spot welding of Al-coated martensitic boron steel 22MnB5, applied in hot stamping, performed using a programme with a multiple current impulse mode and a programme with variable pressure force. The aim of this research work was to determine the possibilities of a growth in welded joint strength and to identify the expansion of a welding lobe. The process parameters were adjusted on the basis of welding process simulation and confronted with experimental data. 22MnB5 steel is known for its tendency to obtain high hardness values in weld nuggets, often leading to interfacial failures (observed in the study-related tests). In addition, during resistance spot welding, many production-related factors can affect process stability, e.g. welding lobe narrowing, and lead to the deterioration of quality. Resistance spot welding performed using the above-named welding programme featuring 3 levels of force made it possible to achieve 82% of welding lobe extension. Joints made using the multiple current impulse program, where the total welding time was below 1.4s, revealed a change in a peeling mode (to full plug) and an increase in weld tensile shear strength of 10%.Keywords: 22MnB5, hot stamping, interfacial fracture, resistance spot welding, simulation, single lap joint, welding lobe
Procedia PDF Downloads 3873172 Information and Cooperativity in Fiction: The Pragmatics of David Baboulene’s “Knowledge Gaps”
Authors: Cara DiGirolamo
Abstract:
In his 2017 Ph.D. thesis, script doctor David Baboulene presented a theory of fiction in which differences in the knowledge states between participants in a literary experience, including reader, author, and characters, create many story elements, among them suspense, expectations, subtext, theme, metaphor, and allegory. This theory can be adjusted and modeled by incorporating a formal pragmatic approach that understands narrative as a speech act with a conversational function. This approach requires both the Speaker and the Listener to be understood as participants in the discourse. It also uses theories of cooperativity and the QUD to identify the existence of implicit questions. This approach predicts that what an effective literary narrative must do: provide a conversational context early in the story so the reader can engage with the text as a conversational participant. In addition, this model incorporates schema theory. Schema theory is a cognitive model for learning and processing information about the world and transforming it into functional knowledge. Using this approach can extend the QUD model. Instead of describing conversation as a form of information gathering restricted to question-answer sets, the QUD can include knowledge modeling and understanding as a possible outcome of a conversation. With this model, Baboulene’s “Knowledge Gaps” can provide real insight into storytelling as a conversational move, and extend the QUD to be able to simply and effectively apply to a more diverse set of conversational interactions and also to narrative texts.Keywords: literature, speech acts, QUD, literary theory
Procedia PDF Downloads 123171 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 1953170 Vegan Low Glycemic Index Diet in Appetite Reduction Among Polycystic Ovarian Syndrome (PCOS) Patients Carrying Melanocortin 4 Receptor (MC4R) Variants of (rs12970134), and (rs17782313): A Mini Review
Authors: Jumanah S. Alawfi
Abstract:
Polycystic ovary syndrome (PCOS) is a common endocrinopathy among females in their reproductive years. The incidence cases are nearly 1.55 million among females across the globe, with 0.43 million associated disability-adjusted life-years (DALYs). This syndrome is associated with intricate mechanisms typically characterized by insulin resistance (IR), infertility, overweight and/or obesity. Lifestyle interventions are often prescribed as an adjective treatment. Nonetheless, obesity is a complex disease that encompasses multiple dimensions, such as excessive energy intake and genetics. The melanocortin 4 receptor mutation (MC4R) is an important mediator in appetite. There is emerging evidence that suggests its role in the Body Mass Index (BMI) among PCOS subjects, which poses the question of obesity and/or overweight among the PCOS patients who carry the MC4R variants may be caused by overconsumption. Thereby, using other satiety techniques may be beneficial as a part of personalized nutrition. Therefore, the aim of the current mini-review is to discuss the effect of the vegan low glycemic diet on reducing appetite among PCOS patients. The review shows that there is a gap in the knowledge of the effect of the vegan diet on PCOS patients who carry MC4R variants which need further research.Keywords: polycystic ovarian syndrome (PCOS), Appetite, Melanocortin 4 Receptor Mutation (MC4R)., Obesity
Procedia PDF Downloads 1293169 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach
Authors: Shital Suresh Borse, Vijayalaxmi Kadroli
Abstract:
E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN
Procedia PDF Downloads 1133168 Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients
Authors: Elena Carcano, James Ball
Abstract:
This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn.Keywords: hierarchical process, strategic plan, water emergency conditions, water supply
Procedia PDF Downloads 1603167 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture
Authors: Charbel Aoun, Loic Lagadec
Abstract:
A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g., Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as Hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose new constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.Keywords: smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS
Procedia PDF Downloads 1773166 Pedestrian Areas, Development Stimulus in Urban Old Fabrics; Analyzing Stroget, Pedestrian Street in Copenhagen
Authors: Kiomars Habibi, Mostafa Behzadfar, Airin Jaberi
Abstract:
Designing appropriate places for the comfort of pedestrians is one of the most important aspects of modern urbanization and renovation and rehabilitation stimulus of urban old fabrics. So, that special cities designed for pedestrians with a complete network of streets without cars, can be considered as one of the best habitations in the world. The number of these cities with a network of streets and squares in which beauty, enjoyment and comfort are mostly concerned for the pedestrians designed regions is increasing around the world, such as Stockholm, Copenhagen, Munich, Frankfurt, Venice, Rome, etc. In this paper, we are going to explain the influential factors regarding the efficiency of these cities by identifying one of the most important pedestrian ways of the world; Strøget is a car free zone in Copenhagen, Denmark. This popular tourist attraction in the center of town is the longest pedestrian shopping area in Europe. Analyses indicate that world-wide experience concerning the renovation and rehabilitation of old fabrics has many advantages in exploiting the idea of pedestrian way for regeneration of old fabrics. Transforming the streets to appropriate places for the comfort of pedestrians, expanding the public spaces such as city squares, and decreasing the masses of building alongside the brought comfort and peace is the main reason in the success of Strøget pedestrian street in urban old fabrics of Copenhagen. Hypothesis: The Strøget pedestrian street has been the development stimulus in Copenhagen and the urban old fabrics development as a resultKeywords: development, stimulus, pedestrian street, urban landscape, Stroget
Procedia PDF Downloads 1073165 Investigations of the Crude Oil Distillation Preheat Section in Unit 100 of Abadan Refinery and Its Recommendation
Authors: Mahdi GoharRokhi, Mohammad H. Ruhipour, Mohammad R. ZamaniZadeh, Mohsen Maleki, Yusef Shamsayi, Mahdi FarhaniNejad, Farzad FarrokhZadeh
Abstract:
Possessing massive resources of natural gas and petroleum, Iran has a special place among all other oil producing countries, according to international institutions of energy. In order to use these resources, development and functioning optimization of refineries and industrial units is mandatory. Heat exchanger is one of the most important and strategic equipment which its key role in the process of production is clear to everyone. For instance, if the temperature of a processing fluid is not set as needed by heat exchangers, the specifications of desired product can change profoundly. Crude oil enters a network of heat exchangers in atmospheric distillation section before getting into the distillation tower; in this case, well-functioning of heat exchangers can significantly affect the operation of distillation tower. In this paper, different scenarios for pre-heating of oil are studied using oil and gas simulation software, and the results are discussed. As we reviewed various scenarios, adding a heat exchanger to pre-heating network is proposed as the most efficient factor in improving all governing parameters of the tower i.e. temperature, pressure, and reflux rate. This exchanger is embedded in crude oil’s path. Crude oil enters the exchanger after E-101 and exchanges heat with discharging kerosene pump around from E-136. As depicted in the results, it will efficiently assist the improvement of process operation and side expenses.Keywords: atmospheric distillation unit, heat exchanger, preheat, simulation
Procedia PDF Downloads 6603164 Reducing Hazardous Materials Releases from Railroad Freights through Dynamic Trip Plan Policy
Authors: Omar A. Abuobidalla, Mingyuan Chen, Satyaveer S. Chauhan
Abstract:
Railroad transportation of hazardous materials freights is important to the North America economics that supports the national’s supply chain. This paper introduces various extensions of the dynamic hazardous materials trip plan problems. The problem captures most of the operational features of a real-world railroad transportations systems that dynamically initiates a set of blocks and assigns each shipment to a single block path or multiple block paths. The dynamic hazardous materials trip plan policies have distinguishing features that are integrating the blocking plan, and the block activation decisions. We also present a non-linear mixed integer programming formulation for each variant and present managerial insights based on a hypothetical railroad network. The computation results reveal that the dynamic car scheduling policies are not only able to take advantage of the capacity of the network but also capable of diminishing the population, and environment risks by rerouting the active blocks along the least risky train services without sacrificing the cost advantage of the railroad. The empirical results of this research illustrate that the issue of integrating the blocking plan, and the train makeup of the hazardous materials freights must receive closer attentions.Keywords: dynamic car scheduling, planning and scheduling hazardous materials freights, airborne hazardous materials, gaussian plume model, integrated blocking and routing plans, box model
Procedia PDF Downloads 2053163 Introducing a Video-Based E-Learning Module to Improve Disaster Preparedness at a Tertiary Hospital in Oman
Authors: Ahmed Al Khamisi
Abstract:
The Disaster Preparedness Standard (DPS) is one of the elements that is evaluated by the Accreditation Canada International (ACI). ACI emphasizes to train and educate all staff, including service providers and senior leaders, on emergency and disaster preparedness upon the orientation and annually thereafter. Lack of awareness and deficit of knowledge among the healthcare providers about DPS have been noticed in a tertiary hospital where ACI standards were implemented. Therefore, this paper aims to introduce a video-based e-learning (VB-EL) module that explains the hospital’s disaster plan in a simple language which will be easily accessible to all healthcare providers through the hospital’s website. The healthcare disaster preparedness coordinator in the targeted hospital will be responsible to ensure that VB-EL is ready by 25 April 2019. This module will be developed based on the Kirkpatrick evaluation method. In fact, VB-EL combines different data forms such as images, motion, sounds, text in a complementary fashion which will suit diverse learning styles and individual learning pace of healthcare providers. Moreover, the module can be adjusted easily than other tools to control the information that healthcare providers receive. It will enable healthcare providers to stop, rewind, fast-forward, and replay content as many times as needed. Some anticipated limitations in the development of this module include challenges of preparing VB-EL content and resistance from healthcare providers.Keywords: Accreditation Canada International, Disaster Preparedness Standard, Kirkpatrick evaluation method, video-based e-learning
Procedia PDF Downloads 1473162 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis
Procedia PDF Downloads 2243161 An Evaluative Microbiological Risk Assessment of Drinking Water Supply in the Carpathian Region: Identification of Occurrent Hazardous Bacteria with Quantitative Microbial Risk Assessment Method
Authors: Anikó Kaluzsa
Abstract:
The article's author aims to introduce and analyze those microbiological safety hazards which indicate the presence of secondary contamination in the water supply system. Since drinking water belongs to primary foods and is the basic condition of life, special attention should be paid on its quality. There are such indicators among the microbiological features can be found in water, which are clear evidence of the presence of water contamination, and based on this there is no need to perform other diagnostics, because they prove properly the contamination of the given water supply section. Laboratory analysis can help - both technologically and temporally – to identify contamination, but it does matter how long takes the removal and if the disinfection process takes place in time. The identification of the factors that often occur in the same places or the chance of their occurrence is greater than the average, facilitates our work. The pathogen microbiological risk assessment by the help of several features determines the most likely occurring microbiological features in the Carpathian basin. From among all the microbiological indicators, that are recommended targets for routine inspection by the World Health Organization, there is a paramount importance of the appearance of Escherichia coli in the water network, as its presence indicates the potential ubietiy of enteric pathogens or other contaminants in the water network. In addition, the author presents the steps of microbiological risk assessment analyzing those pathogenic micro-organisms registered to be the most critical.Keywords: drinking water, E. coli, microbiological indicators, risk assessment, water safety plan
Procedia PDF Downloads 3333160 Duality of Leagility and Governance: A New Normal Demand Network Management Paradigm under Pandemic
Authors: Jacky Hau
Abstract:
The prevalence of emerging technologies disrupts various industries as well as consumer behavior. Data collection has been in the fingertip and inherited through enabled Internet-of-things (IOT) devices. Big data analytics (BDA) becomes possible and allows real-time demand network management (DNM) through leagile supply chain. To enhance further on its resilience and predictability, governance is going to be examined to promote supply chain transparency and trust in an efficient manner. Leagility combines lean thinking and agile techniques in supply chain management. It aims at reducing costs and waste, as well as maintaining responsiveness to any volatile consumer demand by means of adjusting the decoupling point where the product flow changes from push to pull. Leagility would only be successful when collaborative planning, forecasting, and replenishment (CPFR) process or alike is in place throughout the supply chain business entities. Governance and procurement of the supply chain, however, is crucial and challenging for the execution of CPFR as every entity has to walk-the-talk generously for the sake of overall benefits of supply chain performance, not to mention the complexity of exercising the polices at both of within across various supply chain business entities on account of organizational behavior and mutual trust. Empirical survey results showed that the effective timespan on demand forecasting had been drastically shortening in the magnitude of months to weeks planning horizon, thus agility shall come first and preferably following by lean approach in a timely manner.Keywords: governance, leagility, procure-to-pay, source-to-contract
Procedia PDF Downloads 1113159 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry
Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar
Abstract:
State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.Keywords: active power tuning, database modelling, reactive power, state estimator
Procedia PDF Downloads 83158 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 1503157 The Impact of Management Competency, Project Team, and Process Design to Corporate Performance through Implementing the Self-Development ERP
Authors: Zeplin Jiwa Husada Tarigan, Sautma Ronni Basana, Widjojo Suprapto
Abstract:
Manufacturing companies in East Java develop their own ERP system or alter the ERP system which is developed by other companies to suit their needs. To make their own system, the companies mostly assign several employees from various departments to create a project team, and the employees are from the departments that are going to utilize the ERP system as the integrated data. The project team decides the making of the ERP system from the preparation stage until the going live implementation process. In designing the business process, the top management is working together with the project team until the project is accomplished. The completion of the ERP projects depends on the project to be undertaken itself, the strategy chosen to complete the project, the work method selection, the measurement system to monitor the project, the evaluation system of the project, and, in the end, the declaration of 'going live' of the ERP project. There is an increase in the business performance for the companies that have implemented the information technology or ERP as they manage to integrate all management functions within their companies. To investigate, some questionnaires are distributed to 100 manufacturing companies, and 90 questionnaires are returned; however, there are only 46 companies that develop their own ERP system, so the response rate is 46%. The result of data analysis using PLS shows that the management competency brings impacts to the project team and the process design. The process design is adjusted to the real process in order to implement the ERP, but it does not bring direct impacts to the business performance. The implementation of ERP brings positive impacts to the company business performance.Keywords: management competency, project team, process design, ERP implementation, business performance
Procedia PDF Downloads 2183156 Trend Analysis for Extreme Rainfall Events in New South Wales, Australia
Authors: Evan Hajani, Ataur Rahman, Khaled Haddad
Abstract:
Climate change will affect the hydrological cycle in many different ways such as increase in evaporation and rainfalls. There have been growing interests among researchers to identify the nature of trends in historical rainfall data in many different parts of the world. This paper examines the trends in annual maximum rainfall data from 30 stations in New South Wales, Australia by using two non-parametric tests, Mann-Kendall (MK) and Spearman’s Rho (SR). Rainfall data were analyzed for fifteen different durations ranging from 6 min to 3 days. It is found that the sub-hourly durations (6, 12, 18, 24, 30, and 48 minutes) show statistically significant positive (upward) trends whereas longer duration (sub-daily and daily) events generally show a statistically significant negative (downward) trend. It is also found that the MK test and SR test provide notably different results for some rainfall event durations considered in this study. Since shorter duration sub-hourly rainfall events show positive trends at many stations, the design rainfall data based on stationary frequency analysis for these durations need to be adjusted to account for the impact of climate change. These shorter durations are more relevant to many urban development projects based on smaller catchments having a much shorter response time.Keywords: climate change, Mann-Kendall test, Spearman’s Rho test, trends, design rainfall
Procedia PDF Downloads 2713155 A Network Economic Analysis of Friendship, Cultural Activity, and Homophily
Authors: Siming Xie
Abstract:
In social networks, the term homophily refers to the tendency of agents with similar characteristics to link with one another and is so robustly observed across many contexts and dimensions. The starting point of my research is the observation that the “type” of agents is not a single exogenous variable. Agents, despite their differences in race, religion, and other hard to alter characteristics, may share interests and engage in activities that cut across those predetermined lines. This research aims to capture the interactions of homophily effects in a model where agents have two-dimension characteristics (i.e., race and personal hobbies such as basketball, which one either likes or dislikes) and with biases in meeting opportunities and in favor of same-type friendships. A novel feature of my model is providing a matching process with biased meeting probability on different dimensions, which could help to understand the structuring process in multidimensional networks without missing layer interdependencies. The main contribution of this study is providing a welfare based matching process for agents with multi-dimensional characteristics. In particular, this research shows that the biases in meeting opportunities on one dimension would lead to the emergence of homophily on the other dimension. The objective of this research is to determine the pattern of homophily in network formations, which will shed light on our understanding of segregation and its remedies. By constructing a two-dimension matching process, this study explores a method to describe agents’ homophilous behavior in a social network with multidimension and construct a game in which the minorities and majorities play different strategies in a society. It also shows that the optimal strategy is determined by the relative group size, where society would suffer more from social segregation if the two racial groups have a similar size. The research also has political implications—cultivating the same characteristics among agents helps diminishing social segregation, but only if the minority group is small enough. This research includes both theoretical models and empirical analysis. Providing the friendship formation model, the author first uses MATLAB to perform iteration calculations, then derives corresponding mathematical proof on previous results, and last shows that the model is consistent with empirical evidence from high school friendships. The anonymous data comes from The National Longitudinal Study of Adolescent Health (Add Health).Keywords: homophily, multidimension, social networks, friendships
Procedia PDF Downloads 1703154 From Ride-Hailing App to Diversified and Sustainable Platform Business Model
Authors: Ridwan Dewayanto Rusli
Abstract:
We show how prisoner's dilemma-type competition problems can be mitigated through rapid platform diversification and ecosystem expansion. We analyze a ride-hailing company in Southeast Asia, Gojek, whose network grew to more than 170 million users comprising consumers, partner drivers, merchants, and complementors within a few years and has already achieved higher contribution margins than ride-hailing peers Uber and Lyft. Its ecosystem integrates ride-hailing, food delivery and logistics, merchant solutions, e-commerce, marketplace and advertising, payments, and fintech offerings. The company continues growing its network of complementors and App developers, expanding content and gaining critical mass in consumer data analytics and advertising. We compare the company's growth and diversification trajectory with those of its main international rivals and peers. The company's rapid growth and future potential are analyzed using Cusumano's (2012) Staying Power and Six Principles, Hax and Wilde's (2003) and Hax's (2010) The Delta Model as well as Santos' (2016) home-market advantages frameworks. The recently announced multi-billion-dollar merger with one of Southeast Asia's largest e-commerce majors lends additional support to the above arguments.Keywords: ride-hailing, prisoner's dilemma, platform and ecosystem strategy, digital applications, diversification, home market advantages, e-commerce
Procedia PDF Downloads 943153 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections
Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor
Abstract:
Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.Keywords: climate change, ecosystem modeling, marine protected areas, management
Procedia PDF Downloads 1013152 Early Warning System of Financial Distress Based On Credit Cycle Index
Authors: Bi-Huei Tsai
Abstract:
Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy
Procedia PDF Downloads 3773151 Manufacturing and Characterization of Bioresorbable Self-Reinforced PLA Composites for Bone Applications
Authors: Carolina Pereira Lobato Costa, Cristina Pascual-González, Monica Echeverry, Javier LLorca, Carlos Gonzáléz, Juan Pedro Fernández-Bláquez
Abstract:
Although the potential of PLA self-reinforced composites for bone applications, not much literature addresses optimal manufacturing conditions. In this regard, this paper describes the woven self-reinforced PLA composites manufacturing processes: the commingling of yarns, weaving, and hot pressing and characterizes the manufactured laminates. Different structures and properties can be achieved by varying the hot compaction process parameters (pressure, holding time, and temperature). The specimens manufactured were characterized in terms of thermal properties (DSC), microstructure (C-scan optical microscope and SEM), strength (tensile test), and biocompatibility (MTT assays). Considering the final device, 155 ℃ for 10 min at 2 MPa act as the more appropriate hot pressing parameters. The laminate produced with these conditions has few voids/porosity, a tensile strength of 30.39 ± 1.21 MPa, and a modulus of 4.09 ± 0.24 GPa. Subsequently to the tensile testing was possible to observe fiber pullout from the fracture surfaces, confirming that this material behaves as a composite. From the results, no single laminate can fulfill all the requirements, being necessary to compromise in function of the priority property. Further investigation is required to improve materials' mechanical performance. Subsequently, process parameters and materials configuration can be adjusted depending on the place and type of implant to suit its function.Keywords: woven fabric, self-reinforced polymer composite, poly(lactic acid), biodegradable
Procedia PDF Downloads 1963150 Prognostic Value of C-Reactive Protein (CRP) in SARS-CoV-2 Infection: A Simplified Biomarker of COVID-19 Severity in Sub-Saharan Africa
Authors: Teklay Gebrecherkos, Mahmud Abdulkader, Tobias Rinke De Wit, Britta C. Urban, Feyissa Chala, Yazezew Kebede, Dawit Welday
Abstract:
Background: C-reactive protein (CRP) levels are a reliable surrogate for interleukin-6 bioactivity that plays a pivotal role in the pathogenesis of cytokine storm associated with severe COVID-19. There is a lack of data on the role of CRP as a determinant of COVID-19 severity status in the African context. Methods: We determined the longitudinal kinetics of CRP levels on 78 RT-PCR-confirmed COVID-19 patients (49 non-severe and 29 severe cases) and 50 PCR-negative controls. Results: COVID-19 patients had overall significantly elevated CRP at baseline when compared to PCR-negative controls [median 11.1 (IQR: 2.0-127.8) mg/L vs. 0.9 (IQR: 0.5-1.9) mg/L; p=0.0004)]. Moreover, severe COVID-19 patients had significantly higher median CRP levels than non-severe cases [166.1 (IQR: 48.6-332.5) mg/L vs. 2.4 (IQR: 1.2-7.6) mg/L; p<0.00001)]. In addition, persistently elevated levels of CRP were exhibited among those with comorbidities and higher age groups. Area under receiver operating characteristic curve (AUC) analysis of CRP levels distinguished PCR-confirmed COVID-19 patients from the ones with PCR-negative non-COVID-19 individuals, with an AUC value of 0.77 (95% CI: 0.68-0.84; p=0.001). Moreover, it clearly distinguished severe from non-severe COVID-19 patients, with an AUC value of 0.83 (95% CI: 0.73-0.91). After adjusting for age and the presence of comorbidities, CRP levels above 30 mg/L were significantly associated with an increased risk of developing severe COVID-19 (adjusted relative risk 3.99 (95%CI: 1.35-11.82; p=0.013). Conclusions: Determining CRP levels in COVID-19 patients in African settings may provide a simple, prompt, and inexpensive assessment of the severity status at baseline and monitoring of treatment outcomes.Keywords: CRP, COVID-19, SARS-CoV-2, biomarker
Procedia PDF Downloads 823149 Evaluation of PV Orientation Effect on Mismatch between Consumption Load and PV Power Profiles
Authors: Iyad M. Muslih, Yehya Abdellatif, Sara Qutishat
Abstract:
Renewable energy and in particular solar photovoltaic energy is emerging as a reasonable power generation source. The intermittent and unpredictable nature of solar energy can represent a serious challenge to the utility grids, specifically at relatively high penetration. To minimize the impact of PV power systems on the grid, self-consumption is encouraged. Self-consumption can be improved by matching the PV power generation with the electrical load consumption profile. This study will focus in studying different load profiles and comparing them to typical solar PV power generation at the selected sites with the purpose of analyzing the mismatch in consumption load profile for different users; residential, commercial, and industrial versus the solar photovoltaic output generation. The PV array orientation can be adjusted to reduce the mismatch effects. The orientation shift produces a corresponding shift in the energy production curve. This shift has a little effect on the mismatch for residential loads due to the fact the peak load occurs at night due to lighting loads. This minor gain does not justify the power production loss associated with the orientation shift. The orientation shift for both commercial and industrial cases lead to valuable decrease in the mismatch effects. Such a design is worth considering for reducing grid penetration. Furthermore, the proposed orientation shift yielded better results during the summer time due to the extended daylight hours.Keywords: grid impact, HOMER, power mismatch, solar PV energy
Procedia PDF Downloads 6043148 Scoring Approach to Identify High-Risk Corridors for Winter Safety Measures in the Iranian Roads Network
Authors: M. Mokhber, J. Hedayati
Abstract:
From the managerial perspective, it is important to devise an operational plan based on top priorities due to limited resources, diversity of measures and high costs needed to improve safety in infrastructure. Dealing with the high-risk corridors across Iran, this study prioritized the corridors according to statistical data on accidents involving fatalities, injury or damage over three consecutive years. In collaboration with the Iranian Police Department, data were collected and modified. Then, the prioritization criteria were specified based on the expertise opinions and international standards. In this study, the prioritization criteria included accident severity and accident density. Finally, the criteria were standardized and weighted (equal weights) to score each high-risk corridor. The prioritization phase involved the scoring and weighting procedure. The high-risk corridors were divided into twelve groups out of 50. The results of data analysis for a three-year span suggested that the first three groups (150 corridors) along with a quarter of Iranian road network length account for nearly 60% of traffic accidents. In the next step, according to variables including weather conditions particular roads for the purpose of winter safety measures were extracted from the abovementioned categories. According to the results ranking, 9 roads with the overall length of about 1000 Km of high-risk corridors are considered as preferences of safety measures.Keywords: high-risk corridors, HRCs, road safety rating, road scoring, winter safety measures
Procedia PDF Downloads 178