Search results for: magnetic data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26324

Search results for: magnetic data

24194 Big Data and Health: An Australian Perspective Which Highlights the Importance of Data Linkage to Support Health Research at a National Level

Authors: James Semmens, James Boyd, Anna Ferrante, Katrina Spilsbury, Sean Randall, Adrian Brown

Abstract:

‘Big data’ is a relatively new concept that describes data so large and complex that it exceeds the storage or computing capacity of most systems to perform timely and accurate analyses. Health services generate large amounts of data from a wide variety of sources such as administrative records, electronic health records, health insurance claims, and even smart phone health applications. Health data is viewed in Australia and internationally as highly sensitive. Strict ethical requirements must be met for the use of health data to support health research. These requirements differ markedly from those imposed on data use from industry or other government sectors and may have the impact of reducing the capacity of health data to be incorporated into the real time demands of the Big Data environment. This ‘big data revolution’ is increasingly supported by national governments, who have invested significant funds into initiatives designed to develop and capitalize on big data and methods for data integration using record linkage. The benefits to health following research using linked administrative data are recognised internationally and by the Australian Government through the National Collaborative Research Infrastructure Strategy Roadmap, which outlined a multi-million dollar investment strategy to develop national record linkage capabilities. This led to the establishment of the Population Health Research Network (PHRN) to coordinate and champion this initiative. The purpose of the PHRN was to establish record linkage units in all Australian states, to support the implementation of secure data delivery and remote access laboratories for researchers, and to develop the Centre for Data Linkage for the linkage of national and cross-jurisdictional data. The Centre for Data Linkage has been established within Curtin University in Western Australia; it provides essential record linkage infrastructure necessary for large-scale, cross-jurisdictional linkage of health related data in Australia and uses a best practice ‘separation principle’ to support data privacy and security. Privacy preserving record linkage technology is also being developed to link records without the use of names to overcome important legal and privacy constraint. This paper will present the findings of the first ‘Proof of Concept’ project selected to demonstrate the effectiveness of increased record linkage capacity in supporting nationally significant health research. This project explored how cross-jurisdictional linkage can inform the nature and extent of cross-border hospital use and hospital-related deaths. The technical challenges associated with national record linkage, and the extent of cross-border population movements, were explored as part of this pioneering research project. Access to person-level data linked across jurisdictions identified geographical hot spots of cross border hospital use and hospital-related deaths in Australia. This has implications for planning of health service delivery and for longitudinal follow-up studies, particularly those involving mobile populations.

Keywords: data integration, data linkage, health planning, health services research

Procedia PDF Downloads 216
24193 Spatial Variability of Brahmaputra River Flow Characteristics

Authors: Hemant Kumar

Abstract:

Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.

Keywords: aerosol, change detection, spatial analysis, trend analysis

Procedia PDF Downloads 147
24192 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 142
24191 Internal Cycles from Hydrometric Data and Variability Detected Through Hydrological Modelling Results, on the Niger River, over 1901-2020

Authors: Salif Koné

Abstract:

We analyze hydrometric data at the Koulikoro station on the Niger River; this basin drains 120600 km2 and covers three countries in West Africa, Guinea, Mali, and Ivory Coast. Two subsequent decadal cycles are highlighted (1925-1936 and 1929-1939) instead of the presumed single decadal one from literature. Moreover, the observed hydrometric data shows a multidecadal 40-year period that is confirmed when graphing a spatial coefficient of variation of runoff over decades (starting at 1901-1910). Spatial runoff data are produced on 48 grids (0.5 degree by 0.5 degree) and through semi-distributed versions of both SimulHyd model and GR2M model - variants of a French Hydrologic model – standing for Genie Rural of 2 parameters at monthly time step. Both extremal decades in terms of runoff coefficient of variation are confronted: 1951-1960 has minimal coefficient of variation, and 1981-1990 shows the maximal value of it during the three months of high-water level (August, September, and October). The mapping of the relative variation of these two decadal situations allows hypothesizing as following: the scale of variation between both extremal situations could serve to fix boundary conditions for further simulations using data from climate scenario.

Keywords: internal cycles, hydrometric data, niger river, gr2m and simulhyd framework, runoff coefficient of variation

Procedia PDF Downloads 95
24190 A Novel Probabilistic Spatial Locality of Reference Technique for Automatic Cleansing of Digital Maps

Authors: A. Abdullah, S. Abushalmat, A. Bakshwain, A. Basuhail, A. Aslam

Abstract:

GIS (Geographic Information System) applications require geo-referenced data, this data could be available as databases or in the form of digital or hard-copy agro-meteorological maps. These parameter maps are color-coded with different regions corresponding to different parameter values, converting these maps into a database is not very difficult. However, text and different planimetric elements overlaid on these maps makes an accurate image to database conversion a challenging problem. The reason being, it is almost impossible to exactly replace what was underneath the text or icons; thus, pointing to the need for inpainting. In this paper, we propose a probabilistic inpainting approach that uses the probability of spatial locality of colors in the map for replacing overlaid elements with underlying color. We tested the limits of our proposed technique using non-textual simulated data and compared text removing results with a popular image editing tool using public domain data with promising results.

Keywords: noise, image, GIS, digital map, inpainting

Procedia PDF Downloads 352
24189 Evaluation of Urban Parks Based on POI Data: Taking Futian District of Shenzhen as an Example

Authors: Juanling Lin

Abstract:

The construction of urban parks is an important part of eco-city construction, and the intervention of big data provides a more scientific and rational platform for the assessment of urban parks by identifying and correcting the irrationality of urban park planning from the macroscopic level and then promoting the rational planning of urban parks. The study builds an urban park assessment system based on urban road network data and POI data, taking Futian District of Shenzhen as the research object, and utilizes the GIS geographic information system to assess the park system of Futian District in five aspects: park spatial distribution, accessibility, service capacity, demand, and supply-demand relationship. The urban park assessment system can effectively reflect the current situation of urban park construction and provide a useful exploration for realizing the rationality and fairness of urban park planning.

Keywords: urban parks, assessment system, POI, supply and demand

Procedia PDF Downloads 42
24188 Development of Mineral Carbonation Process from Ultramafic Tailings, Enhancing the Reactivity of Feedstocks

Authors: Sara Gardideh, Mansoor Barati

Abstract:

The mineral carbonation approach for reducing global warming has garnered interest on a worldwide scale. Due to the benefits of permanent storage and abundant mineral resources, mineral carbonation (MC) is one of the most effective strategies for sequestering CO₂. The combination of mineral processing for primary metal recovery and mineral carbonation for carbon sequestration is an emerging field of study with the potential to minimize capital costs. A detailed study of low-pressures–solid carbonation of ultramafic tailings in a dry environment has been accomplished. In order to track the changing structure of serpentine minerals and their reactivity as a function of temperature (300-900 ᵒC), CO₂ partial pressure (25-90 mol %), and thermal preconditioning, thermogravimetry has been utilized. The incongruent CO₂ van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of serpentine were used to explain the mild carbonation reactivity. Serpentine requires additional thermal-treatment to remove hydroxyl groups, resulting in the chemical transformation to pseudo-forsterite, which is a mineral composed of isolated SiO₄ tetrahedra linked by octahedrally coordinated magnesium ions. The heating treatment above 850 ᵒC is adequate to remove chemically bound water from the lattice. Particles with a diameter < 34 (μm) are desirable, and thermally treated serpentine at 850 ᵒC for 2.30 hours reached 65% CO₂ storage capacity. The decrease in particle size, increase in temperature, and magnetic separation can dramatically enhance carbonation.

Keywords: particle size, thermogravimetry, thermal-treatment, serpentine

Procedia PDF Downloads 91
24187 Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model

Authors: Alam Ali, Ashok Kumar Pathak

Abstract:

Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach.

Keywords: path analysis, copula-based regression models, direct and indirect effects, k-fold cross validation technique

Procedia PDF Downloads 72
24186 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging

Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason

Abstract:

Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.

Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia

Procedia PDF Downloads 274
24185 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques

Authors: Om Viroje

Abstract:

Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.

Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience

Procedia PDF Downloads 16
24184 Reversible Information Hitting in Encrypted JPEG Bitstream by LSB Based on Inherent Algorithm

Authors: Vaibhav Barve

Abstract:

Reversible information hiding has drawn a lot of interest as of late. Being reversible, we can restore unique computerized data totally. It is a plan where mystery data is put away in digital media like image, video, audio to maintain a strategic distance from unapproved access and security reason. By and large JPEG bit stream is utilized to store this key data, first JPEG bit stream is encrypted into all around sorted out structure and then this secret information or key data is implanted into this encrypted region by marginally changing the JPEG bit stream. Valuable pixels suitable for information implanting are computed and as indicated by this key subtle elements are implanted. In our proposed framework we are utilizing RC4 algorithm for encrypting JPEG bit stream. Encryption key is acknowledged by framework user which, likewise, will be used at the time of decryption. We are executing enhanced least significant bit supplanting steganography by utilizing genetic algorithm. At first, the quantity of bits that must be installed in a guaranteed coefficient is versatile. By utilizing proper parameters, we can get high capacity while ensuring high security. We are utilizing logistic map for shuffling of bits and utilization GA (Genetic Algorithm) to find right parameters for the logistic map. Information embedding key is utilized at the time of information embedding. By utilizing precise picture encryption and information embedding key, the beneficiary can, without much of a stretch, concentrate the incorporated secure data and totally recoup the first picture and also the original secret information. At the point when the embedding key is truant, the first picture can be recouped pretty nearly with sufficient quality without getting the embedding key of interest.

Keywords: data embedding, decryption, encryption, reversible data hiding, steganography

Procedia PDF Downloads 288
24183 Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways

Authors: Anirudh Lahiri

Abstract:

Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology.

Keywords: material science, biological engineering, mechanical engineering, neuromorphic computing, spintronics, energy efficiency, computational scalability, synaptic plasticity.

Procedia PDF Downloads 43
24182 Streamlining .NET Data Access: Leveraging JSON for Data Operations in .NET

Authors: Tyler T. Procko, Steve Collins

Abstract:

New features in .NET (6 and above) permit streamlined access to information residing in JSON-capable relational databases, such as SQL Server (2016 and above). Traditional methods of data access now comparatively involve unnecessary steps which compromise system performance. This work posits that the established ORM (Object Relational Mapping) based methods of data access in applications and APIs result in common issues, e.g., object-relational impedance mismatch. Recent developments in C# and .NET Core combined with a framework of modern SQL Server coding conventions have allowed better technical solutions to the problem. As an amelioration, this work details the language features and coding conventions which enable this streamlined approach, resulting in an open-source .NET library implementation called Codeless Data Access (CODA). Canonical approaches rely on ad-hoc mapping code to perform type conversions between the client and back-end database; with CODA, no mapping code is needed, as JSON is freely mapped to SQL and vice versa. CODA streamlines API data access by improving on three aspects of immediate concern to web developers, database engineers and cybersecurity professionals: Simplicity, Speed and Security. Simplicity is engendered by cutting out the “middleman” steps, effectively making API data access a whitebox, whereas traditional methods are blackbox. Speed is improved because of the fewer translational steps taken, and security is improved as attack surfaces are minimized. An empirical evaluation of the speed of the CODA approach in comparison to ORM approaches ] is provided and demonstrates that the CODA approach is significantly faster. CODA presents substantial benefits for API developer workflows by simplifying data access, resulting in better speed and security and allowing developers to focus on productive development rather than being mired in data access code. Future considerations include a generalization of the CODA method and extension outside of the .NET ecosystem to other programming languages.

Keywords: API data access, database, JSON, .NET core, SQL server

Procedia PDF Downloads 66
24181 Blockchain for IoT Security and Privacy in Healthcare Sector

Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab

Abstract:

The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.

Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data

Procedia PDF Downloads 180
24180 Synthesis of Visible-Light-Driven Magnetically Recoverable N-TiO2@SiO2@Fe3O4 Nanophotocatalyst for Enhanced Degradation of Ibuprofen

Authors: Ashutosh Kumar, Irene M. C. Lo

Abstract:

Ever since the discovery of TiO2 for decomposition of cyanide in water, it has been investigated extensively for the photocatalytic degradation of environmental pollutants, and became the most practical and prevalent photocatalyst. The superiority of TiO2 is due to its chemical and biological inertness, nontoxicity, strong oxidizing power and cost-effectiveness. However, during degradation of pollutants in wastewater, it suffers from problems, such as (a) separation after use, and (b) its poor photocatalytic performance under visible light irradiation (~45% of the solar spectrum). In order to bridge the research gaps, N-TiO2@SiO2@Fe3O4 nanophotocatalysts of average size 19 nm and effective surface area 47 m2 gm-1 were synthesized using sol-gel method. The characterization was performed using BET, TEM-EDX, VSM and XRD. The performance was improved by considering different factors involved during the synthesis, such as calcination temperature, amount of Fe3O4 nanoparticles used and amount of urea used for N-doping. The final nanophotocatalyst was calcined at 500 °C which was able to degrade 94% of the ibuprofen within 5 h of irradiation time. Under the influence of ~200 mT electromagnetic field, 95% nanophotocatalysts separation efficiency was achieved within 20-25 min. Moreover, the effect of different visible light source of similar irradiance, such as compact fluorescent lamp (CFL) and light emitting diode (LED), is also investigated in this research. The performance of nanophotocatalysts was found to be comparatively higher under ~310 µW cm-2 irradiance with peak emissive wavelengths of 543 nm emitted by CFL. Therefore, a promising visible-light-driven magnetically separable TiO2-based nanophotocatalysts was synthesized for the efficient degradation of ibuprofen.

Keywords: ibuprofen, magnetic N-TiO2, photocatalysis, visible light sources

Procedia PDF Downloads 248
24179 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning

Procedia PDF Downloads 132
24178 Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major

Authors: Rohit Singh Dangi, Ravi Kant Pal, Monica Sundd

Abstract:

Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion.

Keywords: acyl-coa binding protein (ACBP), acyl-coa esters, crystal structure, isothermal titration, calorimetry, Leishmania

Procedia PDF Downloads 449
24177 Design and Implementation of Security Middleware for Data Warehouse Signature, Framework

Authors: Mayada Al Meghari

Abstract:

Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature, DWS Framework. The aim of using the middleware in our DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.

Keywords: middleware, parallel computing, data warehouse, security, group-key, high performance

Procedia PDF Downloads 119
24176 Sentiment Classification of Documents

Authors: Swarnadip Ghosh

Abstract:

Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.

Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation

Procedia PDF Downloads 402
24175 Corporate Governance and Bank Performance: A Study of Selected Deposit Money Banks in Nigeria

Authors: Ayodele Ajayi, John Ajayi

Abstract:

This paper investigates the effect of corporate governance with a view to determining the relationship between board size and bank performance. Data for the study were obtained from the audited financial statements of five sampled banks listed on the Nigerian Stock Exchange. Panel data technique was adopted and analysis was carried out with the use of multiple regression and pooled ordinary least square. Results from the study show that the larger the board size, the greater the profit implying that corporate governance is positively correlated with bank performance.

Keywords: corporate governance, banks performance, board size, pooled data

Procedia PDF Downloads 360
24174 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 94
24173 Blockchain’s Feasibility in Military Data Networks

Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam

Abstract:

Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.

Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing

Procedia PDF Downloads 138
24172 Verification & Validation of Map Reduce Program Model for Parallel K-Mediod Algorithm on Hadoop Cluster

Authors: Trapti Sharma, Devesh Kumar Srivastava

Abstract:

This paper is basically a analysis study of above MapReduce implementation and also to verify and validate the MapReduce solution model for Parallel K-Mediod algorithm on Hadoop Cluster. MapReduce is a programming model which authorize the managing of huge amounts of data in parallel, on a large number of devices. It is specially well suited to constant or moderate changing set of data since the implementation point of a position is usually high. MapReduce has slowly become the framework of choice for “big data”. The MapReduce model authorizes for systematic and instant organizing of large scale data with a cluster of evaluate nodes. One of the primary affect in Hadoop is how to minimize the completion length (i.e. makespan) of a set of MapReduce duty. In this paper, we have verified and validated various MapReduce applications like wordcount, grep, terasort and parallel K-Mediod clustering algorithm. We have found that as the amount of nodes increases the completion time decreases.

Keywords: hadoop, mapreduce, k-mediod, validation, verification

Procedia PDF Downloads 369
24171 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 190
24170 "Revolutionizing Geographic Data: CADmapper's Automated Precision in CAD Drawing Transformation"

Authors: Toleen Alaqqad, Kadi Alshabramiy, Suad Zaafarany, Basma Musallam

Abstract:

CADmapper is a significant tool of software for transforming geographic data into realistic CAD drawings. It speeds up and simplifies the conversion process by automating it. This allows architects, urban planners, engineers, and geographic information system (GIS) experts to solely concentrate on the imaginative and scientific parts of their projects. While the future incorporation of AI has the potential for further improvements, CADmapper's current capabilities make it an indispensable asset in the business. It covers a combination of 2D and 3D city and urban area models. The user can select a specific square section of the map to view, and the fee is based on the dimensions of the area being viewed. The procedure is straightforward: you choose the area you want, then pick whether or not to include topography. 3D architectural data (if available), followed by selecting whatever design program or CAD style you want to publish the document which contains more than 200 free broad town plans in DXF format. If you desire to specify a bespoke area, it's free up to 1 km2.

Keywords: cadmaper, gdata, 2d and 3d data conversion, automated cad drawing, urban planning software

Procedia PDF Downloads 68
24169 Cd1−xMnxSe Thin Films Preparation by Cbd: Aspect on Optical and Electrical Properties

Authors: Jaiprakash Dargad

Abstract:

CdMnSe dilute semiconductor or semimagnetic semiconductors have become the focus of intense research due to their interesting combination of magnetic and semiconducting properties, and are employed in a variety of devices including solar cells, gas sensors etc. A series of thin films of this material, Cd1−xMnxSe (0 ≤ x ≤ 0.5), were therefore synthesized onto precleaned amorphous glass substrates using a solution growth technique. The sources of cadmium (Cd2+) and manganese (Mn2+) were aqueous solutions of cadmium sulphate and manganese sulphate, and selenium (Se2−) was extracted from a reflux of sodium selenosulphite. The different deposition parameters such as temperature, time of deposition, speed of mechanical churning, pH of the reaction mixture etc were optimized to yield good quality deposits. The as-grown samples were thin, relatively uniform, smooth and tightly adherent to the substrate support. The colour of the deposits changed from deep red-orange to yellowish-orange as the composition parameter, x, was varied from 0 to 0.5. The terminal layer thickness decreased with increasing value of, x. The optical energy gap decreased from 1.84 eV to 1.34 eV for the change of x from 0 to 0.5. The coefficient of optical absorption is of the order of 10-4 - 10-5 cm−1 and the type of transition (m = 0.5) is of the band-to-band direct type. The dc electrical conductivities were measured at room temperature and in the temperature range 300 K - 500 K. It was observed that the room temperature electrical conductivity increased with the composition parameter x up to 0.1, gradually decreasing thereafter. The thermo power measurements showed n-type conduction in these films.

Keywords: dilute semiconductor, reflux, CBD, thin film

Procedia PDF Downloads 231
24168 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 69
24167 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 579
24166 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce

Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya

Abstract:

Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.

Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews

Procedia PDF Downloads 201
24165 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 180