Search results for: 1g physical model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21735

Search results for: 1g physical model

19605 From Government-Led to Collective Action: A Case Study of the Transformation of Urban Renewal Governance in Nanjing, China

Authors: Hanjun Hu, Jinxiang Zhang

Abstract:

With the decline of "growthism", China's urbanization process has shifted from the stage of spatial expansion to the stage of optimization of built-up spaces, and urban renewal has gradually become a new wave of China's urban movement in recent years. The ongoing urban renewal movement in China not only needs to generate new motivation for urban development but also solve the backlog of social problems caused by rapid urbanization, which provides an opportunity for the transformation of China's urban governance model. Unlike previous approaches that focused on physical space and functional renewal, such as urban reconstruction, redevelopment, and reuse, the key challenge of urban renewal in the post-growth era lies in coordinating the complex interest relationships between multiple stakeholders. The traditional theoretical frameworks that focus on the structural relations between social groups are insufficient to explain the behavior logic and mutual cooperation mechanism of various groups and individuals in the current urban renewal practices. Therefore, based on the long-term tracking of the urban renewal practices in the Old City of Nanjing (OCN), this paper introduces the "collective action" theory to deeply analyze changes in the urban renewal governance model in OCN and tries to summarize the governance strategies that promote the formation of collective action within recent practices from a micro-scale. The study found that the practice in OCN experienced three different stages "government-led", "growth coalition" and "asymmetric game". With the transformation of government governance concepts, the rise of residents' consciousness of rights, and the wider participation of social organizations in recent years, the urban renewal in OCN is entering a new stage of "collective renewal action". Through the establishment of the renewal organization model, incentive policies, and dynamic negotiation mechanism, urban renewal in OCN not only achieves a relative balance between individual interests and collective interests but also makes the willingness of residents the dominant factor in formulating urban renewal policies. However, the presentation of "collective renewal action" in OCN is still mainly based on typical cases. Although the government is no longer the dominant role, a large number of resident-led collective actions have not yet emerged, which puts forward new research needs for a sustainable governance policy innovation in this action.

Keywords: urban renewal, collective action theory, governance, cooperation mechanism, China

Procedia PDF Downloads 55
19604 Machine Learning Data Architecture

Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap

Abstract:

Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.

Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning

Procedia PDF Downloads 64
19603 Data-Driven Dynamic Overbooking Model for Tour Operators

Authors: Kannapha Amaruchkul

Abstract:

We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.

Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator

Procedia PDF Downloads 134
19602 PM Air Quality of Windsor Regional Scale Transport’s Impact and Climate Change

Authors: Moustafa Osman Mohammed

Abstract:

This paper is mapping air quality model to engineering the industrial system that ultimately utilized in extensive range of energy systems, distribution resources, and end-user technologies. The model is determining long-range transport patterns contribution as area source can either traced from 48 hrs backward trajectory model or remotely described from background measurements data in those days. The trajectory model will be run within stable conditions and quite constant parameters of the atmospheric pressure at the most time of the year. Air parcel trajectory is necessary for estimating the long-range transport of pollutants and other chemical species. It provides a better understanding of airflow patterns. Since a large amount of meteorological data and a great number of calculations are required to drive trajectory, it will be very useful to apply HYPSLIT model to locate areas and boundaries influence air quality at regional location of Windsor. 2–days backward trajectories model at high and low concentration measurements below and upward the benchmark which was areas influence air quality measurement levels. The benchmark level will be considered as 30 (μg/m3) as the moderate level for Ontario region. Thereby, air quality model is incorporating a midpoint concept between biotic and abiotic components to broaden the scope of quantification impact. The later outcomes’ theories of environmental obligation suggest either a recommendation or a decision of what is a legislative should be achieved in mitigation measures of air emission impact ultimately.

Keywords: air quality, management systems, environmental impact assessment, industrial ecology, climate change

Procedia PDF Downloads 247
19601 Modeling and Statistical Analysis of a Soap Production Mix in Bejoy Manufacturing Industry, Anambra State, Nigeria

Authors: Okolie Chukwulozie Paul, Iwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, M. C. Nwosu

Abstract:

The research work is based on the statistical analysis of the processing data. The essence is to analyze the data statistically and to generate a design model for the production mix of soap manufacturing products in Bejoy manufacturing company Nkpologwu, Aguata Local Government Area, Anambra state, Nigeria. The statistical analysis shows the statistical analysis and the correlation of the data. T test, Partial correlation and bi-variate correlation were used to understand what the data portrays. The design model developed was used to model the data production yield and the correlation of the variables show that the R2 is 98.7%. However, the results confirm that the data is fit for further analysis and modeling. This was proved by the correlation and the R-squared.

Keywords: General Linear Model, correlation, variables, pearson, significance, T-test, soap, production mix and statistic

Procedia PDF Downloads 445
19600 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 44
19599 Model of Monitoring and Evaluation of Student’s Learning Achievement: Application of Value-Added Assessment

Authors: Jatuphum Ketchatturat

Abstract:

Value-added assessment has been used for developing the model of monitoring and evaluation of student's learning achievement. The steps of model development consist of 1) study and analyisis of the school and the district report system of student achievement and progress, 2) collecting the data of student achievement to develop the value added indicator, 3) developing the system of value-added assessment by participatory action research approach, 4) putting the system of value-added assessment into the educational district of secondary school, 5) determining the quality of the developed system of value-added assessment. The components of the developed model consist of 1) the database of value-added assessment of student's learning achievement, 2) the process of monitoring and evaluation the student's learning achievement, and 3) the reporting system of value-added assessment of student's learning achievement.

Keywords: learning achievement, monitoring and evaluation, value-added assessment

Procedia PDF Downloads 424
19598 Application of Random Forest Model in The Prediction of River Water Quality

Authors: Turuganti Venkateswarlu, Jagadeesh Anmala

Abstract:

Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.

Keywords: water quality, land use factors, random forest, fecal coliform

Procedia PDF Downloads 197
19597 HydroParks: Directives for Physical Environment Interventions Battling Childhood Overweight in Berlin, Germany

Authors: Alvaro Valera Sosa

Abstract:

Background: In recent years, childhood overweight and obesity have become an increasing and challenging phenomenon in Berlin and Germany in general. The highest shares of childhood overweight in Berlin are district localities within the inner city ring with lowest socio-economic levels and the highest number of migration background populations. Most factors explaining overweight and obesity are linked to individual dispositions and nutrition balances. Among various strategies, to target drinking behaviors of children and adolescents has been proven to be effective. On the one hand, encouraging the intake of water – which does not contain energy and thus may support a healthy weight status – on the other hand, reducing the consumption of sugar-containing beverages – which are linked to weight gain and obesity. Anyhow, these preventive approaches have mostly developed into individual or educational interventions widely neglecting environmental modifications. Therefore, little is known on how urban physical environment patterns and features can act as influence factors for childhood overweight. Aiming the development of a physical environment intervention tackling children overweight, this study evaluated urban situations surrounding public playgrounds in Berlin where the issue is evident. It verified the presence and state of physical environmental conditions that can be conducive for children to engage physical activity and water intake. Methods: The study included public playgrounds for children from 0-12 y/o within district localities with the highest prevalence of childhood overweight, highest population density, and highest mixed uses. A systematic observation was realized to describe physical environment patterns and features that may affect children health behavior leading to overweight. Neighborhood walkability for all age groups was assessed using the Walkability for Health framework (TU-Berlin). Playground physical environment conditions were evaluated using Active Living Research assessment sheets. Finally, the food environment in the playground’s pedestrian catchment areas was reviewed focusing on: proximity to suppliers offering sugar-containing beverages, and physical access for 5 y/o children and up to drinking water following the Drinking Fountains and Public Health guidelines of the Pacific Institute. Findings: Out of 114 locations, only 7 had a child population over 3.000. Three with the lowest socio-economic index and highest percentage of migration background were selected. All three urban situations presented similar walkability: large trafficked avenues without buffer bordering at least one side of the playground, and important block to block disconnections for active travel. All three playgrounds rated equipment conditions from good to very good. None had water fountains at the reach of a 5 y/o. and all presented convenience stores and/or fast food outlets selling sugar-containing beverages nearby the perimeter. Conclusion: The three playground situations selected are representative of Berlin locations where most factors that influence children overweight are found. The results delivered urban and architectural design directives for an environmental intervention, used to study children health-related behavior. A post-intervention evaluation could prove associations between designed spaces and children overweight rate reduction creating a precedent in public health interventions and providing novel strategies for the health sector.

Keywords: children overweight, evaluation research, public playgrounds, urban design, urban health

Procedia PDF Downloads 158
19596 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization

Authors: Xiongxiong You, Zhanwen Niu

Abstract:

Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.

Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms

Procedia PDF Downloads 141
19595 Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant

Authors: E. Benga, T. Tengen, A. Alugongo

Abstract:

Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions.

Keywords: periodic inventory, continuous inventory, hybrid inventory, optimization, manufacturing plant

Procedia PDF Downloads 382
19594 A Fishery Regulation Model: Bargaining over Fishing Pressure

Authors: Duplan Yves Jamont Junior

Abstract:

The Diamond-Mortensen-Pissarides model widely used in labor economics is tailored to fishery. By this way, a fishing function is defined to depict the fishing technology, and Bellman equations are established to describe the behaviors of fishermen and conservationists. On this basis, a negotiation takes place as a Nash-bargaining over the upper limit of the fishing pressure between both political representative groups of fishermen and conservationists. The existence and uniqueness conditions of the Nash-bargained fishing pressure are established. Given the biomass evolution equation, the dynamics of the model variables (fishing pressure, biomass, fish need) is studied.

Keywords: conservation, fishery, fishing, Nash bargaining

Procedia PDF Downloads 260
19593 Model for Remanufacture of Medical Equipment in Cross Border Collaboration

Authors: Kingsley Oturu, Winifred Ijomah, Wale Coker, Chibueze Achi

Abstract:

With the impact of BREXIT and the need for cross-border collaboration, this international research investigated the use of a conceptual model for remanufacturing medical equipment (with a focus on anesthetic machines and baby incubators). Early findings of the research suggest that contextual factors need to be taken into consideration, as well as an emphasis on cleaning (e.g., sterilization) during the process of remanufacturing medical equipment. For example, copper tubings may be more important in the remanufacturing of anesthetic equipment in tropical climates than in cold climates.

Keywords: medical equipment remanufacture, sustainability, circular business models, remanufacture process model

Procedia PDF Downloads 172
19592 An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool

Authors: Farokh Alipour, Ali Falavand, Neda Beit Saeid

Abstract:

The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout.

Keywords: LNG, pool fire, spill, radiation

Procedia PDF Downloads 402
19591 The Rapid Industrialization Model

Authors: Fredrick Etyang

Abstract:

This paper presents a Rapid Industrialization Model (RIM) designed to support existing industrialization policies, strategies and industrial development plans at National, Regional and Constituent level in Africa. The model will reinforce efforts to attainment of inclusive and sustainable industrialization of Africa by state and non-state actors. The overall objective of this model is to serve as a framework for rapid industrialization in developing economies and the specific objectives range from supporting rapid industrialization development to promoting a structural change in the economy, a balanced regional industrial growth, achievement of local, regional and international competitiveness in areas of clear comparative advantage in industrial exports and ultimately, the RIM will serve as a step-by-step guideline for the industrialization of African Economies. This model is a product of a scientific research process underpinned by desk research through the review of African countries development plans, strategies, datasets, industrialization efforts and consultation with key informants. The rigorous research process unearthed multi-directional and renewed efforts towards industrialization of Africa premised on collective commitment of individual states, regional economic communities and the African union commission among other strategic stakeholders. It was further, established that the inputs into industrialization of Africa outshine the levels of industrial development on the continent. The RIM comes in handy to serve as step-by-step framework for African countries to follow in their industrial development efforts of transforming inputs into tangible outputs and outcomes in the short, intermediate and long-run. This model postulates three stages of industrialization and three phases toward rapid industrialization of African economies, the model is simple to understand, easily implementable and contextualizable with high return on investment for each unit invested into industrialization supported by the model. Therefore, effective implementation of the model will result into inclusive and sustainable rapid industrialization of Africa.

Keywords: economic development, industrialization, economic efficiency, exports and imports

Procedia PDF Downloads 84
19590 Self-Compacting White Concrete Mix Design Using the Particle Matrix Model

Authors: Samindi Samarakoon, Ørjan Sletbakk Vie, Remi Kleiven Fjelldal

Abstract:

White concrete facade elements are widely used in construction industry. It is challenging to achieve the desired workability in casting of white concrete elements. Particle Matrix model was used for proportioning the self-compacting white concrete (SCWC) to control segregation and bleeding and to improve workability. The paper presents how to reach the target slump flow while controlling bleeding and segregation in SCWC. The amount of aggregates, binders and mixing water, as well as type and dosage of superplasticizer (SP) to be used are the major factors influencing the properties of SCWC. Slump flow and compressive strength tests were carried out to examine the performance of SCWC, and the results indicate that the particle matrix model could produce successfully SCWC controlling segregation and bleeding.

Keywords: white concrete, particle matrix model, mix design, construction industry

Procedia PDF Downloads 270
19589 Nowcasting Indonesian Economy

Authors: Ferry Kurniawan

Abstract:

In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.

Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination

Procedia PDF Downloads 331
19588 Software Reliability Prediction Model Analysis

Authors: Lela Mirtskhulava, Mariam Khunjgurua, Nino Lomineishvili, Koba Bakuria

Abstract:

Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.

Keywords: exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability

Procedia PDF Downloads 464
19587 Physical Characteristics of Cookies Enriched with Microencapsulated Cherry Pomace Extract

Authors: Jovana Petrović, Ivana Lončarević, Vesna Tumbas Šaponjac, Biljana Pajin, Danica Zarić

Abstract:

Pomace, a by-product from fruit processing industry is the potential source of valuable bioactive. Cookies are popular, ready to eat and low price foods; therefore, enrichment of these products is of great importance. In this work, bioactive compounds extracted from cherry pomace, encapsulated in soy and whey proteins, have been incorporated in cookies, replacing 10 (SP10 and WP10) and 15% of wheat flour (SP15 and WP15). Cookie geometry (diameter (D), thickness (T) and spread ratio (D/T)), cookie weight, cookie hardness and cookie surface colour were measured. Sensory characteristics are also examined. The results show that encapsulated cherry pomace bioactives have positively influenced the cookie mass. Diameter, redness (a* value) and cookie hardness increased. Sensory evaluation of cookies, revealed that up to 15% substitution of wheat flour with WP encapsulate produced acceptable cookies similar to the control (100% wheat flour) cookies.

Keywords: cherry pomace, polyphenols, microencapsulation, cookies, physical characteristics

Procedia PDF Downloads 470
19586 Parametric Modeling for Survival Data with Competing Risks Using the Generalized Gompertz Distribution

Authors: Noora Al-Shanfari, M. Mazharul Islam

Abstract:

The cumulative incidence function (CIF) is a fundamental approach for analyzing survival data in the presence of competing risks, which estimates the marginal probability for each competing event. Parametric modeling of CIF has the advantage of fitting various shapes of CIF and estimates the impact of covariates with maximum efficiency. To calculate the total CIF's covariate influence using a parametric model., it is essential to parametrize the baseline of the CIF. As the CIF is an improper function by nature, it is necessary to utilize an improper distribution when applying parametric models. The Gompertz distribution, which is an improper distribution, is limited in its applicability as it only accounts for monotone hazard shapes. The generalized Gompertz distribution, however, can adapt to a wider range of hazard shapes, including unimodal, bathtub, and monotonic increasing or decreasing hazard shapes. In this paper, the generalized Gompertz distribution is used to parametrize the baseline of the CIF, and the parameters of the proposed model are estimated using the maximum likelihood approach. The proposed model is compared with the existing Gompertz model using the Akaike information criterion. Appropriate statistical test procedures and model-fitting criteria will be used to test the adequacy of the model. Both models are applied to the ‘colon’ dataset, which is available in the “biostat3” package in R.

Keywords: competing risks, cumulative incidence function, improper distribution, parametric modeling, survival analysis

Procedia PDF Downloads 104
19585 Sustainable Solutions for Urban Problems: Industrial Container Housing for Endangered Communities in Maranhao, Brazil

Authors: Helida Thays Gomes Soares, Conceicao De Maria Pinheiro Correia, Fabiano Maciel Soares, Kleymer Silva

Abstract:

There is great discussion around populational increase in urban areas of the global south, and, consequently, the growth of inappropriate housing and the different ways humans have found to solve housing problems around the world. Sao Luís, the capital of the state of Maranhao is a good example. The 1.6 million inhabitant metropole is a colonial tropical city that shelters 22% of the population of Maranhão, brazilian state that still carries the scars of slavery in past centuries. In 2016, Brazilian Institute of Geography and Statistic found that 20% of Maranhão’s inhabitants were living in houses with external walls made of non-durable materials, like recycled wood, cardboard or soil. Out of this problematic, this study aims to propose interventions not only in the physical structure of irregular housing, but also to serve as a guide to intervene in the way eco-friendly, communitarian housing is seen by extreme poor zones inside metropolitan regions around big cities in the global south. The adaptation and reuse of industrial containers from the Harbor of Itaqui for housing is also an aim of the project. The great volume of discarded industrial containers may be an opportunity to solve housing deficit in the city. That way, through field research in São Luís’ neighborhoods mostly occupied by inappropriate housing, the study intends to raise ethnographical and physical values that help to shape new uses of industrial containers and recycled building materials, bringing the community into the process of shaping new-housing for local housing programs, changing the mindset of a concrete/brick model of building. The study used a general feasibility analysis of local engineers regarding strength of the locally used container for construction purposes, and also researched in-loco the current impressions of risky areas inhabitants of housing, traditional housing and the role they played as city shapers, evaluating their perceptions of what means to live and how their houses represent their personality.

Keywords: container housing, civil construction, housing deficit, participatory design, sustainability

Procedia PDF Downloads 191
19584 A Systemic Maturity Model

Authors: Emir H. Pernet, Jeimy J. Cano

Abstract:

Maturity models, used descriptively to explain changes in reality or normatively to guide managers to make interventions to make organizations more effective and efficient, are based on the principles of statistical quality control promulgated by Shewhart in the years 30, and on the principles of PDCA continuous improvement (Plan, Do, Check, Act) developed by Deming and Juran. Some frameworks developed over the concept of maturity models includes COBIT, CMM, and ITIL. This paper presents some limitations of traditional maturity models, most of them based on points of reflection and analysis done by some authors. Almost all limitations are related to the mechanistic and reductionist approach of the principles over those models are built. As Systems Theory helps the understanding of the dynamics of organizations and organizational change, the development of a systemic maturity model can help to overcome some of those limitations. This document proposes a systemic maturity model, based on a systemic conceptualization of organizations, focused on the study of the functioning of the parties, the relationships among them, and their behavior as a whole. The concept of maturity from the system theory perspective is conceptually defined as an emergent property of the organization, which arises from as a result of the degree of alignment and integration of their processes. This concept is operationalized through a systemic function that measures the maturity of an organization, and finally validated by the measuring of maturity in organizations. For its operationalization and validation, the model was applied to measure the maturity of organizational Governance, Risk and Compliance (GRC) processes.

Keywords: GRC, maturity model, systems theory, viable system model

Procedia PDF Downloads 312
19583 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications

Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini

Abstract:

This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.

Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy

Procedia PDF Downloads 110
19582 Mathematical Modeling of Skin Condensers for Domestic Refrigerator

Authors: Nitin Ghule, S. G. Taji

Abstract:

A mathematical model of hot-wall condensers used in refrigerators is presented. The model predicts the heat transfer characteristics of condenser and the effects of various design and operating parameters on condenser tube length and capacity. A finite element approach was used to model the condenser. The condenser tube is divided into elemental units, with each element consisting of adhesive tape, refrigerant tube and outer metal sheet. The heat transfer characteristics of each section are then analyzed by considering the heat transfer through the tube wall, tape and the outer sheet. Variations in inner heat transfer coefficient and pressure drop are considered depending on temperature, fluid phase, type of flow and orientation of tube. Variation in outer heat transfer coefficient is also taken into account. Various materials were analysed for the tube, tape and outer sheet.

Keywords: condenser, domestic refrigerator, heat transfer, mathematical model

Procedia PDF Downloads 452
19581 Determinants of Healthcare Team Effectiveness in Subterranean Settings: A Mixed-Methods Study

Authors: Nasra Idilbi, Jalal Tarabeia, Layalleh Masalha, Heiam Shoufani Kassis, Gizell Green

Abstract:

Background: Healthcare professionals working in underground facilities face unique challenges affecting their physical and mental health and team effectiveness. We aimed to examine how an underground work environment affects the physical and mental health and effectiveness of a multi-professional medical team in a medical center under continuous war threats and the contribution of various demographic and professional characteristics. Methods: A cross-sectional survey was disseminated electronically. The questionnaire assessed team effectiveness, the quality of the work, and the health symptoms reported by the team while working in the underground complex. Results: In total, 270 healthcare workers (mean age 40 years, 75.6% females, 88.4% nurses) completed the questionnaire. Women reported statistically significantly higher mean scores of physical strain, fatigue, and eye irritation associated with the work environment compared to men. Multiple regression analysis revealed that psychological distress, noise, and lighting in the underground compound significantly influenced team effectiveness. The qualitative analysis revealed two key themes: the mental health impact of working in an underground environment and the effects of noise and lighting on staff performance. Nurses reported feelings of suffocation, claustrophobia, and difficulty concentrating due to the enclosed space, with some expressing heightened stress levels that impaired their ability to work effectively and safely. Female staff reported more pronounced symptoms of physical strain, fatigue, and eye irritation. Additionally, the underground complex’s poor noise absorption created a highly disruptive work environment, while inadequate lighting hindered accurate patient assessments, leading to potential errors. These challenges were exacerbated by physical symptoms like headaches and nausea, which further impacted job performance. The findings underscore the significant role of environmental factors in influencing both mental health and operational effectiveness, aligning with quantitative data on the predictors of team performance. Conclusions: The underground work environment is crucial in influencing healthcare team effectiveness, with psychological distress, noise, and lighting as key factors. The study highlights the importance of creating a comfortable work environment to foster team efficiency. The findings provide valuable insights for managers in underground healthcare facilities to optimize team performance and well-being.

Keywords: team effectiveness, underground settings, healthcare, environmental factors, a mixed-methods study

Procedia PDF Downloads 6
19580 Long Term Effect of FYM and Green Manure on Infiltration Characteristics Under Vertisol

Authors: Tripti Nayak, R. K. Bajpai

Abstract:

An ongoing field experiment was conducted at Long term fertilizer experiment, Raipur, to study the Effect of fertilization (both organic and inorganic) on soil Physical properties (infiltration rate) of Vertisol of ten treatments viz. The treatment combinations for were T1(Control),T2(50%NPK), T3(100%NPK), T4(150%NPK), T5(100%NPK+Zn), T6(100%NP), T7(100%N), T8(100%NPK+FYM), T9 (50%NPK+BGA) and T10(50%NPK+GM). Farmyard manure and green manure is applied at the treatment of T8 (100%NPK+FYM) and T10 (50%NPK+GM). Result showed that the highest infiltration rate recorded T8(100%NPK+FYM) and T10 (50%NPK+GM). These considerations have led to a renewed interest in the organic manures such as FYM, compost and green manures, which are formulations helps in sustainable agriculture production either by providing plants with fixed nitrogen, available P or by other plant growth promoting substances. Organic matter (OM) is the life of the soil because it contains all the essential elements required for plant growth. It also serves as food for soil bacteria. Decomposed OM, known as humus, improves the soil tilth, quality and helps the plant to grow. In general among all the other treatments and control gave poorest infiltration rate. Incorporation of organic sources considerably improved the soil physical properties such as decrease in bulk density and increase in infiltration rate and available NPK status of the soil. Study showed that wherever, nitrogen was substituted through GM, FYM or crop residue (rice straw) in rice, Corresponding decrease in bulk density favorably enhanced the infiltration rate and it was found to be highest in the green-manured plot, FYM and lowest in control. Concluded that Continuous monitoring of physical properties should be carried out for maintaining soil health and enhancing the crop production.

Keywords: long term effect, FYM, green manure, infiltration rate, soil health, crop productivity, vertisol

Procedia PDF Downloads 364
19579 Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model

Authors: O. Benabdeljelil, A. Karioun, S. Amami, R. Rouger, M. Hamidine

Abstract:

A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, production model, optimal price, meteorological factors, 3-factor model, parameter calibration, forward price

Procedia PDF Downloads 376
19578 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model

Authors: Elham Sharifineyestani, Mohammad Farshchin

Abstract:

Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.

Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management

Procedia PDF Downloads 247
19577 A Study of Behavioral Phenomena Using an Artificial Neural Network

Authors: Yudhajit Datta

Abstract:

Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.

Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story

Procedia PDF Downloads 380
19576 Condensation of Moist Air in Heat Exchanger Using CFD

Authors: Jan Barak, Karel Frana, Joerg Stiller

Abstract:

This work presents results of moist air condensation in heat exchanger. It describes theoretical knowledge and definition of moist air. Model with geometry of square canal was created for better understanding and post processing of condensation phenomena. Different approaches were examined on this model to find suitable software and model. Obtained knowledge was applied to geometry of real heat exchanger and results from experiment were compared with numerical results. One of the goals is to solve this issue without creating any user defined function in the applied code. It also contains summary of knowledge and outlook for future work.

Keywords: condensation, exchanger, experiment, validation

Procedia PDF Downloads 403