Search results for: learning style scale
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13356

Search results for: learning style scale

11256 Multimodal Employee Attendance Management System

Authors: Khaled Mohammed

Abstract:

This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.

Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio

Procedia PDF Downloads 155
11255 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 146
11254 Outcome-Based Education as Mediator of the Effect of Blended Learning on the Student Performance in Statistics

Authors: Restituto I. Rodelas

Abstract:

The higher education has adopted the outcomes-based education from K-12. In this approach, the teacher uses any teaching and learning strategies that enable the students to achieve the learning outcomes. The students may be required to exert more effort and figure things out on their own. Hence, outcomes-based students are assumed to be more responsible and more capable of applying the knowledge learned. Another approach that the higher education in the Philippines is starting to adopt from other countries is blended learning. This combination of classroom and fully online instruction and learning is expected to be more effective. Participating in the online sessions, however, is entirely up to the students. Thus, the effect of blended learning on the performance of students in Statistics may be mediated by outcomes-based education. If there is a significant positive mediating effect, then blended learning can be optimized by integrating outcomes-based education. In this study, the sample will consist of four blended learning Statistics classes at Jose Rizal University in the second semester of AY 2015–2016. Two of these classes will be assigned randomly to the experimental group that will be handled using outcomes-based education. The two classes in the control group will be handled using the traditional lecture approach. Prior to the discussion of the first topic, a pre-test will be administered. The same test will be given as posttest after the last topic is covered. In order to establish equality of the groups’ initial knowledge, single factor ANOVA of the pretest scores will be performed. Single factor ANOVA of the posttest-pretest score differences will also be conducted to compare the performance of the experimental and control groups. When a significant difference is obtained in any of these ANOVAs, post hoc analysis will be done using Tukey's honestly significant difference test (HSD). Mediating effect will be evaluated using correlation and regression analyses. The groups’ initial knowledge are equal when the result of pretest scores ANOVA is not significant. If the result of score differences ANOVA is significant and the post hoc test indicates that the classes in the experimental group have significantly different scores from those in the control group, then outcomes-based education has a positive effect. Let blended learning be the independent variable (IV), outcomes-based education be the mediating variable (MV), and score difference be the dependent variable (DV). There is mediating effect when the following requirements are satisfied: significant correlation of IV to DV, significant correlation of IV to MV, significant relationship of MV to DV when both IV and MV are predictors in a regression model, and the absolute value of the coefficient of IV as sole predictor is larger than that when both IV and MV are predictors. With a positive mediating effect of outcomes-base education on the effect of blended learning on student performance, it will be recommended to integrate outcomes-based education into blended learning. This will yield the best learning results.

Keywords: outcome-based teaching, blended learning, face-to-face, student-centered

Procedia PDF Downloads 291
11253 Learning Management System Technologies for Teaching Computer Science at a Distance Education Institution

Authors: Leila Goosen, Dalize van Heerden

Abstract:

The performance outcomes of first year Computer Science and Information Technology students across the world are of great concern, whether they are being taught in a face-to-face environment or via distance education. In the face-to-face environment, it is, however, somewhat easier to teach and support students than it is in a distance education environment. The face-to-face academic can more easily gauge the level of understanding and participation of students and implement interventions to address issues, which may arise. With the inroads that Web 2.0 and Web 3.0 technologies are making, the world of online teaching and learning are rapidly expanding, bringing about technologies, which allows for similar interactions between online academics and their students as available to their face-to-face counter parts. At the University of South Africa (UNISA), the Learning Management System (LMS) is called myUNISA and it is deployed on a SAKAI platform. In this paper, we will take a look at some of the myUNISA technologies implemented in the teaching of a first year programming course, how they are implemented and, in some cases, we will indicate how this affects the performance outcomes of students.

Keywords: computer science, Distance Education Technologies, Learning Management System, face-to-face environment

Procedia PDF Downloads 495
11252 Research on the Updating Strategy of Public Space in Small Towns in Zhejiang Province under the Background of New-Style Urbanization

Authors: Chen Yao, Wang Ke

Abstract:

Small towns are the most basic administrative institutions in our country, which are connected with cities and rural areas. Small towns play an important role in promoting local urban and rural economic development, providing the main public services and maintaining social stability in social governance. With the vigorous development of small towns and the transformation of industrial structure, the changes of social structure, spatial structure, and lifestyle are lagging behind, causing that the spatial form and landscape style do not belong to both cities and rural areas, and seriously affecting the quality of people’s life space and environment. The rural economy in Zhejiang Province has started, the society and the population are also developing in relative stability. In September 2016, Zhejiang Province set out the 'Technical Guidelines for Comprehensive Environmental Remediation of Small Towns in Zhejiang Province,' so as to comprehensively implement the small town comprehensive environmental remediation with the main content of strengthening the plan and design leading, regulating environmental sanitation, urban order and town appearance. In November 2016, Huzhou City started the comprehensive environmental improvement of small towns, strived to use three years to significantly improve the 115 small towns, as well as to create a number of high quality, distinctive and beautiful towns with features of 'clean and livable, rational layout, industrial development, poetry and painting style'. This paper takes Meixi Town, Zhangwu Town and Sanchuan Village in Huzhou City as the empirical cases, analyzes the small town public space by applying the relative theory of actor-network and space syntax. This paper also analyzes the spatial composition in actor and social structure elements, as well as explores the relationship of actor’s spatial practice and public open space by combining with actor-network theory. This paper introduces the relevant theories and methods of spatial syntax, carries out research analysis and design planning analysis of small town spaces from the perspective of quantitative analysis. And then, this paper proposes the effective updating strategy for the existing problems in public space. Through the planning and design in the building level, the dissonant factors produced by various spatial combination of factors and between landscape design and urban texture during small town development will be solved, inhabitant quality of life will be promoted, and town development vitality will be increased.

Keywords: small towns, urbanization, public space, updating

Procedia PDF Downloads 228
11251 Experimental Study of the Infill Masonry Walls Response Subjected to Out-Of-Plane Static Loadings

Authors: André Furtado, Hugo Rodrigues, António Arêde, Humberto Varum

Abstract:

Besides characterized as non-structural elements, infill masonry (IM) walls have an important contribute in the structural response of reinforced concrete structures as proved by the damages observed recent earthquakes. In particular, the out-of-plane (OOP) collapse has been one of the most observed failure mechanism. The aim of this research is to contribute to the increase of understanding regarding the OOP behaviour of full-scale infill panels considering different variables such as panel support width and axial load on the top of columns. For this, it was carried out in the Laboratory of Earthquake and Structural Engineering (LESE) an experimental campaign of five full-scale IM walls subjected to OOP distributed cyclic loadings. Specimens with different variables such as previous in-plane damage, support conditions, axial load on the top of the columns were studied. The results will be presented and discussed along the manuscript in terms of force-displacement hysteretic curves, cracking pattern, initial stiffness, stiffness degradation and accumulative energy dissipation.

Keywords: infill masonry walls, experimental testing, out-of-plane, full-scale

Procedia PDF Downloads 390
11250 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 130
11249 Large Scale Production of Polyhydroxyalkanoates (PHAs) from Waste Water: A Study of Techno-Economics, Energy Use, and Greenhouse Gas Emissions

Authors: Cora Fernandez Dacosta, John A. Posada, Andrea Ramirez

Abstract:

The biodegradable family of polymers polyhydroxyalkanoates are interesting substitutes for convectional fossil-based plastics. However, the manufacturing and environmental impacts associated with their production via intracellular bacterial fermentation are strongly dependent on the raw material used and on energy consumption during the extraction process, limiting their potential for commercialization. Industrial wastewater is studied in this paper as a promising alternative feedstock for waste valorization. Based on results from laboratory and pilot-scale experiments, a conceptual process design, techno-economic analysis and life cycle assessment are developed for the large-scale production of the most common type of polyhydroxyalkanoate, polyhydroxbutyrate. Intracellular polyhydroxybutyrate is obtained via fermentation of microbial community present in industrial wastewater and the downstream processing is based on chemical digestion with surfactant and hypochlorite. The economic potential and environmental performance results help identifying bottlenecks and best opportunities to scale-up the process prior to industrial implementation. The outcome of this research indicates that the fermentation of wastewater towards PHB presents advantages compared to traditional PHAs production from sugars because the null environmental burdens and financial costs of the raw material in the bioplastic production process. Nevertheless, process optimization is still required to compete with the petrochemicals counterparts.

Keywords: circular economy, life cycle assessment, polyhydroxyalkanoates, waste valorization

Procedia PDF Downloads 457
11248 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307
11247 Developing Problem Solving Skills through a Project-Based Course as Part of a Lifelong Learning for Engineering Students

Authors: Robin Lok Wang Ma

Abstract:

The purpose of this paper is to investigate how engineering students’ motivation and interests are maintained in their journeys. In recent years, different pedagogies of teaching, including entrepreneurship, experiential and lifelong learning, as well as dream builder, etc., have been widely used for education purposes. University advocates hands-on practice, learning by experiencing and experimenting throughout different courses. Students are not limited to gaining knowledge via traditional lectures, laboratory demonstrations, tutorials, and so on. The capability to identify both complex problems and their corresponding solutions in daily life are one of the criteria/skill sets required for graduates to obtain their careers at professional organizations and companies. A project-based course, namely Mechatronic Design and Prototyping, was developed for students to design and build a physical prototype for solving existing problems in their daily lives, thereby encouraging them as an entrepreneur to explore further possibilities to commercialize their designed prototypes and launch them to the market. Feedbacks from students show that they are keen to propose their own ideas freely with guidance from the instructor instead of using either suggested or assigned topics. Proposed ideas of the prototypes reflect that if students’ interests are maintained, they acquire the knowledge and skills they need, including essential communication, logical thinking, and, more importantly, problem solving for their lifelong learning journey.

Keywords: problem solving, lifelong learning, entrepreneurship, engineering

Procedia PDF Downloads 93
11246 Integration of Technology for Enhanced Learning among Generation Y and Z Nursing Students

Authors: Tarandeep Kaur

Abstract:

Generation Y and Z nursing students have a much higher need for technology-based stimulation than previous generations, as they may find traditional methods of education boring and disinterested. These generations prefer experiential learning and the use of advanced technology for enhanced learning. Therefore, nursing educators must acquire knowledge to make better use of technology and technological tools for instruction. Millennials and generation are digital natives, optimistic, assertive, want engagement, instant feedback, and collaborative approach. The integration of technology and the efficacy of its use can be challenging for nursing educators. The SAMR (substitution, augmentation, modification, and redefinition) model designed and developed by Dr. Ruben Puentedura can help nursing educators to engage their students in different levels of technology integration for effective learning. Nursing educators should understand that technology use in the classroom must be purposeful. The influx of technology in nursing education is ever-changing; therefore, nursing educators have to constantly enhance and develop technical skills to keep up with the emerging technology in the schools as well as hospitals. In the Saskatchewan Collaborative Bachelor of Nursing (SCBSCN) program at Saskatchewan polytechnic, we use technology at various levels using the SAMR model in our program, including low and high-fidelity simulation labs. We are also exploring futuristic options of using virtual reality and gaming in our classrooms as an innovative way to motivate, increase critical thinking, create active learning, provide immediate feedback, improve student retention and create collaboration.

Keywords: generations, nursing, SAMR, technology

Procedia PDF Downloads 110
11245 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities

Authors: Sayed Hadi Sadeghi

Abstract:

This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.

Keywords: support services, e-Network practice, Australian universities, United States universities

Procedia PDF Downloads 164
11244 Remedying Students' Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)

Authors: Ihuarulam A. Ikenna

Abstract:

In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and do not agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.

Keywords: remedying, students’ misconceptions, learning, intervention discussion, learning model

Procedia PDF Downloads 419
11243 Creating an Enabling Learning Environment for Learners with Visual Impairments Inlesotho Rural Schools by Using Asset-Based Approaches

Authors: Mamochana, A. Ramatea, Fumane, P. Khanare

Abstract:

Enabling the learning environment is a significant and adaptive technique necessary to navigate learners’ educational challenges. However, research has indicated that quality provision of education in the environments that are enabling, especially to learners with visual impairments (LVIs, hereafter) in rural schools, remain an ongoing challenge globally. Hence, LVIs often have a lower level of academic performance as compared to their peers. To balance this gap and fulfill learners'fundamentalhuman rights¬ of receiving an equal quality education, appropriate measures and structures that make enabling learning environment a better place to learn must be better understood. This paper, therefore, intends to find possible means that rural schools of Lesotho can employ to make the learning environment for LVIs enabling. The present study aims to determine suitable assets that can be drawn to make the learning environment for LVIs enabling. The study is also informed by the transformative paradigm and situated within a qualitative research approach. Data were generated through focus group discussions with twelve teachers who were purposefully selected from two rural primary schools in Lesotho. The generated data were then analyzed thematically using Braun and Clarke's six-phase framework. The findings of the study indicated that participating teachers do have an understanding that rural schools boast of assets (existing and hidden) that have a positive influence in responding to the special educational needs of LVIs. However, the participants also admitted that although their schools boast of assets, they still experience limited knowledge about the use of the existing assets and thus, realized a need for improved collaboration, involvement of the existing assets, and enhancement of academic resources to make LVIs’ learning environment enabling. The findings of this study highlight the significance of the effective use of assets. Additionally, coincides with literature that shows recognizing and tapping into the existing assets enable learning for LVIs. In conclusion, the participants in the current study indicated that for LVIs’ learning environment to be enabling, there has to be sufficient use of the existing assets. The researchers, therefore, recommend that the appropriate use of assets is good, but may not be sufficient if the existing assets are not adequately managed. Hence,VILs experience a vicious cycle of vulnerability. It was thus, recommended that adequate use of assets and teachers' engagement as active assets should always be considered to make the learning environment a better place for LVIs to learan in the future

Keywords: assets, enabling learning environment, rural schools, learners with visual impairments

Procedia PDF Downloads 108
11242 Path Integrals and Effective Field Theory of Large Scale Structure

Authors: Revant Nayar

Abstract:

In this work, we recast the equations describing large scale structure, and by extension all nonlinear fluids, in the path integral formalism. We first calculate the well known two and three point functions using Schwinger Keldysh formalism used commonly to perturbatively solve path integrals in non- equilibrium systems. Then we include EFT corrections due to pressure, viscosity, and noise as effects on the time-dependent propagator. We are able to express results for arbitrary two and three point correlation functions in LSS in terms of differential operators acting on a triple K master intergral. We also, for the first time, get analytical results for more general initial conditions deviating from the usual power law P∝kⁿ by introducing a mass scale in the initial conditions. This robust field theoretic formalism empowers us with tools from strongly coupled QFT to study the strongly non-linear regime of LSS and turbulent fluid dynamics such as OPE and holographic duals. These could be used to capture fully the strongly non-linear dynamics of fluids and move towards solving the open problem of classical turbulence.

Keywords: quantum field theory, cosmology, effective field theory, renormallisation

Procedia PDF Downloads 135
11241 Urban Ecological Interaction: Air, Water, Light and New Transit at the Human Scale of Barcelona’s Superilles

Authors: Philip Speranza

Abstract:

As everyday transit options are shifting from autocentric to pedestrian and bicycle oriented modes for healthy living, downtown streets are becoming more attractive places to live. However, tools and methods to measure the natural environment at the small scale of streets do not exist. Fortunately, a combination of mobile data collection technology and parametric urban design software now allows an interface to relate urban ecological conditions. This paper describes creation of an interactive tool to measure urban phenomena of air, water, and heat/light at the scale of new three-by-three block pedestrianized areas in Barcelona called Superilles. Each Superilla limits transit to the exterior of the blocks and to create more walkable and bikeable interior streets for healthy living. The research will describe the integration of data collection, analysis, and design output via a live interface using parametric software Rhino Grasshopper and the Human User Interface (UI) plugin.

Keywords: transit, urban design, GIS, parametric design, Superilles, Barcelona, urban ecology

Procedia PDF Downloads 247
11240 Investigating Iraqi EFL University Students' Productive Knowledge of Grammatical Collocations in English

Authors: Adnan Z. Mkhelif

Abstract:

Grammatical collocations (GCs) are word combinations containing a preposition or a grammatical structure, such as an infinitive (e.g. smile at, interested in, easy to learn, etc.). Such collocations tend to be difficult for Iraqi EFL university students (IUS) to master. To help address this problem, it is important to identify the factors causing it. This study aims at investigating the effects of L2 proficiency, frequency of GCs and their transparency on IUSs’ productive knowledge of GCs. The study involves 112 undergraduate participants with different proficiency levels, learning English in formal contexts in Iraq. The data collection instruments include (but not limited to) a productive knowledge test (designed by the researcher using the British National Corpus (BNC)), as well as the grammar part of the Oxford Placement Test (OPT). The study findings have shown that all the above-mentioned factors have significant effects on IUSs’ productive knowledge of GCs. In addition to establishing evidence of which factors of L2 learning might be relevant to learning GCs, it is hoped that the findings of the present study will contribute to more effective methods of teaching that can better address and help overcome the problems IUSs encounter in learning GCs. The study is thus hoped to have significant theoretical and pedagogical implications for researchers, syllabus designers as well as teachers of English as a foreign/second language.

Keywords: corpus linguistics, frequency, grammatical collocations, L2 vocabulary learning, productive knowledge, proficiency, transparency

Procedia PDF Downloads 248
11239 The Threshold Values of Soil Water Index for Landslides on Country Road No.89

Authors: Ji-Yuan Lin, Yu-Ming Liou, Yi-Ting Chen, Chen-Syuan Lin

Abstract:

Soil water index obtained by tank model is now commonly used in soil and sand disaster alarm system in Japan. Comparing with the rainfall trigging index in Taiwan, the tank model is easy to predict the slope water content on large-scale landslide. Therefore, this study aims to estimate the threshold value of large-scale landslide using the soil water index Sixteen typhoons and heavy rainfall events, were selected to establish the, to relationship between landslide event and soil water index. Finally, the proposed threshold values for landslides on country road No.89 are suggested in this study. The study results show that 95% landslide cases occurred in soil water index more than 125mm, and 30% of the more serious slope failure occurred in the soil water index is greater than 250mm. Beside, this study speculates when soil water index more than 250mm and the difference value between second tank and third tank less than -25mm, it leads to large-scale landslide more probably.

Keywords: soil water index, tank model, landslide, threshold values

Procedia PDF Downloads 387
11238 Predicting Intention and Readiness to Alcohol Consumption Reduction and Cessation among Thai Teenagers Using Scales Based on the Theory of Planned Behavior

Authors: Rewadee Watakakosol, Arunya Tuicomepee, Panrapee Suttiwan, Sakkaphat T. Ngamake

Abstract:

Health problems caused by alcohol consumption not only have short-term effects at the time of drinking but also leave long-lasting health conditions. Teenagers who start drinking in their middle-high or high school years or before entering college have higher likelihood to increase their alcohol use and abuse, and they were found to be less healthy compared with their non-drinking peers when entering adulthood. This study aimed to examine factors that predict intention and readiness to reduce and quit alcohol consumption among Thai teenagers. Participants were 826 high-school and vocational school students, most of whom were females (64.4%) with the average age of 16.4 (SD = 0.9) and the average age of first drinking at 13.7 (SD = 2.2). Instruments included the scales that developed based on the Theory of Planned Behaviour theoretical framework. They were the Attitude toward Alcohol Reduction and Cessation Scale, Normative Group and Influence Scale, Perceived Behavioral Control toward Alcohol Reduction and Cessation Scale, Behavioral Intent toward Alcohol Reduction and Cessation Scale, and Readiness to Reduce and Quit Alcohol Consumption Scale. Findings revealed that readiness to reduce / quit alcohol was the most powerful predictive factor (β=. 53, p < .01), followed by attitude of easiness in alcohol reduction and cessation (β=.46, p < .01), perceived behavioral control toward alcohol reduction and cessation (β =.41, p < .01), normative group and influence (β=.15, p < .01), and attitude of being accepted from alcohol reduction and cessation (β = -.12, p < .01), respectively. Attitude of improved health after alcohol reduction and cessation did not show statistically significantly predictive power. All factors significantly predict teenagers’ alcohol reduction and cessation behavior and accounted for 59 percent of total variance of alcohol consumption reduction and cessation.

Keywords: alcohol consumption reduction and cessation, intention, readiness to change, Thai teenagers

Procedia PDF Downloads 335
11237 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer

Procedia PDF Downloads 182
11236 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 90
11235 Reinforcement Learning Optimization: Unraveling Trends and Advancements in Metaheuristic Algorithms

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The field of machine learning (ML) is experiencing rapid development, resulting in a multitude of theoretical advancements and extensive practical implementations across various disciplines. The objective of ML is to facilitate the ability of machines to perform cognitive tasks by leveraging knowledge gained from prior experiences and effectively addressing complex problems, even in situations that deviate from previously encountered instances. Reinforcement Learning (RL) has emerged as a prominent subfield within ML and has gained considerable attention in recent times from researchers. This surge in interest can be attributed to the practical applications of RL, the increasing availability of data, and the rapid advancements in computing power. At the same time, optimization algorithms play a pivotal role in the field of ML and have attracted considerable interest from researchers. A multitude of proposals have been put forth to address optimization problems or improve optimization techniques within the domain of ML. The necessity of a thorough examination and implementation of optimization algorithms within the context of ML is of utmost importance in order to provide guidance for the advancement of research in both optimization and ML. This article provides a comprehensive overview of the application of metaheuristic evolutionary optimization algorithms in conjunction with RL to address a diverse range of scientific challenges. Furthermore, this article delves into the various challenges and unresolved issues pertaining to the optimization of RL models.

Keywords: machine learning, reinforcement learning, loss function, evolutionary optimization techniques

Procedia PDF Downloads 75
11234 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition

Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can

Abstract:

To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.

Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning

Procedia PDF Downloads 85
11233 Reception Class Practitioners' Understandings on the Role of Teaching Assistants, in Particular Supporting Children in Mathematics

Authors: Nursel Bektas

Abstract:

The purpose of this study is to investigate the roles of teaching assistants (TAs) working in reception classes through practitioners’ perspectives. The study has two major purposes; firstly to explore the general roles of TAs, and secondly to identify their roles in supporting children for mathematics. A small-scale case study approach was adopted for this study. The research was carried out in two reception classes within a primary school in London. The qualitative data were gathered through observations and semi-structured interviews with four reception class practitioners, comprising two teachers and two TAs. The results show that TAs consider their role to be more like a teacher, whereas classroom teachers do not corroborate this and they generally believe that the role of TAs depends on their personal characteristics and skills. In regard to the general role of TAs, the study suggests that reception class TAs are deployed both at the classroom level to provide academic support for children’s learning and development, and at the school level they are deployed as support staff such as Midday Meal Supervisor or assistants. In terms of the pedagogical roles of TAs, it was found that TAs have a strong teaching role in literacy development, with notable autonomy if conducting their own phonics sessions without teacher direction, but a negligible influence in numeracy/ math’s. In addition, the results show that the TA role is perceived to be quite limited in planning and assessment processes. Linked to their limited roles in such processes, all participants agree that all the responsibility regarding the children’s learning and development, planning and assessment lies with the teacher. Therefore, data suggest that TAs’ roles in these areas depend on TAs’ their own initiatives.

Keywords: early years education, reception classes, roles, teaching assistants

Procedia PDF Downloads 187
11232 Mobile Learning and Student Engagement in English Language Teaching: The Case of First-Year Undergraduate Students at Ecole Normal Superieur, Algeria

Authors: I. Tiahi

Abstract:

The aim of the current paper is to explore educational practices in contemporary Algeria. Researches explain such practices bear traditional approach and the overlooks modern teaching methods such as mobile learning. That is why the research output of examining student engagement in respect of mobile learning was obtained from the following objectives: (1) To evaluate the current practice of English language teaching within Algerian higher education institutions, (2) To explore how social constructivism theory and m-learning help students’ engagement in the classroom and (3) To explore the feasibility and acceptability of m-learning amongst institutional leaders. The methodology underpins a case study and action research. For the case study, the researcher engaged with 6 teachers, 4 institutional leaders, and 30 students subjected for semi-structured interviews and classroom observations to explore the current teaching methods for English as a foreign language. For the action research, the researcher applied an intervention course to investigate the possibility and implications for future implementation of mobile learning in higher education institutions. The results were deployed using thematic analysis. The research outcome showed that the disengagement of students in English language learning has many aspects. As seen from the interviews from the teachers, the researcher found that they do not have enough resources except for using ppt for some teacher. According to them, the teaching method they are using is mostly communicative and competency-based approach. Teachers informed that students are disengaged because they have psychological barriers. In classroom setting, the students are conscious about social approval from the peer, and thus if they are to face negative reinforcement which would damage their image, it is seen as a preventive mechanism to be scared of committing mistakes. This was also very reflective in this finding. A lot of other arguments can be given for this claim; however, in Algerian setting, it is usual practice where teachers do not provide positive reinforcement which is open up students for possible learning. Thus, in order to overcome such a psychological barrier, proper measures can be taken. On a conclusive remark, it is evident that teachers, students, and institutional leaders provided positive feedback for using mobile learning. It is not only motivating but also engaging in learning processes. Apps such as Kahoot, Padlet and Slido were well received and thus can be taken further to examine its higher impact in Algerian context. Thus, in the future, it will be important to implement m-learning effectively in higher education to transform the current traditional practices into modern, innovative and active learning. Persuasion for this change for stakeholder may be challenging; however, its long-term benefits can be reflective from the current research paper.

Keywords: Algerian context, mobile learning, social constructivism, student engagement

Procedia PDF Downloads 138
11231 The Relation of Motivation and Reward with Volunteer Satisfaction: Empirical Evidence from Omani Non-Profit Organization

Authors: Ali Al Shamli, Talal AlMamari

Abstract:

Background: The relationship between motivation and satisfaction is posited to be mediated by reward. In this study, the motivation construct was measured by a motivation scale. The scale when factor analysed generated five factors. These factors were referred as; 1) leisure motivation, 2) egoistic motivation, 3) external motivation, 4) purposive, and 5) material motivation. The reward construct was measured by using a five-item scale whereas the satisfaction construct was measured by using a 13-item scale. The scale when factor analysed produced three factors which are referred as; 1) satisfaction A, 2) satisfaction B, and 3) satisfaction C. Objective: The main purpose of the present paper was to find out the relation of motivation and reward with volunteer satisfaction at national sports organizations (NPSOs) in Oman. Methods: This current study adopts a cross-sectional design as the data collection is done only once whereas the mode of administration was postal questionnaire where each questionnaire was posted, completed, and returned using the self-addressed envelope after its completion. The population of the study consisted of (160) boards and directors members of NPSOs (Non-Profit Sports Organization Services) in Oman from all 43 sports club. Results: The findings provided new empirical evidence that supported the argument of the relationship between motivation and satisfaction is indeed, mediated by reward. However, this study differs in that the relationship was tested based on the first-order constructs which were derived from the underlying dimensions of both motivation and satisfaction constructs. It was established that the relationships between motivation B and motivation C with satisfaction A are mediated by reward. Conclusion: In light of study findings, there is a direct relationship between developmental motivation and experiential satisfaction, a direct relationship between social motivation and relational satisfaction, as well as personal motivation and relational satisfaction, is mediated by reward. Therefore, Omani volunteers are less reliant on the reward as evidenced by the direct relationship between motivation A and satisfaction and between motivation C and satisfaction A. More tests in different settings will provide more understanding on volunteer motivation.

Keywords: non-profit sports organization, sport and reward, volunteers in sport, satisfaction in sport

Procedia PDF Downloads 463
11230 Research on the Impact of Spatial Layout Design on College Students’ Learning and Mental Health: Analysis Based on a Smart Classroom Renovation Project in Shanghai, China

Authors: Zhang Dongqing

Abstract:

Concern for students' mental health and the application of intelligent advanced technologies are driving changes in teaching models. The traditional teacher-centered classroom is beginning to transform into a student-centered smart interactive learning environment. Nowadays, smart classrooms are compatible with constructivist learning. This theory emphasizes the role of teachers in the teaching process as helpers and facilitators of knowledge construction, and students learn by interacting with them. The spatial design of classrooms is closely related to the teaching model and should also be developed in the direction of smart classroom design. The goal is to explore the impact of smart classroom layout on student-centered teaching environment and teacher-student interaction under the guidance of constructivist learning theory, by combining the design process and feedback analysis of the smart transformation project on the campus of Tongji University in Shanghai. During the research process, the theoretical basis of constructivist learning was consolidated through literature research and case analysis. The integration and visual field analysis of the traditional and transformed indoor floor plans were conducted using space syntax tools. Finally, questionnaire surveys and interviews were used to collect data. The main conclusions are as followed: flexible spatial layouts can promote students' learning effects and mental health; the interactivity of smart classroom layouts is different and needs to be combined with different teaching models; the public areas of teaching buildings can also improve the interactive learning atmosphere by adding discussion space. This article provides a data-based research basis for improving students' learning effects and mental health, and provides a reference for future smart classroom design.

Keywords: spatial layout, smart classroom, space syntax, renovation, educational environment

Procedia PDF Downloads 73
11229 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level

Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham

Abstract:

Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.

Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes

Procedia PDF Downloads 228
11228 The Technology of Magnetic Subs for Downhole Inorganic Scale Mitigation

Authors: Plinio Martins Dias Da Silva, Bruno Barbosa Castro, Andre Leibsohn Martins, Rosane Alves Fontes, Joao Vicente Martins de Magalhaes, Fernando Salatiel de Oliveira, Helga Elisabeth Pinheiro Schluter, Alexandre Zacharias Ignacio Pereira

Abstract:

Inorganic scale is a relevant cause for production losses in offshore operations. In the development of pre-salt fields calcium carbonate crystallization, especially when the flow is submitted to abrupt depressurization, often cause problems in reservoir selectivity and production string obstruction. The conventional strategy for this kind of problem is to continuously inject chemicals to prevent precipitation. The low reliability of injection devices, which frequently fail, and the possibility of adopting downhole completion configurations which do not allow injection at the lower zones stimulated the industry to search for alternative mitigation strategies. The use of magnetic fields to help in minimizing the adhesion of calcium carbonate crystals to downhole surfaces. The proposed mechanisms include the effect of the magnetic field in generating fewer adhesive polymorphs (vaterite) in relation to the more stable ones (calcite). A discussion on this topic has been widely addressed in the literature. The goal of the present article is to describe the construction of real scale prototypes of a magnetic sub, a device to be attached to the production string to generate the necessary magnetic field to achieve the scale mitigation requirements. The strategy for magnetic and mechanical design is described. In addition, a protocol to establish the strategy for field installation in a field development project is detailed. The focus is to equip a given well with several subs and compare the production records with a correlation well with no subs installed. Finally, an update of the status of field installations is presented, with the proposed evaluation methodology customized for each field.

Keywords: magnetic subs, downhole, scale, inorganic, mitigation

Procedia PDF Downloads 4
11227 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 79