Search results for: equivalent circuit models
6107 Vortices Structure in Internal Laminar and Turbulent Flows
Authors: Farid Gaci, Zoubir Nemouchi
Abstract:
A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent
Procedia PDF Downloads 3366106 Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation
Authors: Sung-Min Kim, Joon-Hong Park, Hyuk Choi
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the anti-splash device located under the P/V valve and new concept design models using the CFD. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-splash device is fitted to improve and prevent this problem in the shipbuilding industry, but the oil outflow accidents are still reported by ship owners. Thus, 4 types of new design model are presented by this study, and then comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the anti-splash device. Therefore, the flow and velocity are grasped by transient analysis, and then it decided optimum model and design parameters to develop model. Later, it is needed to develop an anti-splash device by flow test to get certification and verification using experiment equipments.Keywords: anti-splash device, P/V valve, sloshing, CFD
Procedia PDF Downloads 6346105 A Survey of Digital Health Companies: Opportunities and Business Model Challenges
Authors: Iris Xiaohong Quan
Abstract:
The global digital health market reached 175 billion U.S. dollars in 2019, and is expected to grow at about 25% CAGR to over 650 billion USD by 2025. Different terms such as digital health, e-health, mHealth, telehealth have been used in the field, which can sometimes cause confusion. The term digital health was originally introduced to refer specifically to the use of interactive media, tools, platforms, applications, and solutions that are connected to the Internet to address health concerns of providers as well as consumers. While mHealth emphasizes the use of mobile phones in healthcare, telehealth means using technology to remotely deliver clinical health services to patients. According to FDA, “the broad scope of digital health includes categories such as mobile health (mHealth), health information technology (IT), wearable devices, telehealth and telemedicine, and personalized medicine.” Some researchers believe that digital health is nothing else but the cultural transformation healthcare has been going through in the 21st century because of digital health technologies that provide data to both patients and medical professionals. As digital health is burgeoning, but research in the area is still inadequate, our paper aims to clear the definition confusion and provide an overall picture of digital health companies. We further investigate how business models are designed and differentiated in the emerging digital health sector. Both quantitative and qualitative methods are adopted in the research. For the quantitative analysis, our research data came from two databases Crunchbase and CBInsights, which are well-recognized information sources for researchers, entrepreneurs, managers, and investors. We searched a few keywords in the Crunchbase database based on companies’ self-description: digital health, e-health, and telehealth. A search of “digital health” returned 941 unique results, “e-health” returned 167 companies, while “telehealth” 427. We also searched the CBInsights database for similar information. After merging and removing duplicate ones and cleaning up the database, we came up with a list of 1464 companies as digital health companies. A qualitative method will be used to complement the quantitative analysis. We will do an in-depth case analysis of three successful unicorn digital health companies to understand how business models evolve and discuss the challenges faced in this sector. Our research returned some interesting findings. For instance, we found that 86% of the digital health startups were founded in the recent decade since 2010. 75% of the digital health companies have less than 50 employees, and almost 50% with less than 10 employees. This shows that digital health companies are relatively young and small in scale. On the business model analysis, while traditional healthcare businesses emphasize the so-called “3P”—patient, physicians, and payer, digital health companies extend to “5p” by adding patents, which is the result of technology requirements (such as the development of artificial intelligence models), and platform, which is an effective value creation approach to bring the stakeholders together. Our case analysis will detail the 5p framework and contribute to the extant knowledge on business models in the healthcare industry.Keywords: digital health, business models, entrepreneurship opportunities, healthcare
Procedia PDF Downloads 1836104 Seismic Investigation on the Effect of Surface Structures and Twin Tunnel on the Site Response in Urban Areas
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Site response has a profound effect on earthquake damages. Seismic interaction of urban tunnels with surface structures could also affect seismic site response. Here, we use FLAC 2D to investigate the interaction of a single tunnel and twin tunnels-surface structures on the site response. Soil stratification and properties are selected based on Line. No 7 of the Tehran subway. The effect of surface structure is considered in two ways: Equivalent surcharge and geometrical modeling of the structure. Comparison of the results shows that consideration of the structure geometry is vital in dynamic analysis and leads to the changes in the magnitude of displacements, accelerations and response spectrum. Therefore it is necessary for the surface structures to be wholly modeled and not just considered as a surcharge in dynamic analysis. The use of twin tunnel also leads to the reduction of dynamic residual settlement.Keywords: superstructure, tunnel, site response, surcharge, interaction
Procedia PDF Downloads 1646103 Integrating Critical Stylistics and Visual Grammar: A Multimodal Stylistic Approach to the Analysis of Non-Literary Texts
Authors: Shatha Khuzaee
Abstract:
The study develops multimodal stylistic approach to analyse a number of BBC online news articles reporting some key events from the so called ‘Arab Uprisings’. Critical stylistics (CS) and visual grammar (VG) provide insightful arguments to the ways ideology is projected through different verbal and visual modes, yet they are mode specific because they examine how each mode projects its meaning separately and do not attempt to clarify what happens intersemiotically when the two modes co-occur. Therefore, it is the task undertaken in this research to propose multimodal stylistic approach that addresses the issue of ideology construction when the two modes co-occur. Informed by functional grammar and social semiotics, the analysis attempts to integrate three linguistic models developed in critical stylistics, namely, transitivity choices, prioritizing and hypothesizing along with their visual equivalents adopted from visual grammar to investigate the way ideology is constructed, in multimodal text, when text/image participate and interrelate in the process of meaning making on the textual level of analysis. The analysis provides comprehensive theoretical and analytical elaborations on the different points of integration between CS linguistic models and VG equivalents which operate on the textual level of analysis to better account for ideology construction in news as non-literary multimodal texts. It is argued that the analysis well thought out a plan that would remark the first step towards the integration between the well-established linguistic models of critical stylistics and that of visual analysis to analyse multimodal texts on the textual level. Both approaches are compatible to produce multimodal stylistic approach because they intend to analyse text and image depending on whatever textual evidence is available. This supports the analysis maintain the rigor and replicability needed for a stylistic analysis like the one undertaken in this study.Keywords: multimodality, stylistics, visual grammar, social semiotics, functional grammar
Procedia PDF Downloads 2216102 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture
Authors: Venkat S. Somayajula
Abstract:
Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical featuresKeywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle
Procedia PDF Downloads 1286101 Density Measurement of Mixed Refrigerants R32+R1234yf and R125+R290 from 0°C to 100°C and at Pressures up to 10 MPa
Authors: Xiaoci Li, Yonghua Huang, Hui Lin
Abstract:
Optimization of the concentration of components in mixed refrigerants leads to potential improvement of either thermodynamic cycle performance or safety performance of heat pumps and refrigerators. R32+R1234yf and R125+R290 are two promising binary mixed refrigerants for the application of heat pumps working in the cold areas. The p-ρ-T data of these mixtures are one of the fundamental and necessary properties for design and evaluation of the performance of the heat pumps. Although the property data of mixtures can be predicted by the mixing models based on the pure substances incorporated in programs such as the NIST database Refprop, direct property measurement will still be helpful to reveal the true state behaviors and verify the models. Densities of the mixtures of R32+R1234yf an d R125+R290 are measured by an Anton Paar U shape oscillating tube digital densimeter DMA-4500 in the range of temperatures from 0°C to 100 °C and pressures up to 10 MPa. The accuracy of the measurement reaches 0.00005 g/cm³. The experimental data are compared with the predictions by Refprop in the corresponding range of pressure and temperature.Keywords: mixed refrigerant, density measurement, densimeter, thermodynamic property
Procedia PDF Downloads 2976100 Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution
Authors: Yasser M. Abd-elrhman, Mohamed A. Gepreel, Kiochi Nakamura, Ahmed Abd El-Moneim, Sengo Kobayashi, Mervat M. Ibrahim
Abstract:
Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities.Keywords: titanium alloys, corrosion resistance, Ringer’s solution, electrochemical corrosion
Procedia PDF Downloads 6596099 Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete
Authors: K. M. Aldossari, W. A. Elsaigh, M. J. Shannag
Abstract:
An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fiber content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: Matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; Fiber volume fraction including 0, 0.5%, 0.76%, and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fiber content added; Whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fiber content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete.Keywords: concrete, flexural strength, toughness, steel fibers
Procedia PDF Downloads 4976098 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure
Authors: Yashar Haghighatfar, Shahrzad Mirhosseini
Abstract:
Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method
Procedia PDF Downloads 2296097 Microarray Gene Expression Data Dimensionality Reduction Using PCA
Authors: Fuad M. Alkoot
Abstract:
Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.Keywords: PCA, gene expression, dimensionality reduction, classification, autism
Procedia PDF Downloads 5606096 Efects of Data Corelation in a Sparse-View Compresive Sensing Based Image Reconstruction
Authors: Sajid Abas, Jon Pyo Hong, Jung-Ryun Le, Seungryong Cho
Abstract:
Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.Keywords: computed tomography, computed laminography, compressive sending, low-dose
Procedia PDF Downloads 4646095 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 3696094 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis
Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan
Abstract:
This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis
Procedia PDF Downloads 2276093 Development of DNDC Modelling Method for Evaluation of Carbon Dioxide Emission from Arable Soils in European Russia
Authors: Olga Sukhoveeva
Abstract:
Carbon dioxide (CO2) is the main component of carbon biogeochemical cycle and one of the most important greenhouse gases (GHG). Agriculture, particularly arable soils, are one the largest sources of GHG emission for the atmosphere including CO2.Models may be used for estimation of GHG emission from agriculture if they can be adapted for different countries conditions. The only model used in officially at national level in United Kingdom and China for this purpose is DNDC (DeNitrification-DeComposition). In our research, the model DNDC is offered for estimation of GHG emission from arable soils in Russia. The aim of our research was to create the method of DNDC using for evaluation of CO2 emission in Russia based on official statistical information. The target territory was European part of Russia where many field experiments are located. At the first step of research the database on climate, soil and cropping characteristics for the target region from governmental, statistical, and literature sources were created. All-Russia Research Institute of Hydrometeorological Information – World Data Centre provides open daily data about average meteorological and climatic conditions. It must be calculated spatial average values of maximum and minimum air temperature and precipitation over the region. Spatial average values of soil characteristics (soil texture, bulk density, pH, soil organic carbon content) can be determined on the base of Union state register of soil recourses of Russia. Cropping technologies are published by agricultural research institutes and departments. We offer to define cropping system parameters (annual information about crop yields, amount and types of fertilizers and manure) on the base of the Federal State Statistics Service data. Content of carbon in plant biomass may be calculated via formulas developed and published by Ministry of Natural Resources and Environment of the Russian Federation. At the second step CO2 emission from soil in this region were calculated by DNDC. Modelling data were compared with empirical and literature data and good results were obtained, modelled values were equivalent to the measured ones. It was revealed that the DNDC model may be used to evaluate and forecast the CO2 emission from arable soils in Russia based on the official statistical information. Also, it can be used for creation of the program for decreasing GHG emission from arable soils to the atmosphere. Financial Support: fundamental scientific researching theme 0148-2014-0005 No 01201352499 ‘Solution of fundamental problems of analysis and forecast of Earth climatic system condition’ for 2014-2020; fundamental research program of Presidium of RAS No 51 ‘Climate change: causes, risks, consequences, problems of adaptation and regulation’ for 2018-2020.Keywords: arable soils, carbon dioxide emission, DNDC model, European Russia
Procedia PDF Downloads 1916092 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates
Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe
Abstract:
Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.Keywords: machine learning, MTB, WGS, drug resistant TB
Procedia PDF Downloads 526091 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks
Procedia PDF Downloads 1426090 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model
Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge
Abstract:
Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model
Procedia PDF Downloads 1316089 Mitigation of High Voltage Equipment Design Deficiencies for Improved Operation and Maintenance
Authors: Riyad Awad, Abdulmohsen Alghadeer, Meshari Otaibi
Abstract:
Proper operation and maintenance (O&M) activities of high voltage equipment can lead to an increased asset lifecycle and maintain its integrity and reliability. Such a vital process is important to be proactively considered during equipment design and manufacturing phases by removing and eliminating any obstacles in the equipment which adversely affect the (O&M) activities. This paper presents a gap analysis pertaining to difficulties in performing operations and maintenance (O&M) high voltage electrical equipment, includes power transformers, switch gears, motor control center, disconnect switches and circuit breakers. The difficulties are gathered from field personnel, equipment design review comments, quality management system, and lessons learned database. The purpose of the gap analysis is to mitigate and prevent the (O&M) difficulties as early as possible in the design stage of the equipment lifecycle. The paper concludes with several recommendations and corrective actions for all identified gaps in order to reduce the cost (O&M) difficulties and improve the equipment lifecycle.Keywords: operation and maintenance, high voltage equipment, equipment lifecycle, reduce the cost of maintenance
Procedia PDF Downloads 1676088 Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors
Authors: Naima Boudieb, Mohamed Loucif Seaid, Imad Rati, Imane Benammane
Abstract:
The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications.Keywords: energy storage, supercapacitors, SIE, VC, PANI, poly(3, 4-ethylenedioxythiophene, PEDOT, polystyrene sulfonate
Procedia PDF Downloads 636087 Designing Product-Service-System Applied to Reusable Packaging Solutions: A Strategic Design Tool
Authors: Yuan Long, Fabrizio Ceschin, David Harrison
Abstract:
Environmental sustainability is under the threat of excessive single-use plastic packaging waste, and current waste management fails to address this issue. Therefore, it has led to a reidentification of the alternative, which can curb the packaging waste without reducing social needs. Reusable packaging represents a circular approach to close the loop of consumption in which packaging can stay longer in the system to satisfy social needs. However, the implementation of reusable packaging is fragmented and lacks systematic approaches. The product-service system (PSS) is widely regarded as a sustainable business model innovation for embracing circular consumption. As a result, applying PSS to reusable packaging solutions will be promising to address the packaging waste issue. This paper aims at filling the knowledge gap relating to apply PSS to reusable packaging solutions and provide a strategic design tool that could support packaging professionals to design reusable packaging solutions. The methodology of this paper is case studies and workshops to provide a design tool. The respondents are packaging professionals who are packaging consultants, NGO professionals, and entrepreneurs. 57 cases collected show that 15 archetypal models operate in the market. Subsequently, a polarity diagram is developed to embrace those 15 archetypal models, and a total number of 24 experts were invited for the workshop to evaluate the design tool. This research finally provides a strategic design tool to support packaging professionals to design reusable packaging solutions. The application of the tool is to support the understanding of the reusable packaging solutions, analyzing the markets, identifying new opportunities, and generate new business models. The implication of this research is to provide insights for academics and businesses in terms of tackling single-use packaging waste and build a foundation for further development of the reusable packaging solution tool.Keywords: environmental sustainability, product-service system, reusable packaging, design tool
Procedia PDF Downloads 1486086 Concurrent Engineering Challenges and Resolution Mechanisms from Quality Perspectives
Authors: Grmanesh Gidey Kahsay
Abstract:
In modern technical engineering applications, quality is defined in two ways. The first one is that quality is the parameter that measures a product or service’s characteristics to meet and satisfy the pre-stated or fundamental needs (reliability, durability, serviceability). The second one is the quality of a product or service free of any defect or deficiencies. The American Society for Quality (ASQ) describes quality as a pursuit of optimal solutions to confirm successes and fulfillment to be accountable for the product or service's requirements and expectations. This article focuses on quality engineering tools in modern industrial applications. Quality engineering is a field of engineering that deals with the principles, techniques, models, and applications of the product or service to guarantee quality. Including the entire activities to analyze the product’s design and development, quality engineering emphasizes how to make sure that products and services are designed and developed to meet consumers’ requirements. This episode acquaints with quality tools such as quality systems, auditing, product design, and process control. The finding presents thoughts that aim to improve quality engineering proficiency and effectiveness by introducing essential quality techniques and tools in some selected industries.Keywords: essential quality tools, quality systems and models, quality management systems, and quality assurance
Procedia PDF Downloads 1526085 Empirical Modeling of Air Dried Rubberwood Drying System
Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit
Abstract:
Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (R²), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (R² = 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.Keywords: empirical models, rubberwood, moisture ratio, hot air drying
Procedia PDF Downloads 2676084 Fast High Voltage Solid State Switch Using Insulated Gate Bipolar Transistor for Discharge-Pumped Lasers
Authors: Nur Syarafina Binti Othman, Tsubasa Jindo, Makato Yamada, Miho Tsuyama, Hitoshi Nakano
Abstract:
A novel method to produce a fast high voltage solid states switch using Insulated Gate Bipolar Transistors (IGBTs) is presented for discharge-pumped gas lasers. The IGBTs are connected in series to achieve a high voltage rating. An avalanche transistor is used as the gate driver. The fast pulse generated by the avalanche transistor quickly charges the large input capacitance of the IGBT, resulting in a switch out of a fast high-voltage pulse. The switching characteristic of fast-high voltage solid state switch has been estimated in the multi-stage series-connected IGBT with the applied voltage of several tens of kV. Electrical circuit diagram and the mythology of fast-high voltage solid state switch as well as experimental results obtained are presented.Keywords: high voltage, IGBT, solid state switch, bipolar transistor
Procedia PDF Downloads 5526083 Cognitive eTransformation Framework for Education Sector
Authors: A. Hol
Abstract:
21st century brought waves of business and industry eTransformations. The impact of change is also being seen in education. To identify the extent of this, scenario analysis methodology was utilised with the aim to assess business transformations across industry sectors ranging from craftsmanship, medicine, finance and manufacture to innovations and adoptions of new technologies and business models. Firstly, scenarios were drafted based on the current eTransformation models and its dimensions. Following this, eTransformation framework was utilised with the aim to derive the key eTransformation parameters, the essential characteristics that have enabled eTransformations across the sectors. Following this, identified key parameters were mapped to the transforming domain-education. The mapping assisted in deriving a cognitive eTransformation framework for education sector. The framework highlights the importance of context and the notion that education today needs not only to deliver content to students but it also needs to be able to meet the dynamically changing demands of specific student and industry groups. Furthermore, it pinpoints that for such processes to be supported, specific technology is required, so that instant, on demand and periodic feedback as well as flexible, dynamically expanding study content can be sought and received via multiple education mediums.Keywords: education sector, business transformation, eTransformation model, cognitive model, cognitive systems, eTransformation
Procedia PDF Downloads 1366082 A Dynamic Neural Network Model for Accurate Detection of Masked Faces
Authors: Oladapo Tolulope Ibitoye
Abstract:
Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.Keywords: convolutional neural network, face detection, face mask, masked faces
Procedia PDF Downloads 686081 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate
Authors: Susan Diamond
Abstract:
Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare.Keywords: deep learning, machine learning, cognitive computing, model training
Procedia PDF Downloads 2096080 Numerical Investigation of Cavitation on Different Venturi Shapes by Computational Fluid Dynamics
Authors: Sedat Yayla, Mehmet Oruc, Shakhwan Yaseen
Abstract:
Cavitation phenomena might rigorously impair machine parts such as pumps, propellers and impellers or devices as the pressure in the fluid declines under the liquid's saturation pressure. To evaluate the influence of cavitation, in this research two-dimensional computational fluid dynamics (CFD) venturi models with variety of inlet pressure values, throat lengths and vapor fluid contents were applied. In this research three different vapor contents (0%, 5% 10%), four inlet pressures (2, 4, 6, 8 and 10 atm) and two venturi models were employed at different throat lengths ( 5, 10, 15 and 20 mm) for discovering the impact of each parameter on the cavitation number. It is uncovered that there is a positive correlation between pressure inlet and vapor fluid content and cavitation number. Furthermore, it is unveiled that velocity remains almost constant at the inlet pressures of 6, 8,10atm, nevertheless increasing the length of throat results in the substantial escalation in the velocity of the throat at inlet pressures of 2 and 4 atm. Furthermore, velocity and cavitation number were negatively correlated. The results of the cavitation number varied between 0.092 and 0.495 depending upon the velocity values of the throat.Keywords: cavitation number, computational fluid dynamics, mixture of fluid, two-phase flow, velocity of throat
Procedia PDF Downloads 4016079 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides
Authors: V. Keim, J. Spachtholz, J. Hammer
Abstract:
The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation
Procedia PDF Downloads 2156078 Variability and Stability of Bread and Durum Wheat for Phytic Acid Content
Authors: Gordana Branković, Vesna Dragičević, Dejan Dodig, Desimir Knežević, Srbislav Denčić, Gordana Šurlan-Momirović
Abstract:
Phytic acid is a major pool in the flux of phosphorus through agroecosystems and represents a sum equivalent to > 50% of all phosphorus fertilizer used annually. Nutrition rich in phytic acid can substantially decrease micronutrients apsorption as calcium, zink, iron, manganese, copper due to phytate salts excretion by human and non-ruminant animals as poultry, swine and fish, having in common very scarce phytase activity, and consequently the ability to digest and utilize phytic acid, thus phytic acid derived phosphorus in animal waste contributes to water pollution. The tested accessions consisted of 15 genotypes of bread wheat (Triticum aestivum L. ssp. vulgare) and of 15 genotypes of durum wheat (Triticum durum Desf.). The trials were sown at the three test sites in Serbia: Rimski Šančevi (RS) (45º19´51´´N; 19º50´59´´E), Zemun Polje (ZP) (44º52´N; 20º19´E) and Padinska Skela (PS) (44º57´N 20º26´E) during two vegetation seasons 2010-2011 and 2011-2012. The experimental design was randomized complete block design with four replications. The elementary plot consisted of 3 internal rows of 0.6 m2 area (3 × 0.2 m × 1 m). Grains were grinded with Laboratory Mill 120 Perten (“Perten”, Sweden) (particles size < 500 μm) and flour was used for the analysis. Phytic acid grain content was determined spectrophotometrically with the Shimadzu UV-1601 spectrophotometer (Shimadzu Corporation, Japan). Objectives of this study were to determine: i) variability and stability of the phytic acid content among selected genotypes of bread and durum wheat, ii) predominant source of variation regarding genotype (G), environment (E) and genotype × environment interaction (GEI) from the multi-environment trial, iii) influence of climatic variables on the GEI for the phytic acid content. Based on the analysis of variance it had been determined that the variation of phytic acid content was predominantly influenced by environment in durum wheat, while the GEI prevailed for the variation of the phytic acid content in bread wheat. Phytic acid content expressed on the dry mass basis was in the range 14.21-17.86 mg g-1 with the average of 16.05 mg g-1 for bread wheat and 14.63-16.78 mg g-1 with the average of 15.91 mg g-1 for durum wheat. Average-environment coordination view of the genotype by environment (GGE) biplot was used for the selection of the most desirable genotypes for breeding for low phytic acid content in the sense of good stability and lower level of phytic acid content. The most desirable genotypes of bread and durum wheat for breeding for phytic acid were Apache and 37EDUYT /07 No. 7849. Models of climatic factors in the highest percentage (> 91%) were useful in interpreting GEI for phytic acid content, and included relative humidity in June, sunshine hours in April, mean temperature in April and winter moisture reserves for genotypes of bread wheat, as well as precipitation in June and April, maximum temperature in April and mean temperature in June for genotypes of durum wheat.Keywords: genotype × environment interaction, phytic acid, stability, variability
Procedia PDF Downloads 394