Search results for: encryption techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6918

Search results for: encryption techniques

4818 Conductive Clay Nanocomposite Using Smectite and Poly(O-Anisidine)

Authors: M. Şahi̇n, E. Erdem, M. Saçak

Abstract:

In this study, Na-smectite crystals purificated of bentonite were used after being swelling with benzyltributylammonium bromide (BTBAB) as alkyl ammonium salt. Swelling process was carried out using 0.2 g of BTBAB for smectite of 0.8 g with 4 h of mixing time after investigated conditions such as mixing time, the swelling agent amount. Then, the conductive poly(o-anisidine) (POA)/smectite nanocomposite was prepared in the presence of swollen Na-smectite using ammonium persulfate (APS) as oxidant in aqueous acidic medium. The POA content and conductivity of the prepared nanocomposite were systematically investigated as a function of polymerization conditions such as the treatment time of swollen smectite in monomer solution and o-anisidine/APS mol ratio. POA/smectite nanocomposite was characterized by XRD, FTIR and SEM techniques and was compared separately with components of composite.

Keywords: clay, composite, conducting polymer, poly(o-anisidine)

Procedia PDF Downloads 325
4817 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 128
4816 Lexicon-Based Sentiment Analysis for Stock Movement Prediction

Authors: Zane Turner, Kevin Labille, Susan Gauch

Abstract:

Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.

Keywords: computational finance, sentiment analysis, sentiment lexicon, stock movement prediction

Procedia PDF Downloads 170
4815 Comparison of Two Different Methods for Peptide Synthesis

Authors: Klaudia Chmielewska, Krystyna Dzierzbicka, Iwona Inkielewicz-Stepniak

Abstract:

Carnosine, an endogenous peptide consisting of β-alanine and L-histidine has a variety of functions to mention: antioxidant, antiglycation, and reducing the toxicity of metal ions. It has therefore been proposed to act as a therapeutic agent for many pathological states, although its therapeutic index is limited by quick enzymatic cleavage. To overcome this limitation, there’s an urge to create new derivatives which might become less potent to hydrolysis, while preserving the therapeutic effect. The poster summarizes the efficiency of two peptide synthesis methods, which were: (1) the mixed anhydride with isobutyl chloroformate and N-methylmorpholine (NMM) and (2) carbodiimide - mediated coupling method via appropriate reagent condensing, here – CDI. The methods were used to obtain dipeptides which were the derivatives of carnosine. Obtained dipeptides were made in the form of methyl esters and their structures will be confirmed 1H NMR, 13C NMR, MS and elemental analysis techniques. Later on, they will be analyzed for their antioxidant properties, in comparison to carnosine.

Keywords: carnosine, method, peptide, synthesis

Procedia PDF Downloads 159
4814 The Pioneering Model in Teaching Arabic as a Mother Tongue through Modern Innovative Strategies

Authors: Rima Abu Jaber Bransi, Rawya Jarjoura Burbara

Abstract:

This study deals with two pioneering approaches in teaching Arabic as a mother tongue: first, computerization of literary and functional texts in the mother tongue; second, the pioneering model in teaching writing skills by computerization. The significance of the study lies in its treatment of a serious problem that is faced in the era of technology, which is the widening gap between the pupils and their mother tongue. The innovation in the study is that it introduces modern methods and tools and a pioneering instructional model that turns the process of mother tongue teaching into an effective, meaningful, interesting and motivating experience. In view of the Arabic language diglossia, standard Arabic and spoken Arabic, which constitutes a serious problem to the pupil in understanding unused words, and in order to bridge the gap between the pupils and their mother tongue, we resorted to computerized techniques; we took texts from the pre-Islamic period (Jahiliyya), starting with the Mu'allaqa of Imru' al-Qais and other selected functional texts and computerized them for teaching in an interesting way that saves time and effort, develops high thinking strategies, expands the literary good taste among the pupils, and gives the text added values that neither the book, the blackboard, the teacher nor the worksheets provide. On the other hand, we have developed a pioneering computerized model that aims to develop the pupil's ability to think, to provide his imagination with the elements of growth, invention and connection, and motivate him to be creative, and raise level of his scores and scholastic achievements. The model consists of four basic stages in teaching according to the following order: 1. The Preparatory stage, 2. The reading comprehension stage, 3. The writing stage, 4. The evaluation stage. Our lecture will introduce a detailed description of the model with illustrations and samples from the units that we built through highlighting some aspects of the uniqueness and innovation that are specific to this model and the different integrated tools and techniques that we developed. One of the most significant conclusions of this research is that teaching languages through the employment of new computerized strategies is very likely to get the Arabic speaking pupils out of the circle of passive reception into active and serious action and interaction. The study also emphasizes the argument that the computerized model of teaching can change the role of the pupil's mind from being a store of knowledge for a short time into a partner in producing knowledge and storing it in a coherent way that prevents its forgetfulness and keeping it in memory for a long period of time. Consequently, the learners also turn into partners in evaluation by expressing their views, giving their notes and observations, and application of the method of peer-teaching and learning.

Keywords: classical poetry, computerization, diglossia, writing skill

Procedia PDF Downloads 225
4813 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model

Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi

Abstract:

Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.

Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models

Procedia PDF Downloads 128
4812 Research of Applicable Ground Reinforcement Method in Double-Deck Tunnel Junction

Authors: SKhan Park, Seok Jin Lee, Jong Sun Kim, Jun Ho Lee, Bong Chan Kim

Abstract:

Because of the large economic losses caused by traffic congestion in metropolitan areas, various studies on the underground network design and construction techniques has been performed various studies in the developed countries. In Korea, it has performed a study to develop a versatile double-deck of deep tunnel model. This paper is an introduction to develop a ground reinforcement method to enable the safe tunnel construction in the weakened pillar section like as junction of tunnel. Applicable ground reinforcement method in the weakened section is proposed and it is expected to verify the method by the field application tests.

Keywords: double-deck tunnel, ground reinforcement, tunnel construction, weakened pillar section

Procedia PDF Downloads 410
4811 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids

Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash

Abstract:

The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.

Keywords: ferroconvection, magnetic field dependent viscosity, temperature dependent viscosity, throughflow

Procedia PDF Downloads 265
4810 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition

Authors: M. Beusink, E. W. C. Coenen

Abstract:

The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.

Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures

Procedia PDF Downloads 233
4809 Coding Considerations for Standalone Molecular Dynamics Simulations of Atomistic Structures

Authors: R. O. Ocaya, J. J. Terblans

Abstract:

The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

Keywords: C language, molecular dynamics, simulation, embedded atom method

Procedia PDF Downloads 305
4808 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: deep learning network, smart metering, water end use, water-energy data

Procedia PDF Downloads 306
4807 Patterns Obtained by Using Knitting Technique in Textile Crafts

Authors: Özlem Erzurumlu, Nazan Oskay, Ece Melek

Abstract:

Knitting which is one of the textile manufacturing techniques is manufactured by using the system of single yarn. Knitting wares consisting of loops structurally have flexible structures. Knitting can be shaped and given volume easily due to increasing or decreasing the number of loops, being manufactured in circular form and its flexible structure. While the knitting wares are basically being manufactured to meet the requirements, it takes its place in the art field overflowing outside of industrial production later. Textile artist ensures his ideas to convert into artistic product by using textiles and non-textiles with aesthetic concerns and creative impulses. When textile crafts are observed at the present time we see that knitting technique has an extensive area of use such as sculpture, panel, installation art and performing art. It is examined how the knitting technique is used in textile crafts observing patterns obtained by this technique in textile crafts in this study.

Keywords: art, textile, knitting art, textile crafts

Procedia PDF Downloads 707
4806 Software Defect Analysis- Eclipse Dataset

Authors: Amrane Meriem, Oukid Salyha

Abstract:

The presence of defects or bugs in software can lead to costly setbacks, operational inefficiencies, and compromised user experiences. The integration of Machine Learning(ML) techniques has emerged to predict and preemptively address software defects. ML represents a proactive strategy aimed at identifying potential anomalies, errors, or vulnerabilities within code before they manifest as operational issues. By analyzing historical data, such as code changes, feature im- plementations, and defect occurrences. This en- ables development teams to anticipate and mitigate these issues, thus enhancing software quality, reducing maintenance costs, and ensuring smoother user interactions. In this work, we used a recommendation system to improve the performance of ML models in terms of predicting the code severity and effort estimation.

Keywords: software engineering, machine learning, bugs detection, effort estimation

Procedia PDF Downloads 87
4805 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 10
4804 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Authors: J. R. Büttler, T. Pham

Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite

Procedia PDF Downloads 129
4803 Systematic Formulation Development and Evaluation of Self-Nanoemulsifying Systems of Rosuvastatin Employing QbD Approach and Chemometric Techniques

Authors: Sarwar Beg, Gajanand Sharma, O. P. Katare, Bhupinder Singh

Abstract:

The current studies entail development of self-nano emulsifying drug delivery systems (SNEDDS) of rosuvastatin, employing rational QbD-based approach for enhancing its oral bioavailability. SNEDDS were prepared using the blend of lipidic and emulsifying excipients, i.e., Peceol, Tween 80, and Transcutol HP. The prepared formulations evaluated for in vitro drug release, ex vivo permeation, in situ perfusion studies and in vivo pharmacokinetic studies in rats, which demonstrated 3-4 fold improvement in biopharmaceutical performance of the developed formulations. Cytotoxicity studies using MTT assay and histopathological studies in intestinal cells revealed the lack of cytotoxicity and thereby safety and efficacy of the developed formulations.

Keywords: SNEDDS, bioavailability, solubility, Quality by Design (QbD)

Procedia PDF Downloads 505
4802 A Novel Design Methodology for a 1.5 KW DC/DC Converter in EV and Hybrid EV Applications

Authors: Farhan Beg

Abstract:

This paper presents a method for the efficient implementation of a unidirectional or bidirectional DC/DC converter. The DC/DC converter is used essentially for energy exchange between the low voltage service battery and a high voltage battery commonly found in Electric Vehicle applications. In these applications, apart from cost, efficiency of design is an important characteristic. A useful way to reduce the size of electronic equipment in the electric vehicles is proposed in this paper. The technique simplifies the mechanical complexity and maximizes the energy usage using the latest converter control techniques. Moreover a bidirectional battery charger for hybrid electric vehicles is also implemented in this paper. Several simulations on the test system have been carried out in Matlab/Simulink environment. The results exemplify the robustness of the proposed design methodology in case of a 1.5 KW DC-DC converter.

Keywords: DC-DC converters, electric vehicles, power electronics, direct current control

Procedia PDF Downloads 727
4801 Care Experience of a Female Breast Cancer Patient Undergoing Modified Radical Mastectomy

Authors: Ting-I Lin

Abstract:

Purpose: This article explores the care experience of a 34-year-old female breast cancer patient who was admitted to the intensive care unit after undergoing a modified radical mastectomy. The patient discovered a lump in her right breast during a self-examination and, after mammography and ultrasound-guided biopsy, was diagnosed with a malignant tumor in the right breast. The tumor measured 1.5 x 1.4 x 2 cm, and the patient underwent a modified radical mastectomy. Postoperatively, she exhibited feelings of inferiority due to changes in her appearance. Method: During the care period, we engaged in conversations, observations, and active listening, using Gordon's Eleven Functional Health Patterns for a comprehensive assessment. In collaboration with the critical care team, a psychologist, and an oncology case manager, we conducted an interdisciplinary discussion and reached a consensus on key nursing issues. These included pain related to postoperative tumor excision and disturbed body image due to changes in appearance after surgery. Result: During the care period, a private space was provided to encourage the patient to express her feelings about her altered body image. Communication was conducted through active listening and a non-judgmental approach. The patient's anxiety level, as measured by the depression and anxiety scale, decreased from moderate to mild, and she was able to sleep for 6-8 hours at night. The oncology case manager was invited to provide education on breast reconstruction using breast models and videos to both the patient and her husband. This helped rebuild the patient's confidence. With the patient's consent, a support group was arranged where a peer with a similar experience shared her journey, offering emotional support and encouragement. This helped alleviate the psychological stress and shock caused by the cancer diagnosis. Additionally, pain management was achieved through adjusting the dosage of analgesics, administering Ultracet 37.5 mg/325 mg 1# Q6H PO, along with distraction techniques and acupressure therapy. These interventions helped the patient relax and alleviate discomfort, maintaining her pain score at a manageable level of 3, indicating mild pain. Conclusion: Disturbance in body image can cause significant psychological stress for patients. Through support group discussions, encouraging patients to express their feelings, and providing appropriate education on breast reconstruction and dressing techniques, the patient's self-concept was positively reinforced, and her emotions were stabilized. This led to renewed self-worth and confidence.

Keywords: breast cancer, modified radical mastectomy, acupressure therapy, Gordon's 11 functional health patterns

Procedia PDF Downloads 29
4800 The Interaction between Human and Environment on the Perspective of Environmental Ethics

Authors: Mella Ismelina Farma Rahayu

Abstract:

Environmental problems could not be separated from unethical human perspectives and behaviors toward the environment. There is a fundamental error in the philosophy of people’s perspective about human and nature and their relationship with the environment, which in turn will create an inappropriate behavior in relation to the environment. The aim of this study is to investigate and to understand the ethics of the environment in the context of humans interacting with the environment by using the hermeneutic approach. The related theories and concepts collected from literature review are used as data, which were analyzed by using interpretation, critical evaluation, internal coherence, comparisons, and heuristic techniques. As a result of this study, there will be a picture related to the interaction of human and environment in the perspective of environmental ethics, as well as the problems of the value of ecological justice in the interaction of humans and environment. We suggest that the interaction between humans and environment need to be based on environmental ethics, in a spirit of mutual respect between humans and the natural world.

Keywords: environment, environmental ethics, interaction, value

Procedia PDF Downloads 422
4799 Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds

Authors: J. E. Mendes, L. Abrunhosa, J. A. Teixeira, E. R. de Camargo, C. P. de Souza, J. D. C. Pessoa

Abstract:

Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.

Keywords: antifungal activity, Phomopsis sp., seeds, silver nanoparticles, soybean

Procedia PDF Downloads 460
4798 Multiple Fault Detection and Classification in a Coupled Motor with Rotor Using Artificial Neural Network

Authors: Mehrdad Nouri Khajavi, Gollamhassan Payganeh, Mohsen Fallah Tafti

Abstract:

Fault diagnosis is an important aspect of maintaining rotating machinery health and increasing productivity. Many researches has been done in this regards. Many faults such as unbalance, misalignment, looseness, bearing faults, etc. have been considered and diagnosed with different techniques. Most of the researches in fault diagnosis of rotating machinery deal with single fault. Where as in reality faults usually occur simultaneously and it is, therefore, necessary to recognize them at the same time. In this research, two of the most common faults namely unbalance and misalignment have been considered simultaneously with different intensity and then identified and classified with the use of Multi-Layer Perception Neural Network (MLPNN). Processed Vibration signals are used as the input to the MLPNN, and the class of mixed unbalancy, and misalignment is the output of the NN.

Keywords: unbalance, parallel misalignment, combined faults, vibration signals

Procedia PDF Downloads 354
4797 Uniaxial Alignment and Ion Exchange Doping to Enhance the Thermoelectric Properties of Organic Polymers

Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus

Abstract:

This project delves into the efficiency of uniaxial alignment and ion exchange doping as methods to optimize the thermoelectric properties of organic polymers. The anisotropic nature of charge transport in conjugated polymers is capitalized upon through the uniaxial alignment of polymer backbones, ensuring charge transport is streamlined along these backbones. Ion exchange doping has demonstrated superiority over traditional molecular and electrochemical doping methods, amplifying charge carrier densities. By integrating these two techniques, we've observed marked improvements in the thermoelectric attributes of specific conjugated polymers such as PBTTT and DPP based polymers. We demonstrate respectable power factors of 172.6 μW m⁻¹ K⁻² in PBTTT system and 41.7 μW m⁻¹ K⁻² in DPP system.

Keywords: organic electronics, thermoelectrics, uniaxial alignment, ion exchange doping

Procedia PDF Downloads 69
4796 Microstructural and Transport Properties of La0.7Sr0.3CoO3 Thin Films Obtained by Metal-Organic Deposition

Authors: K. Daoudi, Z. Othmen, S. El Helali, M.Oueslati, M. Oumezzine

Abstract:

La0.7Sr0.3CoO3 thin films have been epitaxially grown on LaAlO3 and SrTiO3 (001) single-crystal substrates by metal organic deposition process. The structural and micro structural properties of the obtained films have been investigated by means of high resolution X-ray diffraction, Raman spectroscopy and transmission microscopy observations on cross-sections techniques. We noted a close dependence of the crystallinity on the used substrate and the film thickness. By increasing the annealing temperature to 1000ºC and the film thickness to 100 nm, the electrical resistivity was decreased by several orders of magnitude. The film resistivity reaches approximately 3~4 x10-4 Ω.cm in a wide interval of temperature 77-320 K, making this material a promising candidate for a variety of applications.

Keywords: cobaltite, thin films, epitaxial growth, MOD, TEM

Procedia PDF Downloads 333
4795 Machine Learning Methods for Network Intrusion Detection

Authors: Mouhammad Alkasassbeh, Mohammad Almseidin

Abstract:

Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.

Keywords: IDS, DDoS, MLP, KDD

Procedia PDF Downloads 235
4794 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video

Authors: Nidhal K. Azawi, John M. Gauch

Abstract:

Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.

Keywords: colonoscopy classification, feature extraction, image alignment, machine learning

Procedia PDF Downloads 253
4793 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Authors: Faisal Aburub, Wael Hadi

Abstract:

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Keywords: classification, data mining, evaluation measures, groundwater

Procedia PDF Downloads 280
4792 Ethical Leadership and Employee Creative Behaviour: A Case Study of a State-Owned Enterprise in South Africa

Authors: Krishna Kistan Govender, Alex Masianoga

Abstract:

The aim of this explanatory study was to critically understand how ethical leadership impacts employee creative behaviour, as well as the creative behaviour dimensions, in a South African transport and logistics SOE. A quantitative study was conducted using a pre-developed questionnaire, and data for 160 middle and executive managers was analysed through structural equation modelling and multiple regression techniques conducted with the Smart PLS statistical software. All five hypothesized relationships were supported, and it was confirmed that ethical leadership has a significant positive influence on employee creative behaviour, as well as on each of the creative behaviour dimensions, namely: idea exploration, idea generation, idea championing, and idea implementation.

Keywords: ethical leaders, employee creative behaviour, state-owned enterprises, South Africa

Procedia PDF Downloads 126
4791 On the Rational Roots of the Agnosticism and the Faith

Authors: Lola Rosalia Saavedra Guzman, Plamen Neytchev Netchev

Abstract:

In general, agnosticism is perceived as an uncertainty between a well-structured (religious) belief (in some Christian or pagan deity) and its absolute and total absence, often causing the suspicion that an agnostic is an atheist, which is "reinsured" in case if their personal belief is wrong. All of this, along with the prevailing view among the naturalists that science has already demonstrated the inexistence of God, has compelled us to seek the foundation of agnosticism and faith in the contemporary formal human logic, advanced mathematics, and the natural sciences. Along the way, we will find that no natural science can demonstrate the existence of God, nor could it discard it for rational considerations, which show that there is something beyond. After all, it seems that the human intellect is insufficient to respond surely with yes or no to the existence of higher intelligences leaving unconditional faith as the only path to God for Christians and transcendent techniques, for pagan religious beliefs.

Keywords: agnosticism, formal logic, axioms and postulates, Gödel theorems, and logical faults

Procedia PDF Downloads 202
4790 Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) Control of Quadcopters: A Comparative Analysis

Authors: Anel Hasić, Naser Prljača

Abstract:

In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.

Keywords: MATLAB, MPC, PID, quadcopter, simulink

Procedia PDF Downloads 70
4789 Touch Interaction through Tagging Context

Authors: Gabriel Chavira, Jorge Orozco, Salvador Nava, Eduardo Álvarez, Julio Rolón, Roberto Pichardo

Abstract:

Ambient Intelligence promotes a shift in computing which involves fitting-out the environments with devices to support context-aware applications. One of main objectives is the reduction to a minimum of the user’s interactive effort, the diversity and quantity of devices with which people are surrounded with, in existing environments; increase the level of difficulty to achieve this goal. The mobile phones and their amazing global penetration, makes it an excellent device for delivering new services to the user, without requiring a learning effort. The environment will have to be able to perceive all of the interaction techniques. In this paper, we present the PICTAC model (Perceiving touch Interaction through TAgging Context), which similarly delivers service to members of a research group.

Keywords: ambient intelligence, tagging context, touch interaction, touching services

Procedia PDF Downloads 384