Search results for: data culture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27824

Search results for: data culture

25724 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 404
25723 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 233
25722 The Importance of Knowledge Innovation for External Audit on Anti-Corruption

Authors: Adel M. Qatawneh

Abstract:

This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.

Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange

Procedia PDF Downloads 465
25721 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123
25720 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization

Procedia PDF Downloads 399
25719 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 147
25718 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 58
25717 Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 246
25716 Stereotyping of Non-Western Students in Western Universities: Applying Critical Discourse Analysis to Undermine Educational Hegemony

Authors: Susan Lubbers

Abstract:

This study applies critical discourse analysis to the language used by educators to frame international students of Asian backgrounds in Anglo-Western universities as quiet, shy, passive and unable to think critically. Emphasis is on the self-promoted ‘internationalised’ Australian tertiary context, where negative stereotypes are commonly voiced not only in the academy but also in the media. Parallels are drawn as well with other Anglo-Western educational contexts. The study critically compares the discourse of these persistent negative stereotypes, with in-class and interview discourses of international students of Asian and Western language, cultural and educational backgrounds enrolled in a Media and Popular Culture unit in an Australian university. The focus of analysis of the student discourse is on their engagement in critical dialogic interactions on the topics of culture and interculturality. The evidence is also drawn from student interviews and focus groups and from observation of whole-class discussion participation rates. The findings of the research project provide evidence that counters the myth of student as problem. They point rather to the widespread lack of intercultural awareness of Western educators and students as being at the heart of the negative perceptions of students of Asian backgrounds. The study suggests the efficacy of an approach to developing intercultural competence that is embedded, or integrated, into tertiary programs. The presentation includes an overview of the main strategies that have been developed by the tertiary educator (author) to support the development of intercultural competence of and among the student cohort. The evidence points to the importance of developing intercultural competence among tertiary educators and students. The failure by educators to ensure that the diverse voices, ideas and perspectives of students from all cultural, educational and language backgrounds are heard in our classrooms means that our universities can hardly be regarded or promoted as genuinely internationalised. They will continue as undemocratic institutions that perpetrate persistent Western educational hegemony.

Keywords: critical discourse analysis, critical thinking, embedding, intercultural competence, interculturality, international student, internationalised education

Procedia PDF Downloads 292
25715 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 42
25714 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground

Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee

Abstract:

To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.

Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk

Procedia PDF Downloads 336
25713 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 260
25712 Integrated Model for Enhancing Data Security Performance in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 477
25711 Growth Response of the Fry of Major and Chinese Carp to the Dietary Ingredients in Polyculture System

Authors: Anjum-Zubair, Muhammad, Muhammad Shoaib Alam, Muhammad Samee Mubarik, Iftikhar Ahmad

Abstract:

The aim of present research was to evaluate the effect of dietary protein (soybean) formulated feed on the growth performance of carp fish seed (Rohu, Mori, Grass, and Gulfam) in ponds under polyculture system. Keeping in view the protein requirements of these four carps, they were fed with formulated feed contains 30% of crude protein. The fingerlings were fed once on daily basis at 5% of their wet body weight. A 90 days experiment was conducted in two cemented ponds situated at Fish Seed Hatchery and Research Centre, Rawal Town, Islamabad, Pakistan. Pond1 contain major carps i.e. Rohu and Mori while pond 2 was stocked with Chinese carps i.e. Grass carp and Gulfam. Random sampling of five individuals of each species was done fortnightly to measure the body weight and total body length. Maximum growth was observed in fingerling of Grass carp followed by Mori, Rohu and Gulfam. Total fish production was recorded as Grass 623.45 gm followed by Mori 260.3 gm, Rohu 243.08 gm and Gulfam 181.165 gm respectively. Significantly results were obtained among these four fish species when the corresponding data was subjected to statistical analysis by using two sample t-test. The survival rate was 100%. Study shows that soybean as plant based protein can be easily used as substitute to fish meal without any adverse effect on fish health and fish production.

Keywords: carps, fry growth, poly culture, soybean meal

Procedia PDF Downloads 500
25710 Functionality of Promotional and Advertising Texts: Pragmatic Implications for English-Arabic Translation

Authors: Jamal Gaber Abdalla

Abstract:

In business promotion and advertising, language is used intentionally to create a powerful influence over people and their behavior. In commercial and marketing activities, the choice of language to convey specific messages with the intention of influencing people is pragmatically important. Design and visual content in promotional and advertising texts also have a great persuasive impact on consumers. It is the functional combination of design, language and visual content that helps people to identify a product or service and remember it. Translating promotional and advertising texts between structurally and culturally different languages, such as English and Arabic, usually involves pragmatic/functional shifts that decide the quality of translation. This study explores some of these shifts in translating promotional and advertising texts between English and Arabic and their implications for translation quality. The study is based on a contrastive analysis of data collected from real samples of English-Arabic translations of promotional and advertising texts. The samples cover different promotional and advertising text types and different business domains. The aim is to identify the most recurrent translation shifts and most used translation approaches/strategies that achieve quality in view of the functional nature of promotional and advertising texts and target language culture conventions. The study shows that linguistic shifts and visual shifts are recurrent in English-Arabic translations of promotional and advertising texts. The study also shows that the most commonly used translation approaches/strategies are functional translation, domestication, communicative translation.

Keywords: advertising, Arabic, English, functional translation, promotion

Procedia PDF Downloads 361
25709 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 133
25708 Effects of Using a Recurrent Adverse Drug Reaction Prevention Program on Safe Use of Medicine among Patients Receiving Services at the Accident and Emergency Department of Songkhla Hospital Thailand

Authors: Thippharat Wongsilarat, Parichat tuntilanon, Chonlakan Prataksitorn

Abstract:

Recurrent adverse drug reactions are harmful to patients with mild to fatal illnesses, and affect not only patients but also their relatives, and organizations. To compare safe use of medicine among patients before and after using the recurrent adverse drug reaction prevention program . Quasi-experimental research with the target population of 598 patients with drug allergy history. Data were collected through an observation form tested for its validity by three experts (IOC = 0.87), and analyzed with a descriptive statistic (percentage). The research was conducted jointly with a multidisciplinary team to analyze and determine the weak points and strong points in the recurrent adverse drug reaction prevention system during the past three years, and 546, 329, and 498 incidences, respectively, were found. Of these, 379, 279, and 302 incidences, or 69.4; 84.80; and 60.64 percent of the patients with drug allergy history, respectively, were found to have caused by incomplete warning system. In addition, differences in practice in caring for patients with drug allergy history were found that did not cover all the steps of the patient care process, especially a lack of repeated checking, and a lack of communication between the multidisciplinary team members. Therefore, the recurrent adverse drug reaction prevention program was developed with complete warning points in the information technology system, the repeated checking step, and communication among related multidisciplinary team members starting from the hospital identity card room, patient history recording officers, nurses, physicians who prescribe the drugs, and pharmacists. Including in the system were surveillance, nursing, recording, and linking the data to referring units. There were also training concerning adverse drug reactions by pharmacists, monthly meetings to explain the process to practice personnel, creating safety culture, random checking of practice, motivational encouragement, supervising, controlling, following up, and evaluating the practice. The rate of prescribing drugs to which patients were allergic per 1,000 prescriptions was 0.08, and the incidence rate of recurrent drug reaction per 1,000 prescriptions was 0. Surveillance of recurrent adverse drug reactions covering all service providing points can ensure safe use of medicine for patients.

Keywords: recurrent drug, adverse reaction, safety, use of medicine

Procedia PDF Downloads 456
25707 Challenges in Multi-Cloud Storage Systems for Mobile Devices

Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta

Abstract:

The demand for cloud storage is increasing because users want continuous access their data. Cloud Storage revolutionized the way how users access their data. A lot of cloud storage service providers are available as DropBox, G Drive, and providing limited free storage and for extra storage; users have to pay money, which will act as a burden on users. To avoid the issue of limited free storage, the concept of Multi Cloud Storage introduced. In this paper, we will discuss the limitations of existing Multi Cloud Storage systems for mobile devices.

Keywords: cloud storage, data privacy, data security, multi cloud storage, mobile devices

Procedia PDF Downloads 699
25706 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 187
25705 An Ethnographic View of Elementary School English Language Policy Implementation

Authors: Peter Ferguson

Abstract:

In 2018, Japan’s Ministry of Education revised the public elementary school curriculum. As part of widespread reforms, the recent Course of Study established English as an academic subject in Grades 5 and 6 plus lowered the starting age of 'foreign language activities' to Grade 3. These changes were implemented in April 2020. This presentation will examine the process and effects that policy implementation had on schools and teachers. A critical analysis of the 2018 Course of Study policy documents revealed several discourses were expressed concerning not only English education and foreign language acquisition, but that larger political and socioeconomic ideological beliefs on globalization, language, nation, culture, and identity were also articulated. Using excerpts from document analysis, the presenter will demonstrate how competing discourses were expressed in policy texts. Data from interviews with national policymakers also exposed several challenges policymakers faced as they tried to balance competing discourses and articulate important pedagogical concepts while having their voices heard. Findings show that some stakeholders were marginalized during the processes of policy creation, transmission, and implementation. This presentation is part of a larger multiple case study that utilized ethnography of language policy and critical analysis of discourse to examine how English education language policy was implemented into the national elementary school curriculum in Japan, and how stakeholders at the various educational levels contended with the creation, interpretation, and appropriation of the language policy.

Keywords: ethnography of language policy, elementary school EFL, language ideologies, discourse analysis

Procedia PDF Downloads 119
25704 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem

Authors: Ouafa Amira, Jiangshe Zhang

Abstract:

Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.

Keywords: clustering, fuzzy c-means, regularization, relative entropy

Procedia PDF Downloads 259
25703 Understanding the Popularity of Historical Conservation in China: The Depoliticized Narratives as a Counter-Insurgency Strategy in Guangzhou

Authors: Luxi Chen

Abstract:

The land finance in China in recent years has propelled urban renewals in the name of historical conservation and led to massive gentrification and compulsory relocation. Such inequalities cause insurgence. Drawing on public planning information, ethnographic field notes, and online interview data about Guangzhou's Enninglu Area, this paper aims to present how such insurgence has been contained and put down gradually through depoliticization narratives represented by "improving living conditions," "conserving historical culture," and "public participation”. This paper's findings include that 1) Besides economic growth, maintaining social stability in alignment with the central government are equally important to local government, reveals the latter efforts to mediate the growth coalition, residents, media, and academics so as to reconstruct the interface between state and society; 2) To empower the insurgence, the media and academics use public interests for propaganda, that diverts attention away from its political dimension; 3) In response, the government introduces improved regulations and planning, turning social inequalities into technical inadequacy so as to become the defender of public interests, which justifies the incoming renewal and prevents public questioning. By comparing regime changes among governments, developers, residents, media, and academics caused by renewal policies, this paper presents the depoliticized narrative as a counter-insurgence strategy to contain social conflicts and to boost inner-city renewal.

Keywords: inner city renewal, depoliticization, historical conservation, public participation

Procedia PDF Downloads 236
25702 Sampled-Data Model Predictive Tracking Control for Mobile Robot

Authors: Wookyong Kwon, Sangmoon Lee

Abstract:

In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.

Keywords: model predictive control, sampled-data control, linear parameter varying systems, LPV

Procedia PDF Downloads 309
25701 Morphological Interaction of Porcine Oocyte and Cumulus Cells Study on in vitro Oocyte Maturation Using Electron Microscopy

Authors: M. Areekijseree, W. Pongsawat, M. Pumipaiboon, C. Thepsithar, S. Sengsai, T. Chuen-Im

Abstract:

Morphological interaction of porcine cumulus-oocyte complexes (pCOCs) was investigated on in vitro condition using electron microscope (SEM and TEM). The totals of 1,923 oocytes were round in shape, surrounded by zona pellucida with layer of cumulus cells ranging between 59.29-202.14 µm in size. They were classified into intact-, multi-, partial cumulus cell layer oocyte, and completely denuded oocyte, at the percentage composition of 22.80% 32.70%, 18.60%, and 25.90 % respectively. The pCOCs classified as intact- and multi cumulus cell layer oocytes were further culturing at 37°C with 5% CO2, 95% air atmosphere and high humidity for 44 h in M199 with Earle’s salts supplemented with 10% HTFCS, 2.2 mg/mL NaHCO3, 1 M Hepes, 0.25 mM pyruvate, 15 µg/mL porcine follicle-stimulating hormone, 1 µg/mL LH, 1µg/mL estradiol with ethanol, and 50 µg/mL gentamycin sulfate. On electron microscope study, cumulus cells were found to stick their processes to secrete substance from the sac-shape end into zona pellucida of the oocyte and also communicated with the neighboring cells through their microvilli on the beginning of incubation period. It is believed that the cumulus cells communicate with the oocyte by inserting the microvilli through this gap and embedded in the oocyte cytoplasm before secreting substance, through the sac-shape end of the microvilli, to inhibit primary oocyte development at the prophase I. Morphological changes of the complexes were observed after culturing for 24-44 h. One hundred percentages of the cumulus layers were expanded and cumulus cells were peeling off from the oocyte surface. In addition, the round-shape cumulus cells transformed themselves into either an elongate shape or a columnar shape, and no communication between cumulus neighboring cells. After 44 h of incubation time, diameter of oocytes surrounded by cumulus cells was larger than 0 h incubation. The effect of hormones in culture medium is exerted by their receptors present in porcine oocyte. It is likely that all morphological changes of the complexes after hormone treatment were to allow maturation of the oocyte. This study demonstrated that the association of hormones in M199 could promote porcine follicle activation in 44 h in vitro condition. This culture system should be useful for studying the regulation of early follicular growth and development, especially because these follicles represent a large source of oocytes that could be used in vitro for cell technology.

Keywords: cumulus cells, electron microscopy, in vitro, porcine oocyte

Procedia PDF Downloads 385
25700 Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data

Authors: Nasser A. Al-Azri

Abstract:

The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world.

Keywords: bioclimatic charts, passive cooling, TMY, weather data

Procedia PDF Downloads 240
25699 Development of Management System of the Experience of Defensive Modeling and Simulation by Data Mining Approach

Authors: D. Nam Kim, D. Jin Kim, Jeonghwan Jeon

Abstract:

Defense Defensive Modeling and Simulation (M&S) is a system which enables impracticable training for reducing constraints of time, space and financial resources. The necessity of defensive M&S has been increasing not only for education and training but also virtual fight. Soldiers who are using defensive M&S for education and training will obtain empirical knowledge and know-how. However, the obtained knowledge of individual soldiers have not been managed and utilized yet since the nature of military organizations: confidentiality and frequent change of members. Therefore, this study aims to develop a management system for the experience of defensive M&S based on data mining approach. Since individual empirical knowledge gained through using the defensive M&S is both quantitative and qualitative data, data mining approach is appropriate for dealing with individual empirical knowledge. This research is expected to be helpful for soldiers and military policy makers.

Keywords: data mining, defensive m&s, management system, knowledge management

Procedia PDF Downloads 255
25698 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 236
25697 Becoming a Good-Enough White Therapist: Experiences of International Students in Psychology Doctoral Programs

Authors: Mary T. McKinley

Abstract:

As socio-economic globalization impacts education and turns knowledge into a commodity, institutions of higher education are becoming more intentional about infusing a global and intercultural perspective into education via the recruitment of international students. Coming from dissimilar cultures, many of these students are evaluated and held accountable to Euro-American values of independence, self-reliance, and autonomy. Not surprisingly, these students often experience culture shock with deleterious effects on their mental health and academic functioning. Thus, it is critical to understand the experiences of international students with the hope that such knowledge will keep the field of psychology from promulgating Eurocentric ideals and values and prevent the training of these students as good-enough White therapists. Using a critical narrative inquiry framework, this study elicits stories about the challenges encountered by international students as they navigate their clinical training in the presence of acculturative stress and potentially different worldviews. With its emphasis on story-telling as meaning making, narrative research design is hinged on the assumption that people are interpretive beings who make meaning of themselves and their world through the language of stories. Also, dominant socially-constructed narratives play a central role in creating and maintaining hegemonic structures that privilege certain individuals and ideologies at the expense of others. On this premise, narrative inquiry begins with an exploration of the experiences of participants in their lived stories. Bounded narrative segments were read, interpreted, and analyzed using a critical events approach. Throughout the process, issues of reliability and researcher bias were addressed by keeping a reflective analytic memo, as well as triangulating the data using peer-reviewers and check-ins with participants. The findings situate culture at the epicenter of international students’ acculturation challenges as well as their resiliency in psychology doctoral programs. It was not uncommon for these international students to experience ethical dilemmas inherent in learning content that conflicted with their cultural beliefs and values. Issues of cultural incongruence appear to be further exacerbated by visible markers for differences like speech accent and clothing attire. These stories also link the acculturative stress reported by international students to the experiences of perceived racial discrimination and lack of support from the faculty, administration, peers, and the society at large. Beyond the impact on the international students themselves, there are implications for internationalization in psychology with the goal of equipping doctoral programs to be better prepared to meet the needs of their international students. More than ever before, programs need to liaise with international students’ services and work in tandem to meet the unique needs of this population of students. Also, there exists a need for multiculturally competent supervisors working with international students with varying degrees of acculturation. In addition to making social justice and advocacy salient in students’ multicultural training, it may be helpful for psychology doctoral programs to be more intentional about infusing cross-cultural theories, indigenous psychotherapies, and/or when practical, the possibility for geographically cross-cultural practicum experiences in the home countries of international students while taking into consideration the ethical issues for virtual supervision.

Keywords: decolonizing pedagogies, international students, multiculturalism, psychology doctoral programs

Procedia PDF Downloads 119
25696 Imputation of Urban Movement Patterns Using Big Data

Authors: Eusebio Odiari, Mark Birkin, Susan Grant-Muller, Nicolas Malleson

Abstract:

Big data typically refers to consumer datasets revealing some detailed heterogeneity in human behavior, which if harnessed appropriately, could potentially revolutionize our understanding of the collective phenomena of the physical world. Inadvertent missing values skew these datasets and compromise the validity of the thesis. Here we discuss a conceptually consistent strategy for identifying other relevant datasets to combine with available big data, to plug the gaps and to create a rich requisite comprehensive dataset for subsequent analysis. Specifically, emphasis is on how these methodologies can for the first time enable the construction of more detailed pictures of passenger demand and drivers of mobility on the railways. These methodologies can predict the influence of changes within the network (like a change in time-table or impact of a new station), explain local phenomena outside the network (like rail-heading) and the other impacts of urban morphology. Our analysis also reveals that our new imputation data model provides for more equitable revenue sharing amongst network operators who manage different parts of the integrated UK railways.

Keywords: big-data, micro-simulation, mobility, ticketing-data, commuters, transport, synthetic, population

Procedia PDF Downloads 231
25695 My Voice My Well-Being: A Participatory Research Study with Secondary School Students in Bangladesh

Authors: Saira Hossain

Abstract:

Well-being commonly refers to the concept that equates to a good life. Similarly, student well-being can be understood as a notion of a good life at school. What constitutes a good life at school for students? – is an emerging question that poses huge interest in this area of research. Student well-being is not only associated with a student’s socio-emotional and academic development at school but also success in life after school as an adult. Today, student well-being is a popular agenda for educators, policymakers, teachers, parents, and most importantly, for students. With the emergence of student well-being, student's voice in matters important to them at school is increasingly getting priority. However, the coin has another side too. Despite the growing importance of understanding student well-being, it is still an alien concept in countries like Bangladesh. The education system of Bangladesh is highly rigid, centralized, and exam-focused. Student's academic achievement has been given the utmost priority at school, whereas their voice, as well as their well-being, is grossly neglected in practice. In this regard, the study set out to explore students' conceptualization of well-being at school in Bangladesh. The study was qualitative. It employed a participatory research approach to elicit the views of 25 secondary school students of aged 14-16 in Bangladesh to explore the concept of well-being. Data analysis was conducted following the thematic analysis technique. The results suggested that student conceptualized well-being as a multidimensional concept with multiple domains, including having, being, relating, feeling, thinking, functioning, and striving. The future implication of the study findings is discussed. Additionally, the study also underscores the implication of the participatory approach as a research technique to explore students' opinion in Bangladesh, where there exists a culture of silence regarding the student's voice.

Keywords: Bangladesh, participatory research, secondary school, student well-being

Procedia PDF Downloads 137