Search results for: biological data mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27346

Search results for: biological data mining

25246 Phytochemistry and Biological Activity of Extracts of the Red Raspberry Rubus rosifolius

Authors: Theresa Campbell, Camille Bowen-Forbes, William Aalbersberg

Abstract:

Differences in the sensory properties of two subtly distinct varieties of Rubus rosifolius lead to the examination of their anthocyanin, essential oil and polyphenol profiles. In both cases, notable differences were identified. Pelargonidin-3-rhutinoside (17.2 mg/100 g FW) and Cyanidin-3-glucoside (66.2 mg/100g FW) proved to be the dominant anthocyanins in the red and wine red varieties respectively. Linalool and terpineol were the major constituents of the essential oil from the red variety; however, those of the wine red variety are unidentified. In regard to phenolic compounds, caffeic acid and quercetin were in a higher concentration in the red variety (1.85 and 0.73 mg/100g FW respectively, compared to 1.22 and 0.34 mg/100g FW respectively in the wine red fruits); while ellagic acid and ferulic acid were of a higher concentration in the wine red variety (0.92 and 0.84mg/100g FW respectively, compared to 0.15 and 0.48 mg/100g FW respectively in the red variety). The methanol extract of both fruit varieties showed great antioxidant activity. Analysis of the antimicrobial activity of the fruit extracts against the growth of drug resistant pathogens revealed that they are active against methicillin resistant S. aureus (MRSA), rifampicin resistant S. aureus (RRSA), wild-type S. aureus (WTSA) and vancomycin-resistant Enterococcus faecium (VREF). Activity was also reported against several food-borne pathogens including two strains of E. coli, L. monocytogenes and Enterobacter aerogenes. The cytotoxicity of the various extracts was assessed and the essential oil extracts exhibited superior activity. The phenolic composition and biological activity of the fruits indicate that their consumption is beneficial to health and also that their incorporation into functional foods and nutraceuticals should be considered.

Keywords: phytochemicals, antimicrobial, cytotoxic, Rubus rosifolius

Procedia PDF Downloads 396
25245 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa

Authors: Samy A. Khalil, U. Ali Rahoma

Abstract:

The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.

Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa

Procedia PDF Downloads 98
25244 Digital Transformation and Digitalization of Public Administration

Authors: Govind Kumar

Abstract:

The concept of ‘e-governance’ that was brought about by the new wave of reforms, namely ‘LPG’ in the early 1990s, has been enabling governments across the globe to digitally transform themselves. Digital transformation is leading the governments with qualitative decisions, optimization in rational use of resources, facilitation of cost-benefit analyses, and elimination of redundancy and corruption with the help of ICT-based applications interface. ICT-based applications/technologies have enormous potential for impacting positive change in the social lives of the global citizenry. Supercomputers test and analyze millions of drug molecules for developing candidate vaccines to combat the global pandemic. Further, e-commerce portals help distribute and supply household items and medicines, while videoconferencing tools provide a visual interface between the clients and hosts. Besides, crop yields are being maximized with the help of drones and machine learning, whereas satellite data, artificial intelligence, and cloud computing help governments with the detection of illegal mining, tackling deforestation, and managing freshwater resources. Such e-applications have the potential to take governance an extra mile by achieving 5 Es (effective, efficient, easy, empower, and equity) of e-governance and six Rs (reduce, reuse, recycle, recover, redesign and remanufacture) of sustainable development. If such digital transformation gains traction within the government framework, it will replace the traditional administration with the digitalization of public administration. On the other hand, it has brought in a new set of challenges, like the digital divide, e-illiteracy, technological divide, etc., and problems like handling e-waste, technological obsolescence, cyber terrorism, e-fraud, hacking, phishing, etc. before the governments. Therefore, it would be essential to bring in a rightful mixture of technological and humanistic interventions for addressing the above issues. This is on account of the reason that technology lacks an emotional quotient, and the administration does not work like technology. Both are self-effacing unless a blend of technology and a humane face are brought in into the administration. The paper will empirically analyze the significance of the technological framework of digital transformation within the government set up for the digitalization of public administration on the basis of the synthesis of two case studies undertaken from two diverse fields of administration and present a future framework of the study.

Keywords: digital transformation, electronic governance, public administration, knowledge framework

Procedia PDF Downloads 99
25243 A Faunistic Study of Tetranychid and Phytoseiid Mites Associated with Diverse Crops From Samsun, Turkey

Authors: B. İnal, H. Di̇ler

Abstract:

This research was implemented from March to September to reveal tetranychid and phytoseiid mites on different field crops in Samsun province, Turkey. In consequence of microscope slide-mounting of mite samples in Hoyer’s medium, a total of six species belonging to Tetranychidae and fourteen species belonging to Phytoseiidae were found. Tetranychus urticae Koch, Tetranychus turkestani Ugarov and Nikolski, Tetranychus viennensis Zacher, Panonychus ulmi (Koch), Panonychus citri (Mc Gregor) and Bryobia rubrioculus (Scheuten) were detected as phytophaous mites. Euseius finlandicus (Oudemans), Kampimodromus aberrans (Oudemans), Amblyseius agrestris (Karg), Amblyseius andersoni (Chant), Amblyseius bicaudus Wainstein, Amblyseius zwölferi (Dosse), Amblyseius barkeri (Hughes), Paraseilus soleiger (Ribaga), Anthoseius recki (Wainstein), Phytoseius finitimus Ribaga, Typhlodromus pyri Scheuten, Typhloctonus tiliarum Oudemans, Phytoseiulus macropilis (Banks) and Phytoseiulus persimilis Athias-Henriot were identified to be predatory mites in Phytoseiidae. Among the phytoseiid species Kampimodromus aberrans, Amblyseius andersoni, Anthoseius recki, Phytoseius finitimus, Phytoseiulus persimilis and Phytoseiulus macropilis were widespread. Relationship between tetranychid and phytoseiid mites on different crops that can make considerable contribution to biological control in integrated pest management (IPM) programs is also reported.

Keywords: biological control, IPM, interaction, phytoseiidae, tetranychidae

Procedia PDF Downloads 155
25242 Algorithm Optimization to Sort in Parallel by Decreasing the Number of the Processors in SIMD (Single Instruction Multiple Data) Systems

Authors: Ali Hosseini

Abstract:

Paralleling is a mechanism to decrease the time necessary to execute the programs. Sorting is one of the important operations to be used in different systems in a way that the proper function of many algorithms and operations depend on sorted data. CRCW_SORT algorithm executes ‘N’ elements sorting in O(1) time on SIMD (Single Instruction Multiple Data) computers with n^2/2-n/2 number of processors. In this article having presented a mechanism by dividing the input string by the hinge element into two less strings the number of the processors to be used in sorting ‘N’ elements in O(1) time has decreased to n^2/8-n/4 in the best state; by this mechanism the best state is when the hinge element is the middle one and the worst state is when it is minimum. The findings from assessing the proposed algorithm by other methods on data collection and number of the processors indicate that the proposed algorithm uses less processors to sort during execution than other methods.

Keywords: CRCW, SIMD (Single Instruction Multiple Data) computers, parallel computers, number of the processors

Procedia PDF Downloads 310
25241 Increasing the System Availability of Data Centers by Using Virtualization Technologies

Authors: Chris Ewe, Naoum Jamous, Holger Schrödl

Abstract:

Like most entrepreneurs, data center operators pursue goals such as profit-maximization, improvement of the company’s reputation or basically to exist on the market. Part of those aims is to guarantee a given quality of service. Quality characteristics are specified in a contract called the service level agreement. Central part of this agreement is non-functional properties of an IT service. The system availability is one of the most important properties as it will be shown in this paper. To comply with availability requirements, data center operators can use virtualization technologies. A clear model to assess the effect of virtualization functions on the parts of a data center in relation to the system availability is still missing. This paper aims to introduce a basic model that shows these connections, and consider if the identified effects are positive or negative. Thus, this work also points out possible disadvantages of the technology. In consequence, the paper shows opportunities as well as risks of data center virtualization in relation to system availability.

Keywords: availability, cloud computing IT service, quality of service, service level agreement, virtualization

Procedia PDF Downloads 537
25240 Using Crowd-Sourced Data to Assess Safety in Developing Countries: The Case Study of Eastern Cairo, Egypt

Authors: Mahmoud Ahmed Farrag, Ali Zain Elabdeen Heikal, Mohamed Shawky Ahmed, Ahmed Osama Amer

Abstract:

Crowd-sourced data refers to data that is collected and shared by a large number of individuals or organizations, often through the use of digital technologies such as mobile devices and social media. The shortage in crash data collection in developing countries makes it difficult to fully understand and address road safety issues in these regions. In developing countries, crowd-sourced data can be a valuable tool for improving road safety, particularly in urban areas where the majority of road crashes occur. This study is -to our best knowledge- the first to develop safety performance functions using crowd-sourced data by adopting a negative binomial structure model and the Full Bayes model to investigate traffic safety for urban road networks and provide insights into the impact of roadway characteristics. Furthermore, as a part of the safety management process, network screening has been undergone through applying two different methods to rank the most hazardous road segments: PCR method (adopted in the Highway Capacity Manual HCM) as well as a graphical method using GIS tools to compare and validate. Lastly, recommendations were suggested for policymakers to ensure safer roads.

Keywords: crowdsourced data, road crashes, safety performance functions, Full Bayes models, network screening

Procedia PDF Downloads 52
25239 Using Genetic Algorithms and Rough Set Based Fuzzy K-Modes to Improve Centroid Model Clustering Performance on Categorical Data

Authors: Rishabh Srivastav, Divyam Sharma

Abstract:

We propose an algorithm to cluster categorical data named as ‘Genetic algorithm initialized rough set based fuzzy K-Modes for categorical data’. We propose an amalgamation of the simple K-modes algorithm, the Rough and Fuzzy set based K-modes and the Genetic Algorithm to form a new algorithm,which we hypothesise, will provide better Centroid Model clustering results, than existing standard algorithms. In the proposed algorithm, the initialization and updation of modes is done by the use of genetic algorithms while the membership values are calculated using the rough set and fuzzy logic.

Keywords: categorical data, fuzzy logic, genetic algorithm, K modes clustering, rough sets

Procedia PDF Downloads 247
25238 Forecasting Amman Stock Market Data Using a Hybrid Method

Authors: Ahmad Awajan, Sadam Al Wadi

Abstract:

In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.

Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series

Procedia PDF Downloads 129
25237 Transdisciplinary Methodological Innovation: Connecting Natural and Social Sciences Research through a Training Toolbox

Authors: Jessica M. Black

Abstract:

Although much of natural and social science research aims to enhance human flourishing and address social problems, the training within the two fields is significantly different across theory, methodology, and implementation of results. Social scientists are trained in social, psychological, and to the extent that it is relevant to their discipline, spiritual development, theory, and accompanying methodologies. They tend not to receive training or learn about accompanying methodology related to interrogating human development and social problems from a biological perspective. On the other hand, those in the natural sciences, and for the purpose of this work, human biological sciences specifically – biology, neuroscience, genetics, epigenetics, and physiology – are often trained first to consider cellular development and related methodologies, and may not have opportunity to receive formal training in many of the foundational principles that guide human development, such as systems theory or person-in-environment framework, methodology related to tapping both proximal and distal psycho-social-spiritual influences on human development, and foundational principles of equity, justice and inclusion in research design. There is a need for disciplines heretofore siloed to know one another, to receive streamlined, easy to access training in theory and methods from one another and to learn how to build interdisciplinary teams that can speak and act upon a shared research language. Team science is more essential than ever, as are transdisciplinary approaches to training and research design. This study explores the use of a methodological toolbox that natural and social scientists can use by employing a decision-making tree regarding project aims, costs, and participants, among other important study variables. The decision tree begins with a decision about whether the researcher wants to learn more about social sciences approaches or biological approaches to study design. The toolbox and platform are flexible, such that users could also choose among modules, for instance, reviewing epigenetics or community-based participatory research even if those are aspects already a part of their home field. To start, both natural and social scientists would receive training on systems science, team science, transdisciplinary approaches, and translational science. Next, social scientists would receive training on grounding biological theory and the following methodological approaches and tools: physiology, (epi)genetics, non-invasive neuroimaging, invasive neuroimaging, endocrinology, and the gut-brain connection. Natural scientists would receive training on grounding social science theory, and measurement including variables, assessment and surveys on human development as related to the developing person (e.g., temperament and identity), microsystems (e.g., systems that directly interact with the person such as family and peers), mesosystems (e.g., systems that interact with one another but do not directly interact with the individual person, such as parent and teacher relationships with one another), exosystems (e.g., spaces and settings that may come back to affect the individual person, such as a parent’s work environment, but within which the individual does not directly interact, macrosystems (e.g., wider culture and policy), and the chronosystem (e.g., historical time, such as the generational impact of trauma). Participants will be able to engage with the toolbox and one another to foster increased transdisciplinary work

Keywords: methodology, natural science, social science, transdisciplinary

Procedia PDF Downloads 115
25236 Building Information Modeling-Based Information Exchange to Support Facilities Management Systems

Authors: Sandra T. Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell

Abstract:

Today’s facilities are ever more sophisticated and the need for available and reliable information for operation and maintenance activities is vital. The key challenge for facilities managers is to have real-time accurate and complete information to perform their day-to-day activities and to provide their senior management with accurate information for decision-making process. Currently, there are various technology platforms, data repositories, or database systems such as Computer-Aided Facility Management (CAFM) that are used for these purposes in different facilities. In most current practices, the data is extracted from paper construction documents and is re-entered manually in one of these computerized information systems. Construction Operations Building information exchange (COBie), is a non-proprietary data format that contains the asset non-geometric data which was captured and collected during the design and construction phases for owners and facility managers use. Recently software vendors developed add-in applications to generate COBie spreadsheet automatically. However, most of these add-in applications are capable of generating a limited amount of COBie data, in which considerable time is still required to enter the remaining data manually to complete the COBie spreadsheet. Some of the data which cannot be generated by these COBie add-ins is essential for facilities manager’s day-to-day activities such as job sheet which includes preventive maintenance schedules. To facilitate a seamless data transfer between BIM models and facilities management systems, we developed a framework that enables automated data generation using the data extracted directly from BIM models to external web database, and then enabling different stakeholders to access to the external web database to enter the required asset data directly to generate a rich COBie spreadsheet that contains most of the required asset data for efficient facilities management operations. The proposed framework is a part of ongoing research and will be demonstrated and validated on a typical university building. Moreover, the proposed framework supplements the existing body of knowledge in facilities management domain by providing a novel framework that facilitates seamless data transfer between BIM models and facilities management systems.

Keywords: building information modeling, BIM, facilities management systems, interoperability, information management

Procedia PDF Downloads 116
25235 Product Features Extraction from Opinions According to Time

Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou

Abstract:

Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.

Keywords: opinion mining, product feature extraction, sentiment analysis, SentiWordNet

Procedia PDF Downloads 411
25234 Investigating Cloud Forensics: Challenges, Tools, and Practical Case Studies

Authors: Noha Badkook, Maryam Alsubaie, Samaher Dawood, Enas Khairallah

Abstract:

Cloud computing has introduced transformative benefits in data storage and accessibility while posing unique forensic challenges. This paper explores cloud forensics, focusing on investigating and analyzing evidence from cloud environments to address issues such as unauthorized data access, manipulation, and breaches. The research highlights the practical use of opensource forensic tools like Autopsy and Bulk Extractor in realworld scenarios, including unauthorized data sharing via Google Drive and the misuse of personal cloud storage for sensitive information leaks. This work underscores the growing importance of robust forensic procedures and accessible tools in ensuring data security and accountability in cloud ecosystems.

Keywords: cloud forensic, tools, challenge, autopsy, bulk extractor

Procedia PDF Downloads 0
25233 Data Security and Privacy Challenges in Cloud Computing

Authors: Amir Rashid

Abstract:

Cloud Computing frameworks empower organizations to cut expenses by outsourcing computation resources on-request. As of now, customers of Cloud service providers have no methods for confirming the privacy and ownership of their information and data. To address this issue we propose the platform of a trusted cloud computing program (TCCP). TCCP empowers Infrastructure as a Service (IaaS) suppliers, for example, Amazon EC2 to give a shout box execution condition that ensures secret execution of visitor virtual machines. Also, it permits clients to bear witness to the IaaS supplier and decide if the administration is secure before they dispatch their virtual machines. This paper proposes a Trusted Cloud Computing Platform (TCCP) for guaranteeing the privacy and trustworthiness of computed data that are outsourced to IaaS service providers. The TCCP gives the deliberation of a shut box execution condition for a client's VM, ensuring that no cloud supplier's authorized manager can examine or mess up with its data. Furthermore, before launching the VM, the TCCP permits a client to dependably and remotely acknowledge that the provider at backend is running a confided in TCCP. This capacity extends the verification of whole administration, and hence permits a client to confirm the data operation in secure mode.

Keywords: cloud security, IaaS, cloud data privacy and integrity, hybrid cloud

Procedia PDF Downloads 299
25232 Influence of Sulphur and Boron on Growth, Quality Parameters and Productivity of Soybean (Glycine Max (L.) Merrill)

Authors: Shital Bangar, G. B. Khandagale

Abstract:

The experimentation was carried out to study the influence of sulphur and boron on growth parameters and productivity of soybean in kharif season of 2009-2010 at Experimental Farm, Department of Agricultural Botany, Marathwada Agricultural University, Parbhani (M.S.). The object was to evaluate the impact of sulphur and boron on growth, development, grain yield and physiological aspects of soybean variety MAUS-81. Nine treatments consisted of three levels of sulphur i.e. 20, 30 and 40 Kg/ha as well as three levels boron i.e.10, 15 and 20 kg boron/ha and the combinations of these two mineral elements i.e. Sulphur @30 kg/ha + Borax @15 kg/ha and Sulphur @40 kg/ha + Borax @ 20 kg/ha with one control treatment in Randomized Block Design (RBD) with three replications. The effect of sulphur and boron on various growth parameters of soybean like relative growth rate (RGR) and net assimilation rate (NAR) were remained statistically on par with each other. However, the application of higher dose of Sulphur @40 kg/ha + Borax @ 20 kg/ha enhanced significantly all the growth parameters. Application of the nutrients increased the dry matter accumulation of the crop plant and hence, other growth indices like RGR and NAR also increased significantly. RGR and NAR values were recorded highest at the initial crop growth stages and decline thereafter. The application of sulphur @40 kg/ha + Borax @ 20 kg/ha recorded significantly higher content of chlorophyll ‘a’ than rest of the treatments and chlorophyll ‘b’ observed higher in boron @15 kg/ha as well as boron@20 kg/ha, whereas total chlorophyll content was maximum in sulphur @40 kg/ha. Oil content was not influenced significantly due to above fertilization. The highest seed yield and total biological yield were obtained with combination of Sulphur @40 kg/ha + Borax @ 20 kg/ha, single sulphur and boron application also showed a significant effect on seed and biological yield.

Keywords: boron, growth, productivity, quality, soybean and sulphur

Procedia PDF Downloads 405
25231 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 86
25230 A Proposal to Tackle Security Challenges of Distributed Systems in the Healthcare Sector

Authors: Ang Chia Hong, Julian Khoo Xubin, Burra Venkata Durga Kumar

Abstract:

Distributed systems offer many benefits to the healthcare industry. From big data analysis to business intelligence, the increased computational power and efficiency from distributed systems serve as an invaluable resource in the healthcare sector to utilize. However, as the usage of these distributed systems increases, many issues arise. The main focus of this paper will be on security issues. Many security issues stem from distributed systems in the healthcare industry, particularly information security. The data of people is especially sensitive in the healthcare industry. If important information gets leaked (Eg. IC, credit card number, address, etc.), a person’s identity, financial status, and safety might get compromised. This results in the responsible organization losing a lot of money in compensating these people and even more resources expended trying to fix the fault. Therefore, a framework for a blockchain-based healthcare data management system for healthcare was proposed. In this framework, the usage of a blockchain network is explored to store the encryption key of the patient’s data. As for the actual data, it is encrypted and its encrypted data, called ciphertext, is stored in a cloud storage platform. Furthermore, there are some issues that have to be emphasized and tackled for future improvements, such as a multi-user scheme that could be proposed, authentication issues that have to be tackled or migrating the backend processes into the blockchain network. Due to the nature of blockchain technology, the data will be tamper-proof, and its read-only function can only be accessed by authorized users such as doctors and nurses. This guarantees the confidentiality and immutability of the patient’s data.

Keywords: distributed, healthcare, efficiency, security, blockchain, confidentiality and immutability

Procedia PDF Downloads 184
25229 Design and Implementation of a Geodatabase and WebGIS

Authors: Sajid Ali, Dietrich Schröder

Abstract:

The merging of internet and Web has created many disciplines and Web GIS is one these disciplines which is effectively dealing with the geospatial data in a proficient way. Web GIS technologies have provided an easy accessing and sharing of geospatial data over the internet. However, there is a single platform for easy and multiple accesses of the data lacks for the European Caribbean Association (Europaische Karibische Gesselschaft - EKG) to assist their members and other research community. The technique presented in this paper deals with designing of a geodatabase using PostgreSQL/PostGIS as an object oriented relational database management system (ORDBMS) for competent dissemination and management of spatial data and Web GIS by using OpenGeo Suite for the fast sharing and distribution of the data over the internet. The characteristics of the required design for the geodatabase have been studied and a specific methodology is given for the purpose of designing the Web GIS. At the end, validation of this Web based geodatabase has been performed over two Desktop GIS software and a web map application and it is also discussed that the contribution has all the desired modules to expedite further research in the area as per the requirements.

Keywords: desktop GISSoftware, European Caribbean association, geodatabase, OpenGeo suite, postgreSQL/PostGIS, webGIS, web map application

Procedia PDF Downloads 341
25228 Integration of “FAIR” Data Principles in Longitudinal Mental Health Research in Africa: Lessons from a Landscape Analysis

Authors: Bylhah Mugotitsa, Jim Todd, Agnes Kiragga, Jay Greenfield, Evans Omondi, Lukoye Atwoli, Reinpeter Momanyi

Abstract:

The INSPIRE network aims to build an open, ethical, sustainable, and FAIR (Findable, Accessible, Interoperable, Reusable) data science platform, particularly for longitudinal mental health (MH) data. While studies have been done at the clinical and population level, there still exists limitations in data and research in LMICs, which pose a risk of underrepresentation of mental disorders. It is vital to examine the existing longitudinal MH data, focusing on how FAIR datasets are. This landscape analysis aimed to provide both overall level of evidence of availability of longitudinal datasets and degree of consistency in longitudinal studies conducted. Utilizing prompters proved instrumental in streamlining the analysis process, facilitating access, crafting code snippets, categorization, and analysis of extensive data repositories related to depression, anxiety, and psychosis in Africa. While leveraging artificial intelligence (AI), we filtered through over 18,000 scientific papers spanning from 1970 to 2023. This AI-driven approach enabled the identification of 228 longitudinal research papers meeting inclusion criteria. Quality assurance revealed 10% incorrectly identified articles and 2 duplicates, underscoring the prevalence of longitudinal MH research in South Africa, focusing on depression. From the analysis, evaluating data and metadata adherence to FAIR principles remains crucial for enhancing accessibility and quality of MH research in Africa. While AI has the potential to enhance research processes, challenges such as privacy concerns and data security risks must be addressed. Ethical and equity considerations in data sharing and reuse are also vital. There’s need for collaborative efforts across disciplinary and national boundaries to improve the Findability and Accessibility of data. Current efforts should also focus on creating integrated data resources and tools to improve Interoperability and Reusability of MH data. Practical steps for researchers include careful study planning, data preservation, machine-actionable metadata, and promoting data reuse to advance science and improve equity. Metrics and recognition should be established to incentivize adherence to FAIR principles in MH research

Keywords: longitudinal mental health research, data sharing, fair data principles, Africa, landscape analysis

Procedia PDF Downloads 90
25227 The Development of Noctiluca scintillans Algal Bloom in Coastal Waters of Muscat, Sulanate of Oman

Authors: Aysha Al Sha'aibi

Abstract:

Algal blooms of the dinoflagellate species Noctiluca scintillans became frequent events in Omani waters. The current study aims at elucidating the abundance, size variation and observations on the feeding mechanism performed by this species during the winter bloom. An attempt was made, to relate observed biological parameters of the Noctiluca population to environmental factors. Field studies spanned the period from December 2014 to April 2015. Samples were collected from Bandar Rawdah (Muscat region) by Bongo nets, twice per week, from the surface and the integrated upper mixed layer. The measured environmental variables were: temperature, salinity, dissolved oxygen, chlorophyll a, turbidity, nitrite, phosphate, wind speed and rainfall. During the winter bloom (from December 2014 through February 2015), the abundance exhibited the highest concentration on 17 February (640.24×106 cell.L-1) in oblique samples and 83.9x103 cell.L-1 in surface samples, with a subsequent decline up to the end of April. The average number of food vacuoles inside Noctiluca cells was 1.5 per cell; the percentage of feeding Noctiluca compared to the entire population varied from 0.01% to 0.03%. Both the surface area of the Noctiluca symbionts (Pedinomonas noctilucae) and cell diameter were maximal in December. In oblique samples the highest average cell diameter and the surface area of symbiont algae were 751.7 µm and 179.2x103 µm2 respectively. In surface samples, highest average cell diameter and the surface area of symbionts were 760 µm and 284.05x103 µm2 respectively. No significant correlations were detected between Noctiluca’s biological parameters and environmental variables except for the correlation between cell diameter and chlorophyll a, also between symbiotic algae surface area and chlorophyll a. The high correlation of chlorophyll a was as a reason of endosymbiotic algae Pedinomonas noctilucae and green Noctiluca enhanced chlorophyll during bloom. All correlations among biological parameters were significant; they are perhaps one of major factors that mediating high growth rates, generating millions of cell per liter in a short time range. The results gained from this study will provide a beneficial background for understanding deeply the development of coastal algal blooms of Noctiluca scintillans. Moreover, results could be used in different applications related to marine environment.

Keywords: abundance, feeding activities, Noctiluca scintillans, Oman

Procedia PDF Downloads 436
25226 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads

Authors: Gaurav Kumar Sinha

Abstract:

In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.

Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies

Procedia PDF Downloads 68
25225 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study

Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos

Abstract:

This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.

Keywords: in-place devices, IoT, human-centred data-analytics, spatial design

Procedia PDF Downloads 197
25224 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver

Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem

Abstract:

Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.

Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization

Procedia PDF Downloads 372
25223 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401
25222 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: multi-objective, analysis, data flow, freight delivery, methodology

Procedia PDF Downloads 180
25221 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints

Authors: Amjad Khan

Abstract:

The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.

Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking

Procedia PDF Downloads 284
25220 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 128
25219 Differentially Expressed Protein Biomarkers in Early and Advanced Stage Young Triple-Negative Breast Cancer Patients

Authors: Shamim Mushtaq, Moazzam Shahid

Abstract:

Breast cancer (BC) claims the lives of half a million women every year and is the most common cause of death in the developing world. In 2019, it was estimated that BC alone accounts for 15% of all cancer deaths in younger women (aged < 45 years old) with advanced-stage lung metastasis. According to the World Health Organization & International Union against Cancer, in Asia, a high number of cancer-related deaths will be observed in 2020, whereas the burden will be reduced in Western countries due to awareness about the disease, better health facilities and advanced treatments. In the last 15 years, it has been reported that the incidence of BC has increased by 1.1% among Asian compared to the US population from 2003 to 2012. To date, several BC biological subtypes have been reported so far, which are associated with different treatment responses. The heterogeneity and diversity of BC reflected these different subtypes, including Luminal A (23.7% prevalence) and B (38.8% prevalence) that have pathological estrogen receptor (ER+)-positive tumors, the human epidermal growth factor receptor 2 (HER2) (11.2% prevalence) and triple-negative breast cancer (TNBC) (25% prevalence). According to Shaukat Khanum Memorial Cancer Hospital and Research Centre – Pakistan, ten years of data showed that among 636 BC patients, 30.5% had TNBC who were <40 years of age, which is an extremely alarming situation. Therefore, there is a dire need to explore and develop therapeutic targets for the treatment of early TNBC. Since the last decade, unfortunately, there has been little success in understanding the complexity of TNBC and in discovering new biological therapeutic targets. However, conventional chemotherapy is the only choice of treatment for TNBC patients. Many investigators revealed advances in multi-omics (multiple "omes", e.g., genome, proteome, transcriptome, epigenome, and microbiome) which were later identified as actionable targets and increased prevalence in TNBC patients. However, various drugs have been identified so far which are related to a particular diagnostic and prognostic biomarker. For example, Epidermal growth factor receptor ( EGFR or ErbB-1), HER-2/neu (ErbB-2), HER-3 (ErbB-3), and HER-4 (ErbB-4). Protein Transglin-2 (TAGLN 2 ) and Profilins-1 (Pfn-1 ) are the ubiquitously expressed large family of proteins present in all eukaryotes, enabling actin cytoskeletal reorganization. It is known that the oncogenic transformation of cells is accompanied by alteration in the actin cytoskeleton. There are causal connections between altered expression of actin cytoskeletal regulators and cancer progression. Our case-control study identified TAGLN-2 and Pfn-1 proteins in TNBC blood by mass spectrometry. Both TAGLN-2 and Pfn-1 proteins are differentially expressed in early and advanced stages of TNBS patients, which could be potential predictors or therapeutic targets for TNBC.

Keywords: TNBC, blood biomarkers, mass spectrometry, qPCR, ELISA

Procedia PDF Downloads 43
25218 Seismic Interpretation and Petrophysical Evaluation of SM Field, Libya

Authors: Abdalla Abdelnabi, Yousf Abushalah

Abstract:

The G Formation is a major gas producing reservoir in the SM Field, eastern, Libya. It is called G limestone because it consists of shallow marine limestone. Well data and 3D-Seismic in conjunction with the results of a previous study were used to delineate the hydrocarbon reservoir of Middle Eocene G-Formation of SM Field area. The data include three-dimensional seismic data acquired in 2009. It covers approximately an area of 75 mi² and with more than 9 wells penetrating the reservoir. Seismic data are used to identify any stratigraphic and structural and features such as channels and faults and which may play a significant role in hydrocarbon traps. The well data are used to calculation petrophysical analysis of S field. The average porosity of the Middle Eocene G Formation is very good with porosity reaching 24% especially around well W 6. Average water saturation was calculated for each well from porosity and resistivity logs using Archie’s formula. The average water saturation for the whole well is 25%. Structural mapping of top and bottom of Middle Eocene G formation revealed the highest area in the SM field is at 4800 ft subsea around wells W4, W5, W6, and W7 and the deepest point is at 4950 ft subsea. Correlation between wells using well data and structural maps created from seismic data revealed that net thickness of G Formation range from 0 ft in the north part of the field to 235 ft in southwest and south part of the field. The gas water contact is found at 4860 ft using the resistivity log. The net isopach map using both the trapezoidal and pyramid rules are used to calculate the total bulk volume. The original gas in place and the recoverable gas were calculated volumetrically to be 890 Billion Standard Cubic Feet (BSCF) and 630 (BSCF) respectively.

Keywords: 3D seismic data, well logging, petrel, kingdom suite

Procedia PDF Downloads 150
25217 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 433