Search results for: robust model predictive control
5595 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study
Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu
Abstract:
With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray
Procedia PDF Downloads 7305594 System for Electromyography Signal Emulation Through the Use of Embedded Systems
Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.
Abstract:
This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.Keywords: classification, electromyography, embedded system, emulation, physiological signals
Procedia PDF Downloads 1115593 Premature Menopause among Women in India: Evidence from National Family Health Survey-IV
Authors: Trupti Meher, Harihar Sahoo
Abstract:
Premature menopause refers to the occurrence of menopause before the age of 40 years. Women who experience premature menopause either due to biological or induced reasons have a longer duration of exposure to severe symptoms and adverse health consequences when compared to those who undergo menopause at a later age, despite the fact that premature menopause has a profound effect on the health of women. This study attempted to determine the prevalence and predictors of premature menopause among women aged 25-39 years, using data from the National Family Health Survey (NFHS-4) conducted during 2015–16 in India. Descriptive statistics and multinomial logistic regression were used to carry out the result. The results revealed that the prevalence of premature menopause in India was 3.7 percent. Out of which, 2.1 percent of women had experienced natural premature menopause, whereas 1.7 percent had premature surgical menopause. The prevalence of premature menopause was highest in the southern region of India. Further, results of the multivariate model indicated that rural women, women with higher parity, early age at childbearing and women with smoking habits were at a greater risk of premature menopause. A sizeable proportion of women in India are attaining menopause prematurely. Unless due attention is given to this matter, it will emerge as a major problem in India in the future. The study also emphasized the need for further research to enhance knowledge on the problems of premature menopausal women in different socio-cultural settings in India.Keywords: India, natural menopause, premature menopause, surgical menopause
Procedia PDF Downloads 2075592 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing
Authors: Aldona Kluczek
Abstract:
In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment
Procedia PDF Downloads 2475591 Synthesis and Characterization of Anti-Psychotic Drugs Based DNA Aptamers
Authors: Shringika Soni, Utkarsh Jain, Nidhi Chauhan
Abstract:
Aptamers are recently discovered ~80-100 bp long artificial oligonucleotides that not only demonstrated their applications in therapeutics; it is tremendously used in diagnostic and sensing application to detect different biomarkers and drugs. Synthesizing aptamers for proteins or genomic template is comparatively feasible in laboratory, but drugs or other chemical target based aptamers require major specification and proper optimization and validation. One has to optimize all selection, amplification, and characterization steps of the end product, which is extremely time-consuming. Therefore, we performed asymmetric PCR (polymerase chain reaction) for random oligonucleotides pool synthesis, and further use them in Systematic evolution of ligands by exponential enrichment (SELEX) for anti-psychotic drugs based aptamers synthesis. Anti-psychotic drugs are major tranquilizers to control psychosis for proper cognitive functions. Though their low medical use, their misuse may lead to severe medical condition as addiction and can promote crime in social and economical impact. In this work, we have approached the in-vitro SELEX method for ssDNA synthesis for anti-psychotic drugs (in this case ‘target’) based aptamer synthesis. The study was performed in three stages, where first stage included synthesis of random oligonucleotides pool via asymmetric PCR where end product was analyzed with electrophoresis and purified for further stages. The purified oligonucleotide pool was incubated in SELEX buffer, and further partition was performed in the next stage to obtain target specific aptamers. The isolated oligonucleotides are characterized and quantified after each round of partition, and significant results were obtained. After the repetitive partition and amplification steps of target-specific oligonucleotides, final stage included sequencing of end product. We can confirm the specific sequence for anti-psychoactive drugs, which will be further used in diagnostic application in clinical and forensic set-up.Keywords: anti-psychotic drugs, aptamer, biosensor, ssDNA, SELEX
Procedia PDF Downloads 1355590 Effects of Geometrical Parameters on Static Strength of Tubular KT-Joints at Fire Condition
Authors: Hamid Ahmadi, Neda Azari Dodaran
Abstract:
This paper aims to study the structural behavior of tubular KT-joints subjected to axial loading at fire induced elevated temperatures. At first, a finite element (FE) model was developed and validated against the data available from experimental tests. Then, a set of 810 FE analyses were performed to study the influence of temperature and dimensionless geometrical parameters (β, γ, θ, and τ) on the ultimate strength and initial stiffness. The joints were analyzed under two types of axial loading and five different temperatures (20 ºC, 200 ºC, 400 ºC, 550 ºC, and 700 ºC). Results show that the ultimate strength and initial stiffness of KT-joints decrease considerably by increasing the temperature. In the joints having bigger values of the β, the temperature elevation leads to less reduction in ultimate strength; while in the joints with bigger values of the γ, the temperature elevation results in more reduction in ultimate strength. The influence of the θ on the ultimate strength is independent from the temperature. To our knowledge, there is no design formula available for determining the ultimate strength of KT-joints at elevated temperatures. Hence, after parametric study, two equations were developed through nonlinear regression, for calculating the ultimate strength of KT-joints at elevated temperatures.Keywords: axial loads, fire condition, parametric formula, static strength, tubular KT-joint
Procedia PDF Downloads 1545589 Effect of Feeding Varying Levels of Dietary Cation-Anion Difference on the Performance of Transition Sahiwal Cattle
Authors: Farhan Ahmad Atif, Abd Ur Rehman, Muhammad Babir
Abstract:
Dietary cation anion difference (DCAD) is an important aspect of dairy nutrition, especially in the transition period. Sahiwal cattle is the highest milk producing breed among Zebu cattle. We planned first study on transition Sahiwal cattle to determine the effects of feeding varying levels of negative DCAD. For this purpose, twenty pregnant cows (at the 250th day of gestation) were selected and randomly divided into 5 groups comprising four animals each. Five iso-caloric (2100 Kcal) and iso-nitrogenous (12%) diets were formulated and each diet was allotted to each group. The animals received positive DCAD diet served as control. Diets were supplemented with NutriCAB® to attain 0, -15, -30 and -45 DCAD levels. Experimental diets were fed at ad-libitum upto parturition and data regarding feed intake were recorded on daily. Post-partum incidence of milk fever, dystocia, retention of placenta (RP), mastitis as well as milk production, milk fat percentage and serum Ca levels were recorded. Urine and blood pH were determined weekly during the last month of pregnancy. Results showed that prepartum feed intake and blood pH were not affected (P > 0.05), while urine pH was significantly reduced (P < 0.05) by lowering DCAD levels. Post parturient blood calcium level linearly increased (P < 0.05) with decreasing DCAD. Pre-partum negative DCAD feeding had no effect (P > 0.05) on post-parturient milk production and fat percentage. However, parturient related problems decreased with decreasing DCAD feeding. It was concluded that negative DCAD feeding raised serum calcium level and reduced the incidence of post-parturient problems in Sahiwal cattle.Keywords: dairy cattle, transition, metabolic diseases, reproductive disorders, incidence
Procedia PDF Downloads 1865588 Competitive DNA Calibrators as Quality Reference Standards (QRS™) for Germline and Somatic Copy Number Variations/Variant Allelic Frequencies Analyses
Authors: Eirini Konstanta, Cedric Gouedard, Aggeliki Delimitsou, Stefania Patera, Samuel Murray
Abstract:
Introduction: Quality reference DNA standards (QRS) for molecular testing by next-generation sequencing (NGS) are essential for accurate quantitation of copy number variations (CNV) for germline and variant allelic frequencies (VAF) for somatic analyses. Objectives: Presently, several molecular analytics for oncology patients are reliant upon quantitative metrics. Test validation and standardisation are also reliant upon the availability of surrogate control materials allowing for understanding test LOD (limit of detection), sensitivity, specificity. We have developed a dual calibration platform allowing for QRS pairs to be included in analysed DNA samples, allowing for accurate quantitation of CNV and VAF metrics within and between patient samples. Methods: QRS™ blocks up to 500nt were designed for common NGS panel targets incorporating ≥ 2 identification tags (IDTDNA.com). These were analysed upon spiking into gDNA, somatic, and ctDNA using a proprietary CalSuite™ platform adaptable to common LIMS. Results: We demonstrate QRS™ calibration reproducibility spiked to 5–25% at ± 2.5% in gDNA and ctDNA. Furthermore, we demonstrate CNV and VAF within and between samples (gDNA and ctDNA) with the same reproducibility (± 2.5%) in a clinical sample of lung cancer and HBOC (EGFR and BRCA1, respectively). CNV analytics was performed with similar accuracy using a single pair of QRS calibrators when using multiple single targeted sequencing controls. Conclusion: Dual paired QRS™ calibrators allow for accurate and reproducible quantitative analyses of CNV, VAF, intrinsic sample allele measurement, inter and intra-sample measure not only simplifying NGS analytics but allowing for monitoring clinically relevant biomarker VAF across patient ctDNA samples with improved accuracy.Keywords: calibrator, CNV, gene copy number, VAF
Procedia PDF Downloads 1525587 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 965586 Nature of Polaronic Hopping Conduction Mechanism in Polycrystalline and Nanocrystalline Gd0.5Sr0.5MnO3 Compounds
Authors: Soma Chatterjee, I. Das
Abstract:
In the present study, we have investigated the structural, electrical and magneto-transport properties of polycrystalline and nanocrystalline Gd0.5Sr0.5MnO3 compounds. The variation of transport properties is modified by tuning the grain size of the material. In the high-temperature semiconducting region, temperature-dependent resistivity data can be well explained by the non-adiabatic small polaron hopping (SPH) mechanism. In addition, the resistivity data for all compounds in the low-temperature paramagnetic region can also be well explained by the variable range hopping (VRH) model. The parameters obtained from SPH and VRH mechanisms are found to be reasonable. In the case of nanocrystalline compounds, there is an overlapping temperature range where both SPH and VRH models are valid simultaneously, and a new conduction mechanism - variable range hopping of small polaron s(VR-SPH) is satisfactorily valid for the whole temperature range of these compounds. However, for the polycrystalline compound, the overlapping temperature region between VRH and SPH models does not exist and the VR-SPH mechanism is not valid here. Thus, polarons play a leading role in selecting different conduction mechanisms in different temperature ranges.Keywords: electrical resistivity, manganite, small polaron hopping, variable range hopping, variable range of small polaron hopping
Procedia PDF Downloads 905585 Effect of Boundary Condition on Granular Pressure of Gas-Solid Flow in a Rotating Drum
Authors: Rezwana Rahman
Abstract:
Various simulations have been conducted to understand the particle's macroscopic behavior in the solid-gas multiphase flow in rotating drums in the past. In these studies, the particle-wall no-slip boundary condition was usually adopted. However, the non-slip boundary condition is rarely encountered in real systems. A little effort has been made to investigate the particle behavior at slip boundary conditions. The paper represents a study of the gas-solid flow in a horizontal rotating drum at a slip boundary wall condition. Two different sizes of particles with the same density have been considered. The Eulerian–Eulerian multiphase model with the kinetic theory of granular flow was used in the simulations. The granular pressure at the rolling flow regime with specularity coefficient 1 was examined and compared with that obtained based on the no-slip boundary condition. The results reveal that the profiles of granular pressure distribution on the transverse plane of the drum are similar for both boundary conditions. But, overall, compared with those for the no-slip boundary condition, the values of granular pressure for specularity coefficient 1 are larger for the larger particle and smaller for the smaller particle.Keywords: boundary condition, eulerian–eulerian, multiphase, specularity coefficient, transverse plane
Procedia PDF Downloads 2195584 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders
Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi
Abstract:
Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers
Procedia PDF Downloads 665583 Blockchain-Based Decentralized Architecture for Secure Medical Records Management
Authors: Saeed M. Alshahrani
Abstract:
This research integrated blockchain technology to reform medical records management in healthcare informatics. It was aimed at resolving the limitations of centralized systems by establishing a secure, decentralized, and user-centric platform. The system was architected with a sophisticated three-tiered structure, integrating advanced cryptographic methodologies, consensus algorithms, and the Fast Healthcare Interoperability Resources (HL7 FHIR) standard to ensure data security, transaction validity, and semantic interoperability. The research has profound implications for healthcare delivery, patient care, legal compliance, operational efficiency, and academic advancements in blockchain technology and healthcare IT sectors. The methodology adapted in this research comprises of Preliminary Feasibility Study, Literature Review, Design and Development, Cryptographic Algorithm Integration, Modeling the data and testing the system. The research employed a permissioned blockchain with a Practical Byzantine Fault Tolerance (PBFT) consensus algorithm and Ethereum-based smart contracts. It integrated advanced cryptographic algorithms, role-based access control, multi-factor authentication, and RESTful APIs to ensure security, regulate access, authenticate user identities, and facilitate seamless data exchange between the blockchain and legacy healthcare systems. The research contributed to the development of a secure, interoperable, and decentralized system for managing medical records, addressing the limitations of the centralized systems that were in place. Future work will delve into optimizing the system further, exploring additional blockchain use cases in healthcare, and expanding the adoption of the system globally, contributing to the evolution of global healthcare practices and policies.Keywords: healthcare informatics, blockchain, medical records management, decentralized architecture, data security, cryptographic algorithms
Procedia PDF Downloads 555582 Experimental and Analytical Study to Investigate the Effect of Tension Reinforcement on Behavior of Reinforced Concrete Short Beams
Authors: Hakan Ozturk, Aydin Demir, Kemal Edip, Marta Stojmanovska, Julijana Bojadjieva
Abstract:
There are many factors that affect the behavior of reinforced concrete beams. These can be listed as concrete compressive and reinforcement yield strength, amount of tension, compression and confinement bars, and strain hardening of reinforcement. In the study, support condition of short beams is selected statically indeterminate to first degree. Experimental and numerical analysis are carried for reinforcement concrete (RC) short beams. Dimensions of cross sections are selected as 250mm width and 500 mm height. The length of RC short beams is designed as 2250 mm and these values are constant in all beams. After verifying accurately finite element model, a numerical parametric study is performed with varied diameter of tension reinforcement. Effect of change in diameter is investigated on behavior of RC short beams. As a result of the study, ductility ratios and failure modes are determined, and load-displacement graphs are obtained in order to understand the behavior of short beams. It is deduced that diameter of tension reinforcement plays very important role on the behavior of RC short beams in terms of ductility and brittleness.Keywords: short beam, reinforced concrete, finite element analysis, longitudinal reinforcement
Procedia PDF Downloads 2115581 New Test Algorithm to Detect Acute and Chronic HIV Infection Using a 4th Generation Combo Test
Authors: Barun K. De
Abstract:
Acquired immunodeficiency syndrome (AIDS) is caused by two types of human immunodeficiency viruses, collectively designated HIV. HIV infection is spreading globally particularly in developing countries. Before an individual is diagnosed with HIV, the disease goes through different phases. First there is an acute early phase that is followed by an established or chronic phase. Subsequently, there is a latency period after which the individual becomes immunodeficient. It is in the acute phase that an individual is highly infectious due to a high viral load. Presently, HIV diagnosis involves use of tests that do not detect the acute phase infection during which both the viral RNA and p24 antigen are expressed. Instead, these less sensitive tests detect antibodies to viral antigens which are typically sero-converted later in the disease process following acute infection. These antibodies are detected in both asymptomatic HIV-infected individuals as well as AIDS patients. Studies indicate that early diagnosis and treatment of HIV infection can reduce medical costs, improve survival, and reduce spreading of infection to new uninfected partners. Newer 4th generation combination antigen/antibody tests are highly sensitive and specific for detection of acute and established HIV infection (HIV1 and HIV2) enabling immediate linkage to care. The CDC (Center of Disease Control, USA) recently recommended an algorithm involving three different tests to screen and diagnose acute and established infections of HIV-1 and HIV-2 in a general population. Initially a 4th generation combo test detects a viral antigen p24 and specific antibodies against HIV -1 and HIV-2 envelope proteins. If the test is positive it is followed by a second test known as a differentiation assay which detects antibodies against specific HIV-1 and HIV-2 envelope proteins confirming established infection of HIV-1 or HIV-2. However if it is negative then another test is performed that measures viral load confirming an acute HIV-1 infection. Screening results of a Phoenix area population detected 0.3% new HIV infections among which 32.4% were acute cases. Studies in the U.S. indicate that this algorithm effectively reduces HIV infection through immediate treatment and education following diagnosis.Keywords: new algorithm, HIV, diagnosis, infection
Procedia PDF Downloads 4125580 The Circularity of Re-Refined Used Motor Oils: Measuring Impacts and Ensuring Responsible Procurement
Authors: Farah Kanani
Abstract:
Blue Tide Environmental is a company focused on developing a network of used motor oil recycling facilities across the U.S. They initiated the redesign of its recycling plant in Texas, and aimed to establish an updated carbon footprint of re-refined used motor oils compared to an equivalent product derived from virgin stock that is not re-refined. The aim was to quantify emissions savings of a circular alternative to conventional end-of-life combustion of used motor oil (UMO). To do so, they mandated an ISO-compliant carbon footprint, utilizing complex models requiring geographical and temporal accuracy to accommodate the U.S. refinery market. The quantification of linear and circular flows, proxies for fuel substitution and system expansion for multi-product outputs were all critical methodological choices and were tested through sensitivity analyses. The re-refined system consisted of continuous recycling of UMO and thus, end-of-life is considered non-existent. The unique perspective to this topic will be from a life cycle i.e. holistic one and essentially demonstrate using this example of how a cradle-to-cradle model can be used to quantify a comparative carbon footprint. The intended audience is lubricant manufacturers as the consumers, motor oil industry professionals and other industry members interested in performing a cradle-to-cradle modeling.Keywords: circularity, used motor oil, re-refining, systems expansion
Procedia PDF Downloads 325579 Flow Prediction of Boundary Shear Stress with Enlarging Flood Plains
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
River is our main source of water which is a form of open channel flow and the flow in open channel provides with many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results is compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution
Procedia PDF Downloads 1535578 Bamboo Resilience: Mentoring Asian Students to Develop their Self-Leadership via Online Seminars
Authors: Tam Nguyen
Abstract:
Self-leadership is strongly tied to the ability to be resilient in the face of adversity. This study aims to demonstrate how a strategy based on a culturally relevant "bamboo metaphor" enables Asian students to cross cultural boundaries and to engage in online discussions to unlock their self-leadership potential. Asian students are influenced to varying degrees by the Confucian heritage culture, which educates students to respect authority, maintain harmony, and avoid public confrontations. This has a significant impact on the cultural readiness of Asian students to express their development as self-leaders. In this research project, researchers as mentors individually assist students, cultivate cognitive progress, encourage and personally ask students to join a process of mentorship program. This study analyzes and interprets the data from a large online seminar in Ho Chi Minh City, Vietnam, where students were trained in self-leadership skills. Focus-group interviews were implemented among 90 students in the program. Findings reveal the emotional needs of Asian students and suggest a cognitive model for developing students' self-awareness, self-confidence, and self-efficacy. The research results are anticipated to be applicable to a broader Asian population with a comparable cultural environment to Vietnam.Keywords: self-leadership, bamboo resilience, cognitive modeling, Asian culture
Procedia PDF Downloads 885577 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 3435576 Countercyclical Capital Buffer in the Polish Banking System
Authors: Mateusz Mokrogulski, Piotr Śliwka
Abstract:
The aim of this paper is the identification of periods of excessive credit growth in the Polish banking sector in years 2007-2014 using different methodologies. Due to the lack of precise guidance in CRD IV regarding methods of calculating the credit gap and related deviations from the long-term trends, a few filtering methods are applied, e.g. Hodrick-Prescott and Baxter-King. The solutions based on the switching model are also proposed. The next step represent computations of both the credit gap, and the counter cyclical capital buffer (CCB) rates on a quarterly basis. The calculations are carried out for the entire banking sector in Poland, as well as for its components (commercial and co-operative banks), and different types of loans. The calculations show vividly that in the analysed period there were the times of excessive credit growth. However, the results are different for the above mentioned sub-sectors. Of paramount importance here are mortgage loans, where the outcomes are distorted by high exchange rate fluctuations. The research on the CCB is now going to gain popularity as the buffer will soon become one of the tools of the macro prudential policy under CRD IV. Although the presented method is focused on the Polish banking sector, it can also be applied to other member states. Especially to the Central and Eastern European countries, that are usually characterized by smaller banking sectors compared to EU-15.Keywords: countercyclical capital buffer, CRD IV, filtering methods, mortgage loans
Procedia PDF Downloads 3225575 Drought Alters the Expression of a Candidate Zea Mays P-Coumarate 3-Hydroxylase Gene and Caffeic Acid Biosynthesis
Authors: Zintle Kolo, Ndiko Ludidi
Abstract:
The enzymatic activity of p-coumarate 3-hydroxylase (C3H) synthesize caffeic acid from p-coumaric acid. We recently showed that exogenously applied caffeic acid confers salinity tolerance in soybean (Glycine max) by inducing antioxidant enzymatic activity to promote enhanced scavenging or reactive oxygen species, thus limiting salinity-induced oxidative stress. Recent evidence also establishes that pre-treatment of plants with exogenously supplied caffeic acid improves plant tolerance to osmotic stress by improving plant antioxidant capacity and enhancing biosynthesis of compatible solutes. We aimed to identify a C3H in maize (Zea mays) and evaluate the effect of drought on the spatial and temporal expression of the gene encoding the candidate maize C3H (ZmC3H). Primary sequence analysis shows that ZmC3H shares 71% identity with an Arabidopsis thaliana C3H that is implicated in the control of Arabidopsis cell expansion, growth, and responses to stress. In silico ZmC3H promoter analysis reveals the presence of cis-acting elements that interact with transcription factors implicated in plant responses to drought. Spatial expression analysis by semi-quantitative RT-PCR shows that ZmC3H is expressed in both leaves and roots under normal conditions. However, drought represses the expression of ZmC3H in leaves whereas it up-regulates its expression in roots. These changes in ZmC3H expression correlate with the changes in the content of caffeic acid in maize in response to drought. We illustrate the implications of these changes in the expression of the gene in relation to maize responses to drought and discuss the potential of regulating caffeic acid biosynthesis towards genetic improvement of maize tolerance to drought stress. These findings have implications for food security because of the potential of the implications of the study for drought tolerance in maize.Keywords: caffeic acid, drought-responsive expression, maize drought tolerance, p-coumarate 3-hydroxylase
Procedia PDF Downloads 4745574 Performance of Buildings with Base-Isolation System under Geometric Irregularities
Authors: Firoz Alam Faroque, Ankur Neog
Abstract:
Earthquake causes significant loss of lives and severe damage to infrastructure. Base isolator is one of the most suitable solutions to make a building earthquake resistant. Base isolation consists of installing an isolator along with the steel plates covered with pads of strong material like steel, rubber, etc. In our study, we have used lead rubber bearing (LRB). The basic idea of seismic isolation is based on the reduction of the earthquake-induced inertia forces by shifting the fundamental period of the structure out of dangerous resonance range, and concentration of the deformation and energy dissipation demands at the isolation and energy dissipation systems, which are designed for this purpose. In this paper, RC frame buildings have been modeled and analyzed by response spectrum method using ETABS software. The LRB used in the model is designed as per uniform building code (UBC) 97. It is found that time period for the base isolated structures are higher than that of the fixed base structure and the value of base shear significantly reduces in the case of base-isolated buildings. It has also been found that buildings with vertical irregularities give better performance as compared to building with plan irregularities using base isolators.Keywords: base isolation, base shear, irregularities in buildings, lead rubber bearing (LRB)
Procedia PDF Downloads 3255573 Empirical Investigation into Climate Change and Climate-Smart Agriculture for Food Security in Nigeria
Authors: J. Julius Adebayo
Abstract:
The objective of this paper is to assess the agro-climatic condition of Ibadan in the rain forest ecological zone of Nigeria, using rainfall pattern and temperature between 1978-2018. Data on rainfall and temperature in Ibadan, Oyo State for a period of 40 years were obtained from Meteorological Section of Forestry Research Institute of Nigeria, Ibadan and Oyo State Meteorology Centre. Time series analysis was employed to analyze the data. The trend revealed that rainfall is decreasing slowly and temperature is averagely increasing year after year. The model for rainfall and temperature are Yₜ = 1454.11-8*t and Yₜ = 31.5995 + 2.54 E-02*t respectively, where t is the time. On this basis, a forecast of 20 years (2019-2038) was generated, and the results showed a further downward trend on rainfall and upward trend in temperature, this indicates persistence rainfall shortage and very hot weather for agricultural practices in the southwest rain forest ecological zone. Suggestions on possible solutions to avert climate change crisis and also promote climate-smart agriculture for sustainable food and nutrition security were also discussed.Keywords: climate change, rainfall pattern, temperature, time series analysis, food and nutrition security
Procedia PDF Downloads 1445572 Reduction of Fermentation Duration of Cassava to Remove Hydrogen Cyanide
Authors: Jean Paul Hategekimana, Josiane Irakoze, Eugene Niyonzima, Annick Ndekezi
Abstract:
Cassava (Manihot esculenta Crantz) is a root crop comprising an anti-nutritive factor known as cyanide. The compound can be removed by numerous processing methods such as boiling, fermentation, blanching, and sun drying to avoid the possibility of cyanide poisoning. Inappropriate processing mean can lead to disease and death. Cassava-based dishes are consumed in different ways, where cassava is cultivated according to their culture and preference. However, they have been shown to be unsafe based on high cyanide levels. The current study targeted to resolve the problem of high cyanide in cassava consumed in Rwanda. This study was conducted to determine the effect of slicing, blanching, and soaking time to reduce the fermentation duration of cassava for hydrogen cyanide (HCN) in mg/g removal. Cassava was sliced into three different portions (1cm, 2cm, and 5cm). The first portions were naturally fermented for seven days, where each portion was removed every 24 hours from soaking tanks and then oven dried at a temperature of 60°C and then milled to obtain naturally fermented cassava flours. Other portions of 1cm, 2cm, and 5cm were blanched for 2, 5, 10 min, respectively, and each similarly dried at 60°C and milled to produce blanched cassava flour. Other blanched portions were used to follow the previous fermentation steps. The last portions, which formed the control, were simply chopped. Cyanide content and starch content in mg/100g were investigated. According to the conducted analysis on different cassava treatments for detoxification, found that usual fermentation can be used, but for sliced portions aimed to size reduction for the easy hydrogen cyanide diffuse out and it takes four days to complete fermentation, which has reduced at 94.44% with significantly different (p<0.05)of total hydrogen cyanide contained in cassava to safe level of consumption, and what is recommended as more effective is to apply blanching combined with fermentation due to the fact that, it takes three days to complete hydrogen cyanide removal at 95.56% on significantly different (p<0.05) of reduction to the safe level of consumption.Keywords: cassava, cyanide, blanching, drying, fermentation
Procedia PDF Downloads 685571 Yield and Sward Composition Responses of Natural Grasslands to Treatments Meeting Sustainability
Authors: D. Díaz Fernández, I. Csízi, K. Pető, G. Nagy
Abstract:
An outstanding part of the animal products are based on the grasslands, due to the fact that the grassland ecosystems can be found all over the globe. In places where economical and successful crop production cannot be managed, the grassland based animal husbandry can be an efficient way of food production. In addition, these ecosystems have an important role in carbon sequestration, and with their rich flora – and fauna connected to it – in conservation of biodiversity. The protection of nature, and the sustainable agriculture is getting more and more attention in the European Union, but, looking at the consumers’ needs, the production of healthy food cannot be neglected either. Because of these facts, the effects of two specific composts - which are officially authorized in organic farming, in Agri-environment Schemes and Natura 2000 programs – on grass yields and sward compositions were investigated in a field trial. The investigation took place in Hungary, on a natural grassland based on solonetz soil. Three rates of compost (10 t/ha, 20 t/ha, 30 t/ha) were tested on 3 m X 10 m experimental plots. Every treatment had four replications and both type of compost had four-four control plots too, this way 32 experimental plots were included in the investigations. The yield of the pasture was harvested two-times (in May and in September) and before cutting the plots, measurements on botanical compositions were made. Samples for laboratory analysis were also taken. Dry matter yield of pasture showed positive responses to the rates of composts. The increase in dry matter yield was partly due to some positive changes in sward composition. It means that the proportions of grass species with higher yield potential increased in ground cover of the sward without depressing out valuable native species of diverse natural grasslands. The research results indicate that the use of organic compost can be an efficient way to increase grass yields in a sustainable way.Keywords: compost application, dry matter yield, native grassland, sward composition
Procedia PDF Downloads 2495570 Heroic Villains: An Exploration of the Use of Narrative Plotlines and Emerging Identities within Recovery Stories of Former Substance Abusers
Authors: Tria Moore Aimee Walker-Clarke
Abstract:
The purpose of the study was to develop a deeper understanding of how self-identity is negotiated and reconstructed by people in recovery from substance abuse. The approach draws on the notion that self-identity is constructed through stories. Specifically, dominant narratives of substance abuse involve the 'addict identity' in which the meaning of being an addict is constructed though social interaction and informed by broader social meanings of substance misuse, which are considered deviant. The addict is typically understood as out of control, weak and feckless. Users may unconsciously embody this addict identity which makes recovery less likely. Typical approaches to treatment employ the notion that recovery is much more likely when users change the way they think and feel about themselves by assembling a new identity. Recovery, therefore, involves a reconstruction of the self in a new light, which may mean rejecting a part of the self (the addict identity). One limitation is that previous research on this topic has been quantitative which, while useful, tells us little about how this process is best managed. Should one, for example, reject the past addict identity completely and move on to the new identity, or, is it more effective to accept the past identity and use this in the formation of the new non-user identity? The purpose of this research, then, is to explore how addicts in recovery have managed the transition between their past and current selves and whether this may inform therapeutic practice. Using a narrative approach, data were analyzed from five in-depth interviews with former addicts who had been abstinent for at least a year, and who were in some form of volunteering role at substance treatment services in the UK. Although participants' identified with a previous ‘addict identity,’ and made efforts to disassociate themselves from this, they also recognized that acceptance was an important part of reconstructing their new identity. The participants' narratives used familiar plot lines to structure their stories, in which they positioned themselves as the heroes in their own stories, rather than as victim of circumstance. Instead of rejecting their former addict identity, which would mean rejecting a part of the self, participants used their experience in a reconstructive and restorative way. The findings suggest that encouraging people to tell their story and accept their addict identity are important factors in successful recovery.Keywords: addiction, identity, narrative, recovery, substance abuse
Procedia PDF Downloads 3055569 An Approach for Estimation in Hierarchical Clustered Data Applicable to Rare Diseases
Authors: Daniel C. Bonzo
Abstract:
Practical considerations lead to the use of unit of analysis within subjects, e.g., bleeding episodes or treatment-related adverse events, in rare disease settings. This is coupled with data augmentation techniques such as extrapolation to enlarge the subject base. In general, one can think about extrapolation of data as extending information and conclusions from one estimand to another estimand. This approach induces hierarchichal clustered data with varying cluster sizes. Extrapolation of clinical trial data is being accepted increasingly by regulatory agencies as a means of generating data in diverse situations during drug development process. Under certain circumstances, data can be extrapolated to a different population, a different but related indication, and different but similar product. We consider here the problem of estimation (point and interval) using a mixed-models approach under an extrapolation. It is proposed that estimators (point and interval) be constructed using weighting schemes for the clusters, e.g., equally weighted and with weights proportional to cluster size. Simulated data generated under varying scenarios are then used to evaluate the performance of this approach. In conclusion, the evaluation result showed that the approach is a useful means for improving statistical inference in rare disease settings and thus aids not only signal detection but risk-benefit evaluation as well.Keywords: clustered data, estimand, extrapolation, mixed model
Procedia PDF Downloads 1365568 Impact of Construction Risk Factors into Actual Construction Price in PPP Projects
Authors: Saleh Alzahrani, Halim Boussabaine
Abstract:
The majority of Public Private Partnership (PPP) are developed based on the rationale that the design, construction, operation, and financing of a public project is to be awarded to a private party within a single contractual framework. PPP project risks normally include the development and construction of a new asset as well as its operation for decades. Undoubtedly the most serious consequences of risks during the construction period are price and time overruns. These events are amongst the most broadly used scenarios in value for money analysis risks. The sources of risk change over the life cycle of a PPP project. In traditional procurement, the public sector normally has to cover all price distress from these risks. At least there is plenty evidence to suggest that price distress is a norm in some of the projects that are delivered under traditional procurement. This paper will find the impact of construction risk factors into actual construction price into PPP projects. The paper will present a brief literature review on PPP risk pricing strategies, and then using system dynamics (SD) to analyses of the risks associated with the estimated project price. Based on the finding from these analyses a risk pricing association model is presented and discussed. The paper concludes with thoughts for future research.Keywords: Public Private Partnership (PPP), Risk, Risk Pricing, System Dynamics (SD), construction price
Procedia PDF Downloads 5655567 Trading Volume on the Tunisian Financial Market: An Approach Explaining the Hypothesis of Investors Overconfidence
Authors: Fatma Ismailia, Malek Saihi
Abstract:
This research provides an explanation of exchange incentives on the Tunis stock market from a behavioural point of view. The elucidation of the anomalies of excessive volume of transactions and that of excessive volatility cannot be done without the recourse to the psychological aspects of investors. The excessive confidence has been given the predominant role for the explanation of these phenomena. Indeed, when investors store increments, they become more confident about the precision of their private information and their exchange activities then become more aggressive on the subsequent periods. These overconfident investors carry out the intensive exchanges leading to an increase of securities volatility. The objective of this research is to identify whether the trading volume and the excessive volatility of securities observed on the Tunisian stock market come from the excessive exchange of overconfident investors. We use a sample of daily observations over the period January 1999 - October 2007 and we relied on various econometric tests including the VAR model. Our results provide evidence on the importance to consider the bias of overconfidence in the analysis of Tunis stock exchange specificities. The results reveal that the excess of confidence has a major impact on the trading volume while using daily temporal intervals.Keywords: overconfidence, trading volume, efficiency, rationality, anomalies, behavioural finance, cognitive biases
Procedia PDF Downloads 4115566 The Ecological Role of Loligo forbesii in the Moray Firth Ecosystem, Northeast Scotland
Authors: Godwin A. Otogo, Sansanee Wangvoralak, Graham J. Pierce, Lee C. Hastie, Beth Scott
Abstract:
The squid Loligo forbesii is suspected to be an important species in marine food webs, as it can strongly impact its prey and be impacted upon by predation, competition, fishing and/or climate variability. To quantify these impacts in the food web, the measurement of its trophic position and ecological role within well-studied ecosystems is essential. An Ecopath model was balanced and run for the Moray Firth ecosystem and was used to investigate the significance of this squid’s trophic roles. The network analysis routine included in Ecopath with Ecosim (EwE) was used to estimate trophic interaction, system indicators (health condition and developmental stage) and food web features. Results indicated that within the Moray Firth squid occupy a top trophic position in the food web and also a major prey item for many other species. Results from Omnivory Index (OI) showed that squid is a generalized feeder transferring energy across wide trophic levels and is more important as a predator than that as a prey in the Moray Firth ecosystem. The results highlight the importance of taking squid into account in the management of Europe’s living marine resources.Keywords: Squid, Loligo forbesii, Ecopath, Moray Firth, Trophic level
Procedia PDF Downloads 478