Search results for: iodine-doped carbon dots
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3205

Search results for: iodine-doped carbon dots

1135 Geochemical and Mineralogical Characteristics of Soils in Areas Affected by the Fires of August 2021 at the Ilia Prefecture Greece

Authors: Dionisios Panagiotaras, Pavlos Avramidis, Dimitrios Papoulis, Dionysios Koulougliotis, Dionisis C. Christodoulopoulos, Dimitra Lekka, Despoina Nifora, Denisa Drouvari, Alexandra Skalioti

Abstract:

This study delineates the geochemical and mineralogical characteristics of soils collected from woodland and forest areas affected by the fires of August 2021 at the Ilia prefecture, Greece. The mineralogical composition of the samples consists of quartz, calcite, albite, oligoclase, anorthite (feldspars), smectite, kaolinite and illite (clays). Quartz ranges from 38.21% to 57.49% with an average of 48.43%, calcite ranges from 2.55% to 25.09% with an average of 13.92%, feldspars ranges from 7.76% to 25.87% with an average of 17.02% and clays ranges from 4.39% to 43.43% with an average of 20.63%. Geochemical analyses of the soil samples applied for total organic carbon (TOC), total nitrogen (TN), total phosphorous (TP), Cu, Zn, Mn and Fe. Statistical analysis of the data shows a positive correlation between clays and Zn, Mn, Fe. TOC and TN show a strong positive correlation, while Fe shows a strong negative correlation with calcite.

Keywords: soils, geochemistry, mineralogy, woodland, forest

Procedia PDF Downloads 95
1134 Uses for Closed Coal Mines: Construction of Underground Pumped Storage Hydropower Plants

Authors: Javier Menéndez, Jorge Loredo

Abstract:

Large scale energy storage systems (LSESS) such as pumped-storage hydro-power (PSH) are required in the current energy transition towards a low carbon economy by using green energies that produce low levels of greenhouse gas (GHG) emissions. Coal mines are currently being closed in the European Union and their underground facilities may be used to build PSH plants. However, the development of this projects requires the excavation of a network of tunnels and a large cavern that would be used as a powerhouse to install the Francis turbine and motor-generator. The technical feasibility to excavate the powerhouse cavern has been analyzed in the North of Spain. Three-dimensional numerical models have been conducted to analyze the stability considering shale and sandstone rock mass. Total displacements and thickness of plastic zones were examined considering different support systems. Systematic grouted rock bolts and fibre reinforced shotcrete were applied at the cavern walls and roof. The results obtained show that the construction of the powerhouse is feasible applying proper support systems.

Keywords: closed mines, mine water, numerical model, pumped-storage, renewable energies

Procedia PDF Downloads 96
1133 A Review on Future Safety Conditions and Requirements for E-Bikes

Authors: Jonas Palmer, Leon Brüning, Lukas Himmelsbach

Abstract:

The worldwide ambitions to transform the transportation sector are increasingly affecting the safety conditions for all traffic participants and the required infrastructure. To contribute to the transformation and for health aspects, individuals search for carbon-free alternatives that include physical excitation. Especially e-bikes experience a growing demand within the last few years and consequently change the safety requirements. E-cyclists are exposed to amplified risks due to higher velocity in comparison to classic cyclists. Furthermore, cyclists suffer from a lack of infrastructure, rider assistance systems as well as awareness of other road users. For minimizing the risk of accidents, it is crucial to identify, develop and implement safety measures for cyclists. The paper aims to contribute to future research with delivering an overview of the latest publications and to subsequently identify essential research gaps. Therefore, it is essential to analyze the areas of technical adjustments as well as legal aspects and the correlation of both. The review`s insights can intensify the awareness of safety issues related to e-bikes and promote the development and implementation of appropriate measures.

Keywords: e-bike safety measures, future mobility, risk management, road safety

Procedia PDF Downloads 116
1132 Nickel Catalyst Promoted with Lanthanum- Alumina for Dry Reforming of Methane

Authors: Radia Imane Fertout

Abstract:

In recent years, the reaction of dry reforming of methane (DRM) has attracted much attention due to its environmental and industrial importance. Various catalysts, including Ni-based catalysts, have been investigated for the DRM. Doping Ni/Al₂O₃ by lanthanum and alkaline earth element may strongly influence solid-state reaction and increases the stability of catalysts due to the lower density and high basicity of these oxides. The effect of SrO on the activity and stability of Ni/Al₂O₃-La₂O₃ in dry reforming of methane was investigated. These catalysts have been prepared with the impregnation method, calcined in air at 450 and 650°C, then characterized by BET surface area, X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques and tested in DRM. The results showed that the addition of strontium to Ni/Al2O₃-La₂O₃ decreased the specific surface area. XRD results revealed the presence of different phases of Al₂O₃, La(OH)₃, La₂O₂CO₃, and SrCO₃. The catalytic evaluation results showed that adding SrO increased the catalytic activity and stability, that explained by the strong basicity of strontium. SEM analysis after the reaction indicates the formation of carbon over the spent catalyst and that the addition of strontium stabilized the surface of the catalyst.

Keywords: dry reforming of methane, Ni/Al₂O₃-La₂O₃ catalyst, strontium, nickel

Procedia PDF Downloads 89
1131 A Global Fuel Combustion Data Product and Its Application

Authors: Shu Tao, Rong Wang, Huizhong Shen, Ye Huang

Abstract:

High-resolution mapping of fuel combustion is essential for reducing uncertainties in assessments of greenhouse gases and air pollutant emissions. Such inventories provide valuable information for inferring carbon sinks, modeling pollutant transport, and developing control strategies. Previous inventories included only a few fuel types and were derived using national population proxies which may distort the geographical variation within countries. In this study, a global 0.1 degree by 0.1 degree geo-referenced inventory of fuel combustion (PKU-FUEL-2007) was developed for 64 fuel sub-types along with uncertainty analysis for the year 2007. Sub-national fuel consumption of large countries and major power-station locations were used. The disaggregation error can be reduced significantly by using the sub-nationally energy data, because the uneven distribution of per-capita fuel consumption within countries is taken into consideration. The PKU-FUEL was used to generate global emission inventories of CO2 (PKU-CO2-2007), polycyclic aromatic hydrocarbons (PKU-PAHs-2007), and black carbons (PKU-BC-2007). Atmospheric transport modeling and expsoure assessment were conducted for BC and PAHs based on the inventory.

Keywords: fuel, emission, BC, PAHs, atmospheric transport, exposure

Procedia PDF Downloads 329
1130 Cell Biomass and Lipid Productivities of Meyerella planktonica under Autotrophic and Heterotrophic Growth Conditions

Authors: Rory Anthony Hutagalung, Leonardus Widjaja

Abstract:

Microalgae Meyerella planktonica is a potential biofuel source because it can grow in bulk in either autotrophic or heterotrophic condition. However, the quantitative growth of this algal type is still low as it tends to precipitates on the bottom. Beside, the lipid concentration is still low when grown in autotrophic condition. In contrast, heterotrophic condition can enhance the lipid concentration. The combination of autotrophic condition and agitation treatment was conducted to increase the density of the culture. On the other hand, a heterotrophic condition was set up to raise the lipid production. A two-stage experiment was applied to increase the density at the first step and to increase the lipid concentration in the next step. The autotrophic condition resulted higher density but lower lipid concentration compared to heterotrophic one. The agitation treatment produced higher density in both autotrophic and heterotrophic conditions. The two-stage experiment managed to enhance the density during the autotrophic stage and the lipid concentration during the heterotrophic stage. The highest yield was performed by using 0.4% v/v glycerol as a carbon source (2.9±0.016 x 106 cells w/w) attained 7 days after the heterotrophic stage began. The lipid concentration was stable starting from day 7.

Keywords: agitation, glycerol, heterotrophic, lipid productivity, Meyerella planktonica

Procedia PDF Downloads 337
1129 Biochar as a Strong Adsorbent for Multiple-Metal Removal from Contaminated Water

Authors: Eman H. El-Gamal, Mai E. Khedr, Randa Ghonim, Mohamed Rashad

Abstract:

In the past few years, biochar - a highly carbon-rich material produced from agro-wastes by pyrolysis process - was used as an effective adsorbent for heavy metals removal from polluted water. In this study, different types of biochar (rice straw 'RSB', corn cob 'CCB', and Jatropha shell 'JSB' were used to evaluate the adsorption capacity of heavy metals removal from multiple-metal solutions (Cu, Mn, Zn, and Cd). Kinetics modeling has been examined to illustrate potential adsorption mechanisms. The results showed that the potential removal of metal is dependent on the metal and biochar types. The adsorption capacity of the biochars followed the order: RSB > JSB > CCB. In general, RSB and JSB biochars presented high potential removal of heavy metals from polluted water, which was higher than 90 and 80% after 2 hrs of contact time for all metals, respectively. According to the kinetics data, the pseudo-second-order model was agreed strongly with Cu, Mn, Zn, and Cd adsorption onto the biochars (R2 ≥ 0.97), indicating the dominance of specific adsorption process, i.e., chemisorption. In conclusion, this study revealed that RSB and JSB biochar have the potential to be a strong adsorbent for multiple-metal removal from wastewater.

Keywords: adsorption, biochar, chemisorption, polluted water

Procedia PDF Downloads 150
1128 Solar-Powered Adsorption Cooling System: A Case Study on the Climatic Conditions of Al Minya

Authors: El-Sadek H. Nour El-deen, K. Harby

Abstract:

Energy saving and environment friendly applications are turning out to be one of the most important topics nowadays. In this work, a simulation analysis using TRNSYS software has been carried out to study the benefit of employing a solar adsorption cooling system under the climatic conditions of Al-Minya city, Egypt. A theoretical model was carried out on a two bed adsorption cooling system employing granular activated carbon-HFC-404A as working pair. Temporal and averaged history of solar collector, adsorbent beds, evaporator and condenser has been shown. System performance in terms of daily average cooling capacity and average coefficient of performance around the year has been investigated. The results showed that maximum yearly average coefficient of performance (COP) and cooling capacity are about 0.26 and 8 kW respectively. The maximum value of the both average cooling capacity and COP cyclic is directly proportional to the maximum solar radiation. The system performance was found to be increased with the average ambient temperature. Finally, the proposed solar powered adsorption cooling systems can be used effectively under Al-Minya climatic conditions.

Keywords: adsorption, cooling, Egypt, environment, solar energy

Procedia PDF Downloads 160
1127 Growth of SWNTs from Alloy Catalyst Nanoparticles

Authors: S. Forel, F. Bouanis, L. Catala, I. Florea, V. Huc, F. Fossard, A. Loiseau, C. Cojocaru

Abstract:

Single wall carbon nanotubes are seen as excellent candidate for application on nanoelectronic devices because of their remarkable electronic and mechanical properties. These unique properties are highly dependent on their chiral structures and the diameter. Therefore, structure controlled growth of SWNTs, especially directly on final device’s substrate surface, are highly desired for the fabrication of SWNT-based electronics. In this work, we present a new approach to control the diameter of SWNTs and eventually their chirality. Because of their potential to control the SWNT’s chirality, bi-metalics nanoparticles are used to prepare alloy nanoclusters with specific structure. The catalyst nanoparticles are pre-formed following a previously described process. Briefly, the oxide surface is first covered with a SAM (self-assembled monolayer) of a pyridine-functionalized silane. Then, bi-metallic (Fe-Ru, Co-Ru and Ni-Ru) complexes are assembled by coordination bonds on the pre-formed organic SAM. The resultant alloy nanoclusters were then used to catalyze SWNTs growth on SiO2/Si substrates via CH4/H2 double hot-filament chemical vapor deposition (d-HFCVD). The microscopy and spectroscopy analysis demonstrate the high quality of SWNTs that were furthermore integrated into high-quality SWNT-FET.

Keywords: nanotube, CVD, device, transistor

Procedia PDF Downloads 317
1126 Recovery of Helicobacter Pylori from Stagnant and Moving Water Biofilms

Authors: Maryam Zafar, Sajida Rasheed, Imran Hashmi

Abstract:

Water as an environmental reservoir is reported to act as a habitat and transmission route to microaerophilic bacteria such as Heliobacter pylori. It has been studied that in biofilms are the predominant dwellings for the bacteria to grow in water and protective reservoir for numerous pathogens by protecting them against harsh conditions, such as shear stress, low carbon concentration and less than optimal temperature. In this study, influence of these and many other parameters was studied on H. pylori in stagnant and moving water biofilms both in surface and underground aquatic reservoirs. H. pylori were recovered from pipe of different materials such as Polyvinyl Chloride, Polypropylene and Galvanized iron pipe cross sections from an urban water distribution network. Biofilm swabbed from inner cross section was examined by molecular biology methods coupled with gene sequencing and H. pylori 16S rRNA peptide nucleic acid probe showing positive results for H. pylori presence. Studies showed that pipe material affect growth of biofilm which in turn provide additional survival mechanism for pathogens like H. pylori causing public health concerns.

Keywords: biofilm, gene sequencing, heliobacter pylori, pipe materials

Procedia PDF Downloads 359
1125 Evaluating the effects of Gas Injection on Enhanced Gas-Condensate Recovery and Reservoir Pressure Maintenance

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the Eclipse 300 simulator was used to perform compositional modeling of gas injection process for enhanced condensate recovery of a real gas condensate well in south of Iran here referred to as SA4. Some experimental data were used to tune the Peng-Robinson equation of state for this case. Different scenarios of gas injection at current reservoir pressure and at abandonment reservoir pressure had been considered with different gas compositions. Methane, carbon dioxide, nitrogen and two other gases with specified compositions were considered as potential gases for injection. According to the obtained results, nitrogen leads to highest pressure maintenance in the reservoir but methane results in highest condensate recovery among the selected injection gases. At low injection rates, condensate recovery percent is strongly affected by gas injection rate but this dependency shifts to zero at high injection rates. Condensate recovery is higher in all cases of injection at current reservoir pressure than injection at abandonment pressure. Using a constant injection rate, increasing the production well bottom hole pressure results in increasing the condensate recovery percent and time of gas breakthrough.

Keywords: gas-condensate reservoir, case-study, compositional modelling, enhanced condensate recovery, gas injection

Procedia PDF Downloads 195
1124 Study of Bolt Inclination in a Composite Single Bolted Joint

Authors: Faci Youcef, Ahmed Mebtouche, Djillali Allou, Maalem Badredine

Abstract:

The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.

Keywords: damage, inclination, analyzed, carbon

Procedia PDF Downloads 57
1123 A Creative Strategy to Functionalize TiN/CNC Composites as Cathode for High-Energy Zinc Ion Capacitors

Authors: Ye Ling, Jiang Yuting, Ruan Haihui

Abstract:

Zinc ion capacitors (ZICs) have garnered tremendous interest recently from researchers due to the perfect integration of batteries and supercapacitors (SC). However, ZICs are currently still facing two major challenges, one is low specific capacitance because of the limited capacity of capacitive cathode materials. In this work, TiN/CNC composites were obtained by a creative method composed of simple mixing and calcination treatment of tetrabutyl titanate (TBOT) and ZIF-8. The formed TiN particles are of ultra-small size and distributed uniformly on the nanoporous carbon matrix, which enhances the conductivity of the composites and the micropores caused by the evaporation of zinc during the calcination process and can serve as the reservoir of electrolytes; both are beneficial to zinc ion storage. When it was used as a cathode with zinc metal and 2M ZnSO₄ as the anode and electrolyte, respectively, in a ZIC device, the assembled device delivered a maximum energy density as high as 153 Wh kg-¹ at a power density of 269.4 W kg-¹, which is superior to many ZICs as reported. Also, it can maintain an energy density of 83.7 Wh kg-¹ at a peak power density of 8.6 kW kg-¹, exhibiting good rate performance. Moreover, when it was charged/discharged for 5000 cycles at a current density of 5 A g-¹, it remained at 85.8% of the initial capacity with a Coulombic efficiency (CE) of nearly 100%.

Keywords: zinc ion capacitor, metal nitride, zif-8, supercapacitor

Procedia PDF Downloads 44
1122 Effect of Rice Husk Ash on Strength and Durability of High Strength High Performance Concrete

Authors: H. B. Mahmud, Syamsul Bahri, Y. W. Yee, Y. T. Yeap

Abstract:

This paper reports the strength and durability properties of high strength high performance concrete incorporating rice husk ash (RHA) having high silica, low carbon content and appropriate fineness. In this study concrete containing 10%, 15% and 20% RHA as cement replacement and water to binder ratio of 0.25 were investigated. The results show that increasing amount of RHA increases the dosage of superplasticizer to maintain similar workability. Partial replacement of cement with RHA did not increase the early age compressive strength of concrete. However, concrete containing RHA showed higher compressive strength at later ages. The results showed that compressive strength of concrete in the 90-115 MPa range can be obtained at 28 curing days and the durability properties of RHA concrete performed better than that of control concrete. The water absorption of concrete incorporating 15% RHA exhibited the lowest value. The porosity of concrete is consistent with water absorption whereby higher replacement of RHA decreased the porosity of concrete. There is a positive correlation between reducing porosity and increasing compressive strength of high strength high performance concrete. The results also indicate that up to 20% of RHA incorporation could be advantageously blended with cement without adversely affecting the strength and durability properties of concrete.

Keywords: compressive strength, durability, high performance concrete, rice husk ash

Procedia PDF Downloads 345
1121 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length

Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.

Keywords: bond strength, climate change, pull-out test, substitution of reinforcement material, textile

Procedia PDF Downloads 475
1120 In vivo Therapeutic Potential of Biologically Synthesized Silver Nanoparticles

Authors: Kalakotla Shanker, G. Krishna Mohan

Abstract:

Nowadays, nanoparticles are being used in pharmacological studies for their exclusive properties such as small size, more surface area, biocompatibility and enhanced solubility. In view of this, the present study aimed to evaluate the antihyperglycemic potential of biologically synthesized silver nanoparticles (BSSNPs) and Gymnema sylvestre (GS) extract. The SEM and SEM analysis divulges that the BSSNPs were spherical in shape. EDAX spectrum exhibits peaks for the presence of silver, carbon, and oxygen atoms in the range of 1.0-3.1 keV. FT-IR reveals the binding properties of active bio-constituents responsible for capping and stabilizing BSSNPs. The results showed increased blood glucose, huge loss in body weight and downturn in plasma insulin. The GS extract (200 mg/kg, 400 mg/kg), BSSNPs (100 mg/kg, 200 mg/kg) and metformin 50 mg/kg were administered to the diabetic rats. BSSNPs at a dose level of 200 mg/kg (b.wt.p.o.) showed significant inhibition of (p<0.001) blood glucose levels as compared with GS extract treated group. The results obtained from study indicate that the BSSNP shows potent anti-diabetic activity.

Keywords: biological silver nanoparticles, G. sylvetre, gymnemic acid, streptozotocin, Wistar rats, antihyperglycemic activity, anti-hyperlipidemic activity

Procedia PDF Downloads 302
1119 Modeling Approach for Evaluating Infiltration Rate of a Large-Scale Housing Stock

Authors: Azzam Alosaimi

Abstract:

Different countries attempt to reduce energy demands and Greenhouse Gas (GHG) emissions to mitigate global warming potential. They set different building codes to regulate excessive building’s energy losses. Energy losses occur due to pressure difference between the indoor and outdoor environments, and thus, heat transfers from one region to another. One major sources of energy loss is known as building airtightness. Building airtightness is the fundamental feature of the building envelope that directly impacts infiltration. Most of international building codes require minimum performance for new construction to ensure acceptable airtightness. The execution of airtightness required standards has become more challenging in recent years due to a lack of expertise and equipment, making it costly and time-consuming. Hence, researchers have developed predictive models to predict buildings infiltration rates to meet building codes and to reduce energy and cost. This research applies a theoretical modeling approach using Matlab software to predict mean infiltration rate distributions and total heat loss of Saudi Arabia’s housing stock.

Keywords: infiltration rate, energy demands, heating loss, cooling loss, carbon emissions

Procedia PDF Downloads 163
1118 Towards a Rigorous Analysis for a Supercritical Particulate Process

Authors: Yousef Bakhbakhi

Abstract:

Crystallization with supercritical fluids (SCFs), as a developed technology to produce particles of micron and sub-micron size with narrow size distribution, has found appreciable importance as an environmentally friendly technology. Particle synthesis using SCFs can be achieved employing a number of special processes involving solvent and antisolvent mechanisms. In this study, the compressed antisolvent (PCA) process is utilized as a model to analyze the theoretical complexity of crystallization with supercritical fluids. The population balance approach has proven to be an effectual technique to simulate and predict the particle size and size distribution. The nucleation and growth mechanisms of the particles formation in the PCA process is investigated using the population balance equation, which describes the evolution of the particle through coalescence and breakup levels with time. The employed mathematical population balance model contains a set of the partial differential equation with algebraic constraints, which demands a rigorous numerical approach. The combined Collocation and Galerkin finite element method are proposed as a high-resolution technique to solve the dynamics of the PCA process.

Keywords: particle formation, particle size and size distribution, PCA, supercritical carbon dioxide

Procedia PDF Downloads 197
1117 Determination and Qsar Modelling of Partitioning Coefficients for Some Xenobiotics in Soils and Sediments

Authors: Alaa El-Din Rezk

Abstract:

For organic xenobiotics, sorption to Aldrich humic acid is a key process controlling their mobility, bioavailability, toxicity and fate in the soil. Hydrophobic organic compounds possessing either acid or basic groups can be partially ionized (deprotonated or protonated) within the range of natural soil pH. For neutral and ionogenicxenobiotics including (neutral, acids and bases) sorption coefficients normalized to organic carbon content, Koc, have measured at different pH values. To this end, the batch equilibrium technique has been used, employing SPME combined with GC-MSD as an analytical tool. For most ionogenic compounds, sorption has been affected by both pH and pKa and can be explained through Henderson-Hasselbalch equation. The results demonstrate that when assessing the environmental fate of ionogenic compounds, their pKa and speciation under natural conditions should be taken into account. A new model has developed to predict the relationship between log Koc and pH with full statistical evaluation against other existing predictive models. Neutral solutes have displayed a good fit with the classical model using log Kow as log Koc predictor, whereas acidic and basic compounds have displayed a good fit with the LSER approach and the new proposed model. Measurement limitations of the Batch technique and SPME-GC-MSD have been found with ionic compounds.

Keywords: humic acid, log Koc, pH, pKa, SPME-GCMSD

Procedia PDF Downloads 263
1116 Deproteination and Demineralization of Shrimp Waste Using Lactic Acid Bacteria for the Production of Crude Chitin and Chitosan

Authors: Farramae Francisco, Rhoda Mae Simora, Sharon Nunal

Abstract:

Deproteination and demineralization efficiencies of shrimp waste using two Lactobacillus species treated with different carbohydrate sources for chitin production, its chemical conversion to chitosan and the quality of chitin and chitosan produced were determined. Using 5% glucose and 5% cassava starch as carbohydrate sources, pH slightly increased from the initial pH of 6.0 to 6.8 and 7.2, respectively after 24 h and maintained their pH at 6.7 to 7.3 throughout the treatment period. Demineralization (%) in 5 % glucose and 5 % cassava was highest during the first day of treatment which was 82% and 83%, respectively. Deproteination (%) was highest in 5% cassava starch on the 3rd day of treatment at 84.4%. The obtained chitin from 5% cassava and 5% glucose had a residual ash and protein below 1% and solubility of 59% and 44.3%, respectively. Chitosan produced from 5% cassava and 5% glucose had protein content below 0.05%; residual ash was 1.1% and 0.8%, respectively. Chitosan solubility and degree of deacetylation were 56% and 33% in 5% glucose and 48% and 29% in 5% cassava, respectively. The advantage this alternative technology offers over that of chemical extraction is large reduction in chemicals needed thus less effluent production and generation of a protein-rich liquor, although the demineralization process should be improved to achieve greater degree of deacetylation.

Keywords: alternative carbon source, bioprocessing, lactic acid bacteria, waste utilization

Procedia PDF Downloads 485
1115 Ionic Liquid Membranes for CO2 Separation

Authors: Zuzana Sedláková, Magda Kárászová, Jiří Vejražka, Lenka Morávková, Pavel Izák

Abstract:

Membrane separations are mentioned frequently as a possibility for CO2 capture. Selectivity of ionic liquid membranes is strongly determined by different solubility of separated gases in ionic liquids. The solubility of separated gases usually varies over an order of magnitude, differently from diffusivity of gases in ionic liquids, which is usually of the same order of magnitude for different gases. The present work evaluates the selection of an appropriate ionic liquid for the selective membrane preparation based on the gas solubility in an ionic liquid. The current state of the art of CO2 capture patents and technologies based on the membrane separations was considered. An overview is given of the discussed transport mechanisms. Ionic liquids seem to be promising candidates thanks to their tunable properties, wide liquid range, reasonable thermal stability, and negligible vapor pressure. However, the uses of supported liquid membranes are limited by their relatively short lifetime from the industrial point of view. On the other hand, ionic liquids could overcome these problems due to their negligible vapor pressure and their tunable properties by adequate selection of the cation and anion.

Keywords: biogas upgrading, carbon dioxide separation, ionic liquid membrane, transport properties

Procedia PDF Downloads 431
1114 Intertidal Fauna of Kuwait's Coral Islands and Failaka Island

Authors: Manal Alkandari, Valeriy Skryabin, James Bishop

Abstract:

Intertidal transects of four of Kuwait’s eight islands were sampled qualitatively and quantitative fauna. In total, 11 transects were sampled during spring tide lows (0 chart datum) as follows: Kubber, two transects; Qaurh, two transects; Umm Al-Maradem, three transects; and Failaka, four trasects. Qualitative and quantitative samples were collected at high, mid 1, mid 2, and low tides. In total, 270 invertebrate taxa and 15 vertebrate (fishes) taxa were identified. Failaka Island with 224 taxa was the most diverse. Second was Umm Al-Maradim with 84 taxa, followed by Kubbar with 47, and finally Qaruh with 38. Polychaetes were the most diverse group accounting for 31% of the taxa; decapods accounted for 17 %; gastropods,14 %; bivalves, 12 %; and amphipods 11%. Fishes and echinoderms contributed on 5 and 3.5 %, respectively. Three Families of polychaetes are reported for the first time in the Arabian Gulf: Protodrilidae, Nerillidae, and Saccocirridae. Island sediments consisted mostly of sand, but a few transects contained up to 40% gravel. Total organic carbon was less than 1% at all transects, but total petroleum hydrocarbons (TPH) ranged up to 100 ppm on Qaru. This is expected because of natural seeps in the area constantly supplying the intertidal zone with oil globules. TPH on Umm Al-Maradim was less than 10 ppm, except at high tide on one transect where concentrations reached 40 ppm. In general, TPHs were less than 10 ppm.

Keywords: intertidal, Kuwaits waters, marine, invertebrates, fish

Procedia PDF Downloads 497
1113 Carbonation and Mechanical Performance of Reactive Magnesia Based Formulations

Authors: Cise Unluer

Abstract:

Reactive MgO hydrates to form brucite (Mg(OH)2, magnesium hydroxide), which can then react with CO2 and additional water to form a range of strength providing hydrated magnesium carbonates (HMCs) within cement-based formulations. The presented work focuses on the use of reactive MgO in a range of concrete mixes, where it carbonates by absorbing CO2 and gains strength accordingly. The main goal involves maximizing the amount of CO2 absorbed within construction products, thereby reducing the overall environmental impact of the designed formulations. Microstructural analyses including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetry/differential thermal analysis (TG/DTA) are used in addition to porosity, permeability and unconfined compressive strength (UCS) testing to understand the performance mechanisms. XRD Reference Intensity Ratio (RIR), acid digestion and TG/DTA are utilized to quantify the amount of CO2 sequestered, with the goal of achieving 100% carbonation through careful mix design, leading to a range of carbon neutral products with high strengths. As a result, samples stronger than those containing Portland cement (PC) were produced, revealing the link between the mechanical performance and microstructural development of the developed formulations with the amount of CO2 sequestered.

Keywords: carbonation, compressive strength, reactive MgO cement, sustainability

Procedia PDF Downloads 180
1112 Integration of Hydropower and Solar Photovoltaic Generation into Distribution System: Case of South Sudan

Authors: Ater Amogpai

Abstract:

Hydropower and solar photovoltaic (PV) generation are crucial in sustainability and transitioning from fossil fuel to clean energy. Integrating renewable energy sources such as hydropower and solar photovoltaic (PV) into the distributed networks contributes to achieving energy balance, pollution mitigation, and cost reduction. Frequent power outages and a lack of load reliability characterize the current South Sudan electricity distribution system. The country’s electricity demand is 300MW; however, the installed capacity is around 212.4M. Insufficient funds to build new electricity facilities and expand generation are the reasons for the gap in installed capacity. The South Sudan Ministry of Energy and Dams gave a contract to an Egyptian Elsewedy Electric Company that completed the construction of a solar PV plant in 2023. The plant has a 35 MWh battery storage and 20 MW solar PV system capacity. The construction of Juba Solar PV Park started in 2022 to increase the current installed capacity in Juba City to 53 MW. The plant will begin serving 59000 residents in Juba and save 10,886.2t of carbon dioxide (CO2) annually.

Keywords: renewable energy, hydropower, solar energy, photovoltaic, South Sudan

Procedia PDF Downloads 140
1111 Scale-Up Process for Phyllanthus niruri Enriched Extract by Supercritical Fluid Extraction

Authors: Norsyamimi Hassim, Masturah Markom

Abstract:

Supercritical fluid extraction (SFE) has been known as a sustainable and safe extraction technique for plant extraction due to the minimal usage of organic solvent. In this study, a scale-up process for the selected herbal plant (Phyllanthus niruri) was investigated by using supercritical carbon dioxide (SC-CO2) with food-grade (ethanol-water) cosolvent. The quantification of excess ethanol content in the final dry extracts was conducted to determine the safety of enriched extracts. The extraction yields obtained by scale-up SFE unit were not much different compared to the predicted extraction yields with an error of 2.92%. For component contents, the scale-up extracts showed comparable quality with laboratory-scale experiments. The final dry extract showed that the excess ethanol content was 1.56% g/g extract. The fish embryo toxicity test (FETT) on the zebrafish embryos showed no toxicity effects by the extract, where the LD50 value was found to be 505.71 µg/mL. Thus, it has been proven that SFE with food-grade cosolvent is a safe extraction technique for the production of bioactive compounds from P. niruri.

Keywords: scale-up, supercritical fluid extraction, enriched extract, toxicity, ethanol content

Procedia PDF Downloads 132
1110 Investigation the Effect of Quenching Media on Abrasive Wear in Grade Medium Carbon Steel

Authors: Abbas S. Alwan, Waleed K. Hussan

Abstract:

In this paper, a general verification of possible heat treatment of steel has been done with the view of conditions of real abrasive wear of rotivater with soil texture. This technique is found promising to improve the quality of agriculture components working with the soil in dry condition. Abrasive wear resistance is very important in many applications and in most cases it is directly correlated with the hardness of materials surface. Responded of heat treatments were carried out in various media (Still air, Cottonseed oil, and Brine water 10 %) and follow by low-temperature tempering (250°C) was applied on steel type (AISI 1030). After heat treatment was applied wear with soil texture by using tillage process to determine the (actual wear rate) of the specimens depending on weight loss method. It was found; the wear resistance Increases with increase hardness with varying quenching media as follows; 30 HRC, 45 HRC, 52 HRC, and 60 HRC for nontreated (as received) cooling media as still air, cottonseed oil, and Brine water 10 %, respectively. Martensitic structure with retained austenite can be obtained depending on the quenching medium. Wear was presented on the worn surfaces of the steels which were used in this work.

Keywords: microstructures, hardness, abrasive wear, heat treatment, soil texture

Procedia PDF Downloads 387
1109 Metal-Organic Chemical Vapor Deposition (MOCVD) Process Investigation for Co Thin Film as a TSV Alternative Seed Layer

Authors: Sajjad Esmaeili, Robert Krause, Lukas Gerlich, Alireza Mohammadian Kia, Benjamin Uhlig

Abstract:

This investigation aims to develop the feasible and qualitative process parameters for the thin films fabrication into ultra-large through-silicon-vias (TSVs) as vertical interconnections. The focus of the study is on TSV metallization and its challenges employing new materials for the purpose of rapid signal propagation in the microsystems technology. Cobalt metal-organic chemical vapor deposition (Co-MOCVD) process enables manufacturing an adhesive and excellent conformal ultra-thin film all the way through TSVs in comparison with the conventional non-conformal physical vapor deposition (PVD) process of copper (Cu) seed layer. Therefore, this process provides a Cu seed-free layer which is capable of direct Cu electrochemical deposition (Cu-ECD) on top of it. The main challenge of this metallization module is to achieve the proper alternative seed layer with less roughness, sheet resistance and granular organic contamination (e.g. carbon) which intensify the Co corrosion under the influence of Cu electrolyte.

Keywords: Cobalt MOCVD, direct Cu electrochemical deposition (ECD), metallization technology, through-silicon-via (TSV)

Procedia PDF Downloads 157
1108 Dynamic Interaction between Renwable Energy Consumption and Sustainable Development: Evidence from Ecowas Region

Authors: Maman Ali M. Moustapha, Qian Yu, Benjamin Adjei Danquah

Abstract:

This paper investigates the dynamic interaction between renewable energy consumption (REC) and economic growth using dataset from the Economic Community of West African States (ECOWAS) from 2002 to 2016. For this study the Autoregressive Distributed Lag- Bounds test approach (ARDL) was used to examine the long run relationship between real gross domestic product and REC, while VECM based on Granger causality has been used to examine the direction of Granger causality. Our empirical findings indicate that REC has significant and positive impact on real gross domestic product. In addition, we found that REC and the percentage of access to electricity had unidirectional Granger causality to economic growth while carbon dioxide emission has bidirectional Granger causality to economic growth. Our findings indicate also that 1 per cent increase in the REC leads to an increase in Real GDP by 0.009 in long run. Thus, REC can be a means to ensure sustainable economic growth in the ECOWAS sub-region. However, it is necessary to increase further support and investments on renewable energy production in order to speed up sustainable economic development throughout the region

Keywords: Economic Growth, Renewable Energy, Sustainable Development, Sustainable Energy

Procedia PDF Downloads 209
1107 A Basic Concept for Installing Cooling and Heating System Using Seawater Thermal Energy from the West Coast of Korea

Authors: Jun Byung Joon, Seo Seok Hyun, Lee Seo Young

Abstract:

As carbon dioxide emissions increase due to rapid industrialization and reckless development, abnormal climates such as floods and droughts are occurring. In order to respond to such climate change, the use of existing fossil fuels is reduced, and the proportion of eco-friendly renewable energy is gradually increasing. Korea is an energy resource-poor country that depends on imports for 93% of its total energy. As the global energy supply chain instability experienced due to the Russia-Ukraine crisis increases, countries around the world are resetting energy policies to minimize energy dependence and strengthen security. Seawater thermal energy is a renewable energy that replaces the existing air heat energy. It uses the characteristic of having a higher specific heat than air to cool and heat main spaces of buildings to increase heat transfer efficiency and minimize power consumption to generate electricity using fossil fuels, and Carbon dioxide emissions can be minimized. In addition, the effect on the marine environment is very small by using only the temperature characteristics of seawater in a limited way. K-water carried out a demonstration project of supplying cooling and heating energy to spaces such as the central control room and presentation room in the management building by acquiring the heat source of seawater circulated through the power plant's waterway by using the characteristics of the tidal power plant. Compared to the East Sea and the South Sea, the main system was designed in consideration of the large tidal difference, small temperature difference, and low-temperature characteristics, and its performance was verified through operation during the demonstration period. In addition, facility improvements were made for major deficiencies to strengthen monitoring functions, provide user convenience, and improve facility soundness. To spread these achievements, the basic concept was to expand the seawater heating and cooling system with a scale of 200 USRT at the Tidal Culture Center. With the operational experience of the demonstration system, it will be possible to establish an optimal seawater heat cooling and heating system suitable for the characteristics of the west coast ocean. Through this, it is possible to reduce operating costs by KRW 33,31 million per year compared to air heat, and through industry-university-research joint research, it is possible to localize major equipment and materials and develop key element technologies to revitalize the seawater heat business and to advance into overseas markets. The government's efforts are needed to expand the seawater heating and cooling system. Seawater thermal energy utilizes only the thermal energy of infinite seawater. Seawater thermal energy has less impact on the environment than river water thermal energy, except for environmental pollution factors such as bottom dredging, excavation, and sand or stone extraction. Therefore, it is necessary to increase the sense of speed in project promotion by innovatively simplifying unnecessary licensing/permission procedures. In addition, support should be provided to secure business feasibility by dramatically exempting the usage fee of public waters to actively encourage development in the private sector.

Keywords: seawater thermal energy, marine energy, tidal power plant, energy consumption

Procedia PDF Downloads 102
1106 Urban Roof Farming: A Smart City Solution Leading to Sustainability

Authors: Phibankhamti Ryngnga

Abstract:

It is a common phenomenon worldwide that farmland has been gradually converted for urban development particularly in the 21st century keeping in mind the population increase on the other hand. Since food demand and supply are not in equilibrium in urban set up, therefore, there is a need for alternative to feed the hungry urban settlers worldwide. In this regard, urban rooftop farming is the only way out to meet the growing demand for food production with the extra benefits of making our urban areas and cities greener and when the populace is exposed to nature and vegetation, it in turn provides an array of psychological benefits, from decreased anxiety to increased productivity. Bare roofs in cities absorb and then radiate heat — a phenomenon known as the “heat island effect. This increases energy usage and contributes to the poor air quality that often plagues big cities. But Urban rooftop farming do provide many solutions to help cool buildings, ultimately reducing carbon emissions, and by growing food in the communities they serve, rooftop farmers lessen the environmental impact of food transportation. This paper will emphasise the significance of Urban roof farming in the present century which in itself a multi-solution to various city problems.

Keywords: urban, roof farming, smart solution, sustainability

Procedia PDF Downloads 140