Search results for: input output linearization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3675

Search results for: input output linearization

1605 An Integer Nonlinear Program Proposal for Intermodal Transportation Service Network Design

Authors: Laaziz El Hassan

Abstract:

The Service Network Design Problem (SNDP) is a tactical issue in freight transportation firms. The existing formulations of the problem for intermodal rail-road transportation were not always adapted to the intermodality in terms of full asset utilization and modal shift reinforcement. The objective of the article is to propose a model having a more compliant formulation with intermodality, including constraints highlighting the imperatives of asset management, reinforcing modal shift from road to rail and reducing, by the way, road mode CO2 emissions. The model is a fixed charged, path based integer nonlinear program. Its objective is to minimize services total cost while ensuring full assets utilization to satisfy freight demand forecast. The model's main feature is that it gives as output both the train sizes and the services frequencies for a planning period. We solved the program using a commercial solver and discussed the numerical results.

Keywords: intermodal transport network, service network design, model, nonlinear integer program, path-based, service frequencies, modal shift

Procedia PDF Downloads 118
1604 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: artificial neural networks, biodiesel, iodine value, prediction

Procedia PDF Downloads 606
1603 Performance Improvement of Information System of a Banking System Based on Integrated Resilience Engineering Design

Authors: S. H. Iranmanesh, L. Aliabadi, A. Mollajan

Abstract:

Integrated resilience engineering (IRE) is capable of returning banking systems to the normal state in extensive economic circumstances. In this study, information system of a large bank (with several branches) is assessed and optimized under severe economic conditions. Data envelopment analysis (DEA) models are employed to achieve the objective of this study. Nine IRE factors are considered to be the outputs, and a dummy variable is defined as the input of the DEA models. A standard questionnaire is designed and distributed among executive managers to be considered as the decision-making units (DMUs). Reliability and validity of the questionnaire is examined based on Cronbach's alpha and t-test. The most appropriate DEA model is determined based on average efficiency and normality test. It is shown that the proposed integrated design provides higher efficiency than the conventional RE design. Results of sensitivity and perturbation analysis indicate that self-organization, fault tolerance, and reporting culture respectively compose about 50 percent of total weight.

Keywords: banking system, Data Envelopment Analysis (DEA), Integrated Resilience Engineering (IRE), performance evaluation, perturbation analysis

Procedia PDF Downloads 188
1602 Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices

Authors: K. Shiba, T. Kobayashi, T. Kaburagi, Y. Kurihara

Abstract:

Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy.

Keywords: turnover, piezoelectric ceramics, multi-points sensing, unconstrained monitoring system

Procedia PDF Downloads 194
1601 Development of Piezoelectric Gas Micropumps with the PDMS Check Valve Design

Authors: Chiang-Ho Cheng, An-Shik Yang, Hon-Yi Cheng, Ming-Yu Lai

Abstract:

This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micropump with check valve having the advantages of miniature size, light weight and low power consumption. The micropump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micropump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump and the displacement of the piezoelectric actuator, simultaneously. The gas micropump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micropump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.

Keywords: PDMS, check valve, micropump, piezoelectric

Procedia PDF Downloads 456
1600 Detection of Autistic Children's Voice Based on Artificial Neural Network

Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono

Abstract:

In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.

Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform

Procedia PDF Downloads 461
1599 Numerical Investigation of Wire Mesh Heat Pipe for Spacecraft Applications

Authors: Jayesh Mahitkar, V. K. Singh, Surendra Singh Kachhwaha

Abstract:

Wire Mesh Heat Pipe (WMHP) as an effective component of thermal control system in the payload of spacecraft, utilizing ammonia to transfer efficient amount of heat. One dimensional generic and robust mathematical model with partial-analytical hydraulic approach (PAHA) is developed to study inside behaviour of WMHP. In this model, inside performance during operation is investigated like mass flow rate, and velocity along the wire mesh as well as vapour core is modeled respectively. This numerical model investigate heat flow along length, pressure drop along wire mesh as well as vapour line in axial direction. Furthermore, WMHP is modeled into equivalent resistance network such that total thermal resistance of heat pipe, temperature drop across evaporator end and condenser end is evaluated. This numerical investigation should be carried out for single layer and double layer wire mesh each with heat input at evaporator section is 10W, 20 W and 30 W at condenser temperature maintained at 20˚C.

Keywords: ammonia, heat transfer, modeling, wire mesh

Procedia PDF Downloads 280
1598 Evalution of Antiurolithiatic Potentials from Cucumis sativus Fruits

Authors: H. J. Pramod, S. Pethkar

Abstract:

The evaluation of antiurolithiatic potentials from the extracts of Cucumis sativus fruits at different doses and cystone (standard formulation) at a dose of 750 mg/kg were measured for both preventive and curative regimen in wistar rats by adding 0.75% v/v ethylene glycol (EG) to drinking water for 28 days, except normal rats. After the completion of the experimental period, (28th day) urinary parameters like (urine volume, routine urine analysis, levels of calcium, phosphate, oxalate, magnesium, sodium) serum biomarkers like (creatinine, BUN, uric acid, ALP, ALT, AST) kidney homogenate analysis for (levels of calcium, oxalate and phosphate) were analysed. The treated groups shows increased in the urine output significantly compared to the normal. The extract shows significantly decreased in the urinary excretion of the calcium, phosphate, magnesium, sodium and oxalate. The both preventive and curative treatment of extracts showed decrease in the stone forming constituents in the kidneys of urolithiatic rats further the kidneys of all the groups were excised and sectioned for histopathological examination which further claims to posses antiurolithiatic activity.

Keywords: Cucumis sativus, urolithiasis, ethylene glycol, cystone

Procedia PDF Downloads 548
1597 Installing Photovoltaic Panels to Generate Optimal Energy in SPAV Hostel, Vijayawada

Authors: J. Jayasuriya

Abstract:

In this research paper, a procedure for installing and assessment of a solar PV plant to generate optimal solar energy SPAV hostel at Vijayawada city was analyzed. The hostel was experiencing power disruption and had a need for an unceasing energy source. The solar panel is one of the best solutions to obtain uninterrupted clean renewable energy for an institutional building as it neither makes din nor pollutes the atmosphere. The electricity usage per month was initially measured to discriminate the energy change. The solar array was installed with its financial and environmental assessment considering recent market prices. All the aspects related to a solar PV plant were considered for the feasibility and efficiency of PV plant near this site i.e., the orientation of the site, the size and shape of the terrace, the sun path were considered while installing panels. Various precautions were taken to intercept the factors which cause interference in energy generation, with respect to temperature, overshadowing, the wiring of panels, pollution etc. The solar panels were frequently installed, monitored and maintained properly to procure optimal energy output. Result obtained with the assessment of the proposed plant and deflation in the electric bill will show the maximal energy that can be generated in a month on that particular site.

Keywords: solar efficiency, building sustainability, PV panel, solar energy

Procedia PDF Downloads 136
1596 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 134
1595 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran

Authors: Reza Zakerinejad

Abstract:

Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.

Keywords: TreeNet model, terrain analysis, Golestan Province, Iran

Procedia PDF Downloads 536
1594 Organisational Effectiveness and Its Implications for Seaports

Authors: Shadi Alghaffari, Hong-Oanh Nguyen, Peggy Chen, Hossein Enshaei

Abstract:

The main purpose of this study was to explore the role of organisational effectiveness (OE) in seaports. OE is an important managerial concept, one that is necessary for leaders and directors in any organisation to understand the output of their work. OE has been applied in many organisations; however, it is a vital concept in the port business. This paper examines various approaches and applications of the OE concept to business management, and describes benefits that are important and applicable to seaport management. This research reviews and classifies articles published in relevant journals and books between 1950 and 2016; from the general literature on OE to the narrower field of OE in seaports. Based on the extensive literature review, this study identifies and discusses several issues relevant to both practices and theories of this concept. The review concludes by presenting a gap in the literature, as it found only a limited amount of research that endeavours to clarify OE in the seaport sector. As a result of this gap, seaports suffer from a lack of empirical study and are largely neglected in this subject area. The implementation of OE in this research has led to the maritime sector interfacing with different disciplines in order to acquire the advantage of enhancing managerial knowledge and competing successfully in the international marketplace.

Keywords: literature review, maritime, organisational effectiveness, seaport management

Procedia PDF Downloads 342
1593 Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate

Authors: Mahfuzur Rahman

Abstract:

Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities.

Keywords: interdigitated, shading, recombination loss, incident-plane, drift-diffusion, luminous, SILVACO

Procedia PDF Downloads 146
1592 Simulation Model for Optimizing Energy in Supply Chain Management

Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari

Abstract:

In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.

Keywords: supply chain management, green supply chain management, system dynamics, energy consumption

Procedia PDF Downloads 139
1591 High Frequency Memristor-Based BFSK and 8QAM Demodulators

Authors: Nahla Elazab, Mohamed Aboudina, Ghada Ibrahim, Hossam Fahmy, Ahmed Khalil

Abstract:

This paper presents the developed memristor based demodulators for eight circular Quadrature Amplitude Modulation (QAM) and Binary Frequency Shift Keying (BFSK) operating at relatively high frequency. In our implementations, the experimental-based ‘nonlinear’ dopant drift model is adopted along with the proposed circuits providing incorporation of all known non-idealities of practically realized memristor and gaining high operation frequency. The suggested designs leverage the distinctive characteristics of the memristor device, definitely, its changeable average memristance versus the frequency, phase and amplitude of the periodic excitation input. The proposed demodulators feature small integration area, low power consumption, and easy implementation. Moreover, the proposed QAM demodulator precludes the requirement for the carrier recovery circuits. In doing so, the designs were validated by transient simulations using the nonlinear dopant drift memristor model. The simulations results show high agreement with the theory presented.

Keywords: BFSK, demodulator, high frequency memristor applications, memristor based analog circuits, nonlinear dopant drift model, QAM

Procedia PDF Downloads 167
1590 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 502
1589 Synthesis of Balanced 3-RRR Planar Parallel Manipulators

Authors: Arakelian Vigen, Geng Jing, Le Baron Jean-Paul

Abstract:

The paper deals with the design of parallel manipulators with balanced inertia forces and moments. The balancing of the resultant of the inertia forces of 3-RRR planar parallel manipulators is carried out through mass redistribution and centre of mass acceleration minimization. The proposed balancing technique is achieved in two steps: at first, optimal redistribution of the masses of input links is accomplished, which ensures the similarity of the end-effector trajectory and the manipulator’s common centre of mass trajectory, then, optimal trajectory planning of the end-effector by 'bang-bang' profile is reached. In such a way, the minimization of the magnitude of the acceleration of the centre of mass of the manipulator brings about a minimization of shaking force. To minimize the resultant of the inertia moments (shaking moment), the active balancing via inertia flywheel is applied. However, in this case, the active balancing is quite different from previous applications because it provides only a partial cancellation of the shaking moment due to the incomplete balancing of shaking force.

Keywords: dynamic balancing, inertia force minimization, inertia moment minimization, 3-RRR planar parallel manipulator

Procedia PDF Downloads 463
1588 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions

Authors: M. Tehranizadeh, E. Shoushtari Rezvani

Abstract:

Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.

Keywords: soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building

Procedia PDF Downloads 549
1587 High-Frequency Full-Bridge Isolated DC-DC Converter for Fuel Cell Power Generation Systems

Authors: Nabil A. Ahmed

Abstract:

DC-DC converters are necessary to interface low-voltage fuel cell power generation systems to a higher voltage DC bus system. A system and method for generating a regulated output power from fuel cell power generation systems is proposed in this paper, this includes a soft-switching isolated DC-DC converter to reduce the idling and circulating currents. The system incorporates a high-frequency center tap transformer link DC-DC converter using secondary-side soft switching control. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS) in the primary side of the high-frequency transformer. Therefore, no extra resonant components are required for ZVS. The inherent soft-switching capability allows high power density, efficient power conversion, and compact packaging. A prototype rated at 6.5 kW is proposed and simulated. Simulation results confirmed a wide range of soft-switching operation and consequently high conversion efficiency will be achieved.

Keywords: secondary-side, phase-shift, high-frequency transformer, zero voltage, zero current, soft switching operation, switching losses

Procedia PDF Downloads 310
1586 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet

Procedia PDF Downloads 432
1585 Critical Appraisal of Different Drought Indices of Drought Predection and Their Application in KBK Districts of Odisha

Authors: Bibhuti Bhusan Sahoo, Ramakar Jha

Abstract:

Mapping of the extreme events (droughts) is one of the adaptation strategies to consequences of increasing climatic inconsistency and climate alterations. There is no operational practice to forecast the drought. One of the suggestions is to update mapping of drought prone areas for developmental planning. Drought indices play a significant role in drought mitigation. Many scientists have worked on different statistical analysis in drought and other climatological hazards. Many researchers have studied droughts individually for different sub-divisions or for India. Very few workers have studied district wise probabilities over large scale. In the present study, district wise drought probabilities over KBK (Kalahandi-Balangir-Koraput) districts of Odisha, India, Which are seriously prone to droughts, has been established using Hydrological drought index and Meteorological drought index along with the remote sensing drought indices to develop a multidirectional approach in the field of drought mitigation. Mapping for moderate and severe drought probabilities for KBK districts has been done and regions belonging different class intervals of probabilities of drought have been demarcated. Such type of information would be a good tool for planning purposes, for input in modelling and better promising results can be achieved.

Keywords: drought indices, KBK districts, proposed drought severity index, SPI

Procedia PDF Downloads 451
1584 Ontology for Cross-Site-Scripting (XSS) Attack in Cybersecurity

Authors: Jean Rosemond Dora, Karol Nemoga

Abstract:

In this work, we tackle a frequent problem that frequently occurs in the cybersecurity field which is the exploitation of websites by XSS attacks, which are nowadays considered a complicated attack. These types of attacks aim to execute malicious scripts in a web browser of the client by including code in a legitimate web page. A serious matter is when a website accepts the “user-input” option. Attackers can exploit the web application (if vulnerable), and then steal sensitive data (session cookies, passwords, credit cards, etc.) from the server and/or from the client. However, the difficulty of the exploitation varies from website to website. Our focus is on the usage of ontology in cybersecurity against XSS attacks, on the importance of the ontology, and its core meaning for cybersecurity. We explain how a vulnerable website can be exploited, and how different JavaScript payloads can be used to detect vulnerabilities. We also enumerate some tools to use for an efficient analysis. We present detailed reasoning on what can be done to improve the security of a website in order to resist attacks, and we provide supportive examples. Then, we apply an ontology model against XSS attacks to strengthen the protection of a web application. However, we note that the existence of ontology does not improve the security itself, but it has to be properly used and should require a maximum of security layers to be taken into account.

Keywords: cybersecurity, web application vulnerabilities, cyber threats, ontology model

Procedia PDF Downloads 172
1583 Optimization of Turbocharged Diesel Engines

Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz

Abstract:

The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC(Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP(Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital®madules in concepts NREC® respectively.

Keywords: turbocharger, wastegate, diesel engine, concept NREC programs

Procedia PDF Downloads 243
1582 Adjustable Aperture with Liquid Crystal for Real-Time Range Sensor

Authors: Yumee Kim, Seung-Guk Hyeon, Kukjin Chun

Abstract:

An adjustable aperture using a liquid crystal is proposed for real-time range detection and obtaining images simultaneously. The adjustable aperture operates as two types of aperture stops which can create two different Depth of Field images. By analyzing these two images, the distance can be extracted from camera to object. Initially, the aperture stop has large size with zero voltage. When the input voltage is applied, the aperture stop transfer to smaller size by orientational transition of liquid crystal molecules in the device. The diameter of aperture stop is 1.94mm and 1.06mm. The proposed device has low driving voltage of 7.0V and fast response time of 6.22m. Compact size aperture of 6×6×1.1 mm3 is assembled in conventional camera which contain 1/3” HD image sensor and focal length of 3.3mm that can be used in autonomous. The measured range was up to 5m. The adjustable aperture has high stability due to no mechanically moving parts. This range sensor can be applied to the various field of 3D depth map application which is the Advanced Driving Assistance System (ADAS), drones and manufacturing machine.

Keywords: adjustable aperture, dual aperture, liquid crystal, ranging and imaging, ADAS, range sensor

Procedia PDF Downloads 381
1581 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 299
1580 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks

Authors: Ahmed M. Ashteyat

Abstract:

Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.

Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling

Procedia PDF Downloads 534
1579 The Role of Uncertainty in the Integration of Environmental Parameters in Energy System Modeling

Authors: Alexander de Tomás, Miquel Sierra, Stefan Pfenninger, Francesco Lombardi, Ines Campos, Cristina Madrid

Abstract:

Environmental parameters are key in the definition of sustainable energy systems yet excluded from most energy system optimization models. Still, decision-making may be misleading without considering them. Environmental analyses of the energy transition are a key part of industrial ecology but often are performed without any input from the users of the information. This work assesses the systemic impacts of energy transition pathways in Portugal. Using the Calliope energy modeling framework, 250+ optimized energy system pathways are generated. A Delphi study helps to identify the relevant criteria for the stakeholders as regards the environmental assessment, which is performed with ENBIOS, a python package that integrates life cycle assessment (LCA) with a metabolic analysis based on complex relations. Furthermore, this study focuses on how the uncertainty propagates through the model’s consortium. With the aim of doing so, a soft link between the Calliope/ENBIOS cascade and Brightway’s data capabilities is built to perform Monte Carlo simulations. These findings highlight the relevance of including uncertainty analysis as a range of values rather than informing energy transition results with a single value.

Keywords: energy transition, energy modeling, uncertainty, sustainability

Procedia PDF Downloads 83
1578 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: neural network, motion detection, signature detection, convolutional neural network

Procedia PDF Downloads 88
1577 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy

Procedia PDF Downloads 257
1576 Maintaining the Formal Type of West Java's Heritage Language with Sundanese Language Lesson in Senior High School

Authors: Dinda N. Lestari

Abstract:

Sundanese language is one of heritage language in Indonesia that must be maintained especially the formal type of it because teenagers nowadays do not speak Sundanese language formally in their daily lives. To maintain it, Cultural and Education Ministry of Indonesia has input Sundanese language lesson at senior high school in West Java area. The aim of this study was to observe whether the existence of Sundanese language lesson in senior high school in the big town of Karawang, West Java - Indonesia give the contribution to the formal type of Sundanese language maintenance or not. For gathering the data, the researcher interviewed the senior high school students who have learned Sundanese language to observe their acquisition of it. As a result of the interview, the data was presented in qualitative research by using the interviewing method. Then, the finding indicated that the existence of Sundanese language in Senior High School also the educational program which is related to it, for instance, Kemis Nyunda seemed to do not effective enough in maintaining the formal type of Sundanese language. Therefore, West Java government must revise the learning strategy of it, including the role of the Sundanese language teacher.

Keywords: heritage language, language maintenance and shift, senior high school, Sundanese language, Sundanese language lesson

Procedia PDF Downloads 150