Search results for: crow search algorithm
3140 The Effect of Solution Density on the Synthesis of Magnesium Borate from Boron-Gypsum
Authors: N. Tugrul, E. Sariburun, F. T. Senberber, A. S. Kipcak, E. Moroydor Derun, S. Piskin
Abstract:
Boron-gypsum is a waste which occurs in the boric acid production process. In this study, the boron content of this waste is evaluated for the use in synthesis of magnesium borates and such evaluation of this kind of waste is useful more than storage or disposal. Magnesium borates, which are a sub-class of boron minerals, are useful additive materials for the industries due to their remarkable thermal and mechanical properties. Magnesium borates were obtained hydrothermally at different temperatures. Novelty of this study is the search of the solution density effects to magnesium borate synthesis process for the increasing the possibility of boron-gypsum usage as a raw material. After the synthesis process, products are subjected to XRD and FT-IR to identify and characterize their crystal structure, respectively.Keywords: boron-gypsum, hydrothermal synthesis, magnesium borate, solution density
Procedia PDF Downloads 3963139 Secure Image Retrieval Based on Orthogonal Decomposition under Cloud Environment
Authors: Y. Xu, L. Xiong, Z. Xu
Abstract:
In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.Keywords: secure image retrieval, secure search, orthogonal decomposition, secure cloud computing
Procedia PDF Downloads 4853138 Uses of Fibrinogen Concentrate in the Management of Trauma-Induced Coagulopathy in the Prehospital Environment: A Scoping Review
Authors: Nura Khattab, Fayad Al-Haimus, Teruko Kishibe, Netanel Krugliak, Melissa McGowan, Brodie Nolan
Abstract:
Trauma-induced coagulopathy remains a significant contributor to mortality in severely injured patients. Fibrinogen is essential for early hemostasis and is recognized as the first coagulation factor to fall below critical levels, compromising the coagulation cascade. Early administration of fibrinogen concentrate may be feasible and effective to prevent coagulopathy. We conducted this scoping review to characterize the existing quantity of literature, and to explore the usage of prehospital fibrinogen concentrate products in improving clinical outcomes in trauma patients. Methods: A search strategy was developed in consultation with an information specialist. We searched MEDLINE, Embase, Cochrane, and Scopus from inception to May 6th 2024. English studies evaluating prehospital/military usage of fibrinogen concentrate in trauma patients were included. Studies were assessed by three independent reviewers for meeting inclusion and exclusion criteria. Reference lists of included articles were reviewed to identify additional studies meeting inclusion criteria. Clinical endpoints regarding fibrinogen concentrate were extracted and synthesized. Results: The literature search returned 1301 articles with seven studies meeting the inclusion criteria. Five studies (71%) were conducted in civilian settings and two studies (29%) were conducted in military settings. Of the included studies, three (43%) utilized a randomized control trial. We identified seven outcomes that compared varying concentrations of fibrinogen or fibrinogen concentrate to a placebo group. The outcomes included overall mortality, death from hemorrhage, thromboembolic events, clotting time, maximum clot firmness, clot stability at ER admission, and fibrinogen concentration at ER admission. Apart from thromboembolic events, all other reported outcomes showed statistically significant differences in group comparisons, determined using p values. The four (57%) non-clinical studies underscored the robustness, practicality, and degree of fibrinogen concentrate utilization in military environments and retrieval services. Conclusion: Preliminary research suggests that prehospital fibrinogen concentrate administration in traumatic bleeding patients is both feasible and effective, improving mortality and clotting parameters. While implementing a time-saving and proactive approach with fibrinogen holds potential for enhancing trauma care, the current evidence is limited. Further studies in this novel field are warranted.Keywords: fibrinogen concentrate, prehospital, military, trauma, trauma-induced coagulopathy
Procedia PDF Downloads 253137 Remote Sensing and GIS-Based Environmental Monitoring by Extracting Land Surface Temperature of Abbottabad, Pakistan
Authors: Malik Abid Hussain Khokhar, Muhammad Adnan Tahir, Hisham Bin Hafeez Awan
Abstract:
Continuous environmental determinism and climatic change in the entire globe due to increasing land surface temperature (LST) has become a vital phenomenon nowadays. LST is accelerating because of increasing greenhouse gases in the environment which results of melting down ice caps, ice sheets and glaciers. It has not only worse effects on vegetation and water bodies of the region but has also severe impacts on monsoon areas in the form of capricious rainfall and monsoon failure extensive precipitation. Environment can be monitored with the help of various geographic information systems (GIS) based algorithms i.e. SC (Single), DA (Dual Angle), Mao, Sobrino and SW (Split Window). Estimation of LST is very much possible from digital image processing of satellite imagery. This paper will encompass extraction of LST of Abbottabad using SW technique of GIS and Remote Sensing over last ten years by means of Landsat 7 ETM+ (Environmental Thematic Mapper) and Landsat 8 vide their Thermal Infrared (TIR Sensor) and Optical Land Imager (OLI sensor less Landsat 7 ETM+) having 100 m TIR resolution and 30 m Spectral Resolutions. These sensors have two TIR bands each; their emissivity and spectral radiance will be used as input statistics in SW algorithm for LST extraction. Emissivity will be derived from Normalized Difference Vegetation Index (NDVI) threshold methods using 2-5 bands of OLI with the help of e-cognition software, and spectral radiance will be extracted TIR Bands (Band 10-11 and Band 6 of Landsat 7 ETM+). Accuracy of results will be evaluated by weather data as well. The successive research will have a significant role for all tires of governing bodies related to climate change departments.Keywords: environment, Landsat 8, SW Algorithm, TIR
Procedia PDF Downloads 3553136 Adverse Reactions from Contrast Media in Patients Undergone Computed Tomography at the Department of Radiology, Srinagarind Hospital
Authors: Pranee Suecharoen, Jaturat Kanpittaya
Abstract:
Background: The incidence of adverse reactions to iodinated contrast media has risen. The dearth of reports on reactions to the administration of iso- and low-osmolar contrast media should be addressed. We, therefore, studied the profile of adverse reactions to iodinated contrast media; viz., (a) the body systems affected (b) causality, (c) severity, and (d) preventability. Objective: To study adverse reactions (causes and severity) to iodinated contrast media at Srinagarind Hospital. Method: Between March and July, 2015, 1,101 patients from the Department of Radiology were observed and interviewed for the occurrence of adverse reactions. The patients were classified per Naranjo’s algorithm and through use of an adverse reactions questionnaire. Results: A total of 105 cases (9.5%) reported adverse reactions (57% male; 43% female); among whom 2% were iso-osmolar vs. 98% low-osmolar. Diagnoses included hepatoma and cholangiocarcinoma (24.8%), colorectal cancer (9.5%), breast cancer (5.7%), cervical cancer (3.8%), lung cancer (2.9%), bone cancer (1.9%), and others (51.5%). Underlying diseases included hypertension and diabetes mellitus type 2. Mild, moderate, and severe adverse reactions accounted for 92, 5 and 3%, respectively. The respective groups of escalating symptoms included (a) mild urticaria, itching, rash, nausea, vomiting, dizziness, and headache; (b) moderate hypertension, hypotension, dyspnea, tachycardia and bronchospasm; and (c) severe laryngeal edema, profound hypotension, and convulsions. All reactions could be anticipated per Naranjo’s algorithm. Conclusion: Mild to moderate adverse reactions to low-osmolar contrast media were most common and these occurred immediately after administration. For patient safety and better outcomes, improving the identification of patients likely to have an adverse reaction is essential.Keywords: adverse reactions, contrast media, computed tomography, iodinated contrast agents
Procedia PDF Downloads 3613135 Defining of the Shape of the Spine Using Moiré Method in Case of Patients with Scheuermann Disease
Authors: Petra Balla, Gabor Manhertz, Akos Antal
Abstract:
Nowadays spinal deformities are very frequent problems among teenagers. Scheuermann disease is a one dimensional deformity of the spine, but it has prevalence over 11% of the children. A traditional technology, the moiré method was used by us for screening and diagnosing this type of spinal deformity. A LabVIEW program has been developed to evaluate the moiré pictures of patients with Scheuermann disease. Two different solutions were tested in this computer program, the extreme and the inflexion point calculation methods. Effects using these methods were compared and according to the results both solutions seemed to be appropriate. Statistical results showed better efficiency in case of the extreme search method where the average difference was only 6,09⁰.Keywords: spinal deformity, picture evaluation, Moiré method, Scheuermann disease, curve detection, Moiré topography
Procedia PDF Downloads 3523134 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks
Authors: Kai-Wei Ji, Dung-Ying Lin
Abstract:
This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.Keywords: demand estimation, genetic algorithm, housing price, transportation
Procedia PDF Downloads 213133 Adaptive Motion Compensated Spatial Temporal Filter of Colonoscopy Video
Authors: Nidhal Azawi
Abstract:
Colonoscopy procedure is widely used in the world to detect an abnormality. Early diagnosis can help to heal many patients. Because of the unavoidable artifacts that exist in colon images, doctors cannot detect a colon surface precisely. The purpose of this work is to improve the visual quality of colonoscopy videos to provide better information for physicians by removing some artifacts. This work complements a series of work consisting of three previously published papers. In this paper, Optic flow is used for motion compensation, and then consecutive images are aligned/registered to integrate some information to create a new image that has or reveals more information than the original one. Colon images have been classified into informative and noninformative images by using a deep neural network. Then, two different strategies were used to treat informative and noninformative images. Informative images were treated by using Lucas Kanade (LK) with an adaptive temporal mean/median filter, whereas noninformative images are treated by using Lucas Kanade with a derivative of Gaussian (LKDOG) with adaptive temporal median images. A comparison result showed that this work achieved better results than that results in the state- of- the- art strategies for the same degraded colon images data set, which consists of 1000 images. The new proposed algorithm reduced the error alignment by about a factor of 0.3 with a 100% successfully image alignment ratio. In conclusion, this algorithm achieved better results than the state-of-the-art approaches in case of enhancing the informative images as shown in the results section; also, it succeeded to convert the non-informative images that have very few details/no details because of the blurriness/out of focus or because of the specular highlight dominate significant amount of an image to informative images.Keywords: optic flow, colonoscopy, artifacts, spatial temporal filter
Procedia PDF Downloads 1133132 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products
Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola
Abstract:
The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.Keywords: decision making, design euristics, product design, product design process, design paradigms
Procedia PDF Downloads 1193131 Benefits of Tourist Experiences for Families: A Systematic Literature Review Using Nvivo
Authors: Diana Cunha, Catarina Coelho, Ana Paula Relvas, Elisabeth Kastenholz
Abstract:
Context: Tourist experiences have a recognized impact on the well-being of individuals. However, studies on the specific benefits of tourist experiences for families are scattered across different disciplines. This study aims to systematically review the literature to synthesize the evidence on the benefits of tourist experiences for families. Research Aim: The main objective is to systematize the evidence in the literature regarding the benefits of tourist experiences for families. Methodology: A systematic literature review was conducted using Nvivo, analyzing 33 scientific studies obtained from various databases. The search terms used were "family"/ "couple" and "tourist experience". The studies included quantitative, qualitative, mixed methods, and literature reviews. All works prior to the year 2000 were excluded, and the search was restricted to full text. A language filter was also used, considering articles in Portuguese, English, and Spanish. For NVivo analysis, information was coded based on both deductive and inductive perspectives. To minimize the subjectivity of the selection and coding process, two of the authors discussed the process and agreed on criteria that would make the coding more objective. Once the coding process in NVivo was completed, the data relating to the identification/characterization of the works were exported to the Statistical Package for the Social Sciences (SPPS), to characterize the sample. Findings: The results highlight that tourist experiences have several benefits for family systems, including the strengthening of family and marital bonds, the creation of family memories, and overall well-being and life satisfaction. These benefits contribute to both immediate relationship quality improvement and long-term family identity construction and transgenerational transmission. Theoretical Importance: This study emphasizes the systemic nature of the effects and relationships within family systems. It also shows that no harm was reported within these experiences, with only some challenges related to positive outcomes. Data Collection and Analysis Procedures: The study collected data from 33 scientific studies published predominantly after 2013. The data were analyzed using Nvivo, employing a systematic review approach. Question Addressed: The study addresses the question of the benefits of tourist experiences for families and how these experiences contribute to family functioning and individual well-being. Conclusion: Tourist experiences provide opportunities for families to enhance their interpersonal relationships and create lasting memories. The findings suggest that formal interventions based on evidence could further enhance the potential benefits of these experiences and be a valuable preventive tool in therapeutic interventions.Keywords: family systems, individual and family well-being, marital satisfaction, tourist experiences
Procedia PDF Downloads 693130 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines
Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso
Abstract:
The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.Keywords: feature extraction, machine learning, OBIA, remote sensing
Procedia PDF Downloads 3623129 Information Literacy: Concept and Importance
Authors: Gaurav Kumar
Abstract:
An information literate person is one who uses information effectively in all its forms. When presented with questions or problems, an information literate person would know what information to look for, how to search efficiently and be able to access relevant sources. In addition, an information literate person would have the ability to evaluate and select appropriate information sources and to use the information effectively and ethically to answer questions or solve problems. Information literacy has become an important element in higher education. The information literacy movement has internationally recognized standards and learning outcomes. The step-by-step process of achieving information literacy is particularly crucial in an era where knowledge could be disseminated through a variety of media. What is the relationship between information literacy as we define it in higher education and information literacy among non-academic populations? What forces will change how we think about the definition of information literacy in the future and how we will apply the definition in all environments?Keywords: information literacy, human beings, visual media and computer network etc, information literacy
Procedia PDF Downloads 3393128 Refining Scheme Using Amphibious Epistemologies
Authors: David Blaine, George Raschbaum
Abstract:
The evaluation of DHCP has synthesized SCSI disks, and current trends suggest that the exploration of e-business that would allow for further study into robots will soon emerge. Given the current status of embedded algorithms, hackers worldwide obviously desire the exploration of replication, which embodies the confusing principles of programming languages. In our research we concentrate our efforts on arguing that erasure coding can be made "fuzzy", encrypted, and game-theoretic.Keywords: SCHI disks, robot, algorithm, hacking, programming language
Procedia PDF Downloads 4293127 Investigation of Acidizing Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Theoretical and Experimental Approaches
Authors: Ambrish Singh
Abstract:
The corrosion inhibition performance of pyran derivatives (AP) on mild steel in 15% HCl was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss, contact angle, and scanning electron microscopy (SEM) measurements, DFT and molecular dynamic simulation. The adsorption of APs on the surface of mild steel obeyed Langmuir isotherm. The potentiodynamic polarization study confirmed that inhibitors are mixed type with cathodic predominance. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are, in most cases, in agreement with experimental results.Keywords: acidizing inhibitor, pyran derivatives, DFT, molecular simulation, mild steel, EIS
Procedia PDF Downloads 1973126 Diabetes Mellitus and Blood Glucose Variability Increases the 30-day Readmission Rate after Kidney Transplantation
Authors: Harini Chakkera
Abstract:
Background: Inpatient hyperglycemia is an established independent risk factor among several patient cohorts with hospital readmission. This has not been studied after kidney transplantation. Nearly one-third of patients who have undergone a kidney transplant reportedly experience 30-day readmission. Methods: Data on first-time solitary kidney transplantations were retrieved between September 2015 to December 2018. Information was linked to the electronic health record to determine a diagnosis of diabetes mellitus and extract glucometeric and insulin therapy data. Univariate logistic regression analysis and the XGBoost algorithm were used to predict 30-day readmission. We report the average performance of the models on the testing set on five bootstrapped partitions of the data to ensure statistical significance. Results: The cohort included 1036 patients who received kidney transplantation, and 224 (22%) experienced 30-day readmission. The machine learning algorithm was able to predict 30-day readmission with an average AUC of 77.3% (95% CI 75.30-79.3%). We observed statistically significant differences in the presence of pretransplant diabetes, inpatient-hyperglycemia, inpatient-hypoglycemia, and minimum and maximum glucose values among those with higher 30-day readmission rates. The XGBoost model identified the index admission length of stay, presence of hyper- and hypoglycemia and recipient and donor BMI values as the most predictive risk factors of 30-day readmission. Additionally, significant variations in the therapeutic management of blood glucose by providers were observed. Conclusions: Suboptimal glucose metrics during hospitalization after kidney transplantation is associated with an increased risk for 30-day hospital readmission. Optimizing the hospital blood glucose management, a modifiable factor, after kidney transplantation may reduce the risk of 30-day readmission.Keywords: kidney, transplant, diabetes, insulin
Procedia PDF Downloads 903125 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model
Procedia PDF Downloads 1473124 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1183123 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology
Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey
Abstract:
In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography
Procedia PDF Downloads 853122 Classifying Blog Texts Based on the Psycholinguistic Features of the Texts
Authors: Hyung Jun Ahn
Abstract:
With the growing importance of social media, it is imperative to analyze it to understand the users. Users share useful information and their experience through social media, where much of what is shared is in the form of texts. This study focused on blogs and aimed to test whether the psycho-linguistic characteristics of blog texts vary with the subject or the type of experience of the texts. For this goal, blog texts about four different types of experience, Go, skiing, reading, and musical were collected through the search API of the Tistory blog service. The analysis of the texts showed that various psycholinguistic characteristics of the texts are different across the four categories of the texts. Moreover, the machine learning experiment using the characteristics for automatic text classification showed significant performance. Specifically, the ensemble method, based on functional tree and bagging appeared to be most effective in classification.Keywords: blog, social media, text analysis, psycholinguistics
Procedia PDF Downloads 2793121 US Track And Field System: Examining Micro-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport
Authors: Peter Smolianov, Steven Dion, Christopher Schoen, Jaclyn Norberg, Nicholas Stone, Soufiane Rafi
Abstract:
This study assessed the micro-level elements of track and field development in the US against a model for integrating high-performance sport with mass participation. This investigation is important for the country’s international sport performance, which declined relative to other countries and wellbeing, which in its turn deteriorated as over half of the US population became overweight. A questionnaire was designed for the following elements of the model: talent identification and development as well as advanced athlete support. Survey questions were validated by 12 experts, including academics, executives from sport governing bodies, coaches, and administrators. To determine the areas for improvement, the questionnaires were completed by 102 US track and field coaches representing the country’s regions and coaching levels. Possible advancements were further identified through semi-structured discussions with 10 US track and field administrators. The study found that talent search and development is a critically important area for improvement: 49 percent of respondents had overall negative perceptions, and only 16 percent were positive regarding these US track and field practices. Both quantitative survey results and open responses revealed that the key reason for the inadequate athlete development was a shortage of well-educated and properly paid coaches: 77 percent of respondents indicated that coach expertise is never or rarely high across all participant ages and levels. More than 40 percent of the respondents were uncertain of or not familiar with world’s best talent identification and development practices, particularly methods of introducing children to track and field from outside the sport’s participation base. Millions more could be attracted to the sport by adopting best international practices. First, physical education should be offered a minimum three times a week in all school grades, and track and field together with other healthy sports, should be taught at school to all children. Second, multi-sport events, including track and field disciplines, should be organized for everyone within and among all schools, cities and regions. Three, Australian and Eastern European methods of talent search at schools should be utilized and tailored to the US conditions. Four, comprehensive long term athlete development guidelines should be used for the advancement of the American Development Model, particularly track and field tests and guidelines as part of both school education and high-performance athlete development for every age group from six to over 70 years old. These world’s best practices are to improve the country’s international performance while increasing national sport participation and positively influencing public health.Keywords: high performance, mass participation, sport development, track and field, USA
Procedia PDF Downloads 1443120 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging
Authors: Jiangbo Li, Wenqian Huang
Abstract:
Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging
Procedia PDF Downloads 3033119 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population
Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath
Abstract:
Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics
Procedia PDF Downloads 1613118 A Literature Review on the Use of Information and Communication Technology within and between Emergency Medical Teams during a Disaster
Authors: Badryah Alshehri, Kevin Gormley, Gillian Prue, Karen McCutcheon
Abstract:
In a disaster event, sharing patient information between the pre-hospitals Emergency Medical Services (EMS) and Emergency Department (ED) hospitals is a complex process during which important information may be altered or lost due to poor communication. The aim of this study was to critically discuss the current evidence base in relation to communication between pre-EMS hospital and ED hospital professionals by the use of Information and Communication Systems (ICT). This study followed the systematic approach; six electronic databases were searched: CINAHL, Medline, Embase, PubMed, Web of Science, and IEEE Xplore Digital Library were comprehensively searched in January 2018 and a second search was completed in April 2020 to capture more recent publications. The study selection process was undertaken independently by the study authors. Both qualitative and quantitative studies were chosen that focused on factors which are positively or negatively associated with coordinated communication between pre-hospital EMS and ED teams in a disaster event. These studies were assessed for quality and the data were analysed according to the key screening themes which emerged from the literature search. Twenty-two studies were included. Eleven studies employed quantitative methods, seven studies used qualitative methods, and four studies used mixed methods. Four themes emerged on communication between EMTs (pre-hospital EMS and ED staff) in a disaster event using the ICT. (1) Disaster preparedness plans and coordination. This theme reported that disaster plans are in place in hospitals, and in some cases, there are interagency agreements with pre-hospital and relevant stakeholders. However, the findings showed that the disaster plans highlighted in these studies lacked information regarding coordinated communications within and between the pre-hospital and hospital. (2) Communication systems used in the disaster. This theme highlighted that although various communication systems are used between and within hospitals and pre-hospitals, technical issues have influenced communication between teams during disasters. (3) Integrated information management systems. This theme suggested the need for an integrated health information system which can help pre-hospital and hospital staff to record patient data and ensure the data is shared. (4) Disaster training and drills. While some studies analysed disaster drills and training, the majority of these studies were focused on hospital departments other than EMTs. These studies suggest the need for simulation disaster training and drills, including EMTs. This review demonstrates that considerable gaps remain in the understanding of the communication between the EMS and ED hospitals staff in relation to response in disasters. The review shows that although different types of ICTs are used, various issues remain which affect coordinated communication among the relevant professionals.Keywords: communication, emergency communication services, emergency medical teams, emergency physicians, emergency nursing, paramedics, information and communication technology, communication systems
Procedia PDF Downloads 863117 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization
Procedia PDF Downloads 1443116 Optimizing Volume Fraction Variation Profile of Bidirectional Functionally Graded Circular Plate under Mechanical Loading to Minimize Its Stresses
Authors: Javad Jamali Khouei, Mohammadreza Khoshravan
Abstract:
Considering that application of functionally graded material is increasing in most industries, it seems necessary to present a methodology for designing optimal profile of structures such as plate under mechanical loading which is highly consumed in industries. Therefore, volume fraction variation profile of functionally graded circular plate which has been considered two-directional is optimized so that stress of structure is minimized. For this purpose, equilibrium equations of two-directional functionally graded circular plate are solved by applying semi analytical-numerical method under mechanical loading and support conditions. By solving equilibrium equations, deflections and stresses are obtained in terms of control variables of volume fraction variation profile. As a result, the problem formula can be defined as an optimization problem by aiming at minimization of critical von-mises stress under constraints of deflections, stress and a physical constraint relating to structure of material. Then, the related problem can be solved with help of one of the metaheuristic algorithms such as genetic algorithm. Results of optimization for the applied model under constraints and loadings and boundary conditions show that functionally graded plate should be graded only in radial direction and there is no need for volume fraction variation of the constituent particles in thickness direction. For validating results, optimal values of the obtained design variables are graphically evaluated.Keywords: two-directional functionally graded material, single objective optimization, semi analytical-numerical solution, genetic algorithm, graphical solution with contour
Procedia PDF Downloads 2793115 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid
Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang
Abstract:
Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid
Procedia PDF Downloads 4323114 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy
Authors: Chhabi Nigam, S. Ramakrishnan
Abstract:
This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR
Procedia PDF Downloads 2183113 Management Pattern for Service Sector in Samut Songkram by Sufficient Economy Approach
Authors: Krisada Sungkhamanee
Abstract:
The objectives of this research are to search the management pattern of one district lodging entrepreneurs by sufficient economy ways, to know the constrains that affects this sector and design fit arrangement shape to sustain their business with Samut Songkram style. What will happen if they do not use this approach? Will they have a monetary crisis? The data and information are collected by informal discussions with 8 managers and 400 questionnaires. A mixed methods of both qualitative research and quantitative research are used and Bent Flyvbjerg’s phronesis is utilized for this analysis. Our paper will prove that sufficient economy can help small business firms to solve their problems. We think that the results of our research will be a financial pattern to solve many problems of the entrepreneurs and this way will can be a super model for other provinces of Thailand.Keywords: Samut Songkram, service sector, sufficient economy, management pattern
Procedia PDF Downloads 3653112 Optimal Power Distribution and Power Trading Control among Loads in a Smart Grid Operated Industry
Authors: Vivek Upadhayay, Siddharth Deshmukh
Abstract:
In recent years utilization of renewable energy sources has increased majorly because of the increase in global warming concerns. Organization these days are generally operated by Micro grid or smart grid on a small level. Power optimization and optimal load tripping is possible in a smart grid based industry. In any plant or industry loads can be divided into different categories based on their importance to the plant and power requirement pattern in the working days. Coming up with an idea to divide loads in different such categories and providing different power management algorithm to each category of load can reduce the power cost and can come handy in balancing stability and reliability of power. An objective function is defined which is subjected to a variable that we are supposed to minimize. Constraint equations are formed taking difference between the power usages pattern of present day and same day of previous week. By considering the objectives of minimal load tripping and optimal power distribution the proposed problem formulation is a multi-object optimization problem. Through normalization of each objective function, the multi-objective optimization is transformed to single-objective optimization. As a result we are getting the optimized values of power required to each load for present day by use of the past values of the required power for the same day of last week. It is quite a demand response scheduling of power. These minimized values then will be distributed to each load through an algorithm used to optimize the power distribution at a greater depth. In case of power storage exceeding the power requirement, profit can be made by selling exceeding power to the main grid.Keywords: power flow optimization, power trading enhancement, smart grid, multi-object optimization
Procedia PDF Downloads 5253111 Control of Asthma in Children with Asthma during the Containment Period following the Covid-19 Pandemic
Authors: Meryam Labyad, Karima Fakiri, Widad Lahmini, Ghizlane Draiss, Mohamed Bouskraoui, Nadia Ouzennou
Abstract:
Background: Asthma is the most common chronic disease in children, affecting nearly 235 million people worldwide (OMS). In Morocco, asthma is much more common in children than in adults; the prevalence rate in children between 13 and 14 years of age is 20%.1 This pathology is marked by high morbidity, a significant impact on the quality of life and development of children 2 This requires a rigorous management strategy in order to achieve clinical control and reduce any risk to the patient 3 A search for aggravating factors is mandatory if a child has difficulty maintaining good asthma control. The objective of the present study is to describe asthma control during this confinement period in children aged 4 to 11 years followed by a pneumo-paediatric consultation. For children whose asthma is not controlled, a search for associations with promoting factors and adherence to treatment is also among the objectives of the study. Knowing the level of asthma control and influencing factors is a therapeutic priority in order to reduce hospitalizations and emergency care use. Objective: To assess asthma control and determine the factors influencing asthma levels in children with asthma during confinement following the COVID 19 pandemic. Method: Prospective cross-sectional study by questionnaire and structured interview among 66 asthmatic children followed in pediatric pneumology consultation at the CHU MED VI of Marrakech from 13/06/2020 to 13/07/2020, asthma control was assessed by the Childhood Asthma Control Test (C-ACT). Results: 66 children and their parents were included (mean age is 7.5 years), asthma was associated with allergic rhinitis (13.5% of cases), conjunctivitis (9% of cases), eczema (12% of cases), occurrence of infection (10.5% of cases). The period of confinement was marked by a decrease in the number of asthma attacks translated by a decrease in the number of emergency room visits (7.5%) of these asthmatic children, control was well controlled in 71% of the children, this control was significantly associated with good adherence to treatment (p<0.001), no infection (p<0.001) and no conjunctivitis (p=002) or rhinitis (p<0.001). This improvement in asthma control during confinement can be explained by the measures taken in the Kingdom to prevent the spread of COVID 19 (school closures, reduction in industrial activity, fewer means of transport, etc.), leading to a decrease in children's exposure to triggers, which justifies the decrease in the number of children having had an infection, allergic rhinitis or conjunctivitis during this period. In addition, the close monitoring of parents resulted in better therapeutic adherence (42.4% were fully observant). Confinement was positively perceived by 68% of the parents; this perception is significantly associated with the level of asthma control (p<0.001). Conclusion: Maintaining good control can be achieved through improved therapeutic adherence and avoidance of triggers, both of which were achieved during the containment period following the VIDOC pandemic 19.Keywords: Asthma, control , COVID-19 , children
Procedia PDF Downloads 185