Search results for: RGB models
4689 Structural Behavior of Subsoil Depending on Constitutive Model in Calculation Model of Pavement Structure-Subsoil System
Authors: M. Kadela
Abstract:
The load caused by the traffic movement should be transferred in the road constructions in a harmless way to the pavement as follows: − on the stiff upper layers of the structure (e.g. layers of asphalt: abrading and binding), and − through the layers of principal and secondary substructure, − on the subsoil, directly or through an improved subsoil layer. Reliable description of the interaction proceeding in a system “road construction – subsoil” should be in such case one of the basic requirements of the assessment of the size of internal forces of structure and its durability. Analyses of road constructions are based on: − elements of mechanics, which allows to create computational models, and − results of the experiments included in the criteria of fatigue life analyses. Above approach is a fundamental feature of commonly used mechanistic methods. They allow to use in the conducted evaluations of the fatigue life of structures arbitrarily complex numerical computational models. Considering the work of the system “road construction – subsoil”, it is commonly accepted that, as a result of repetitive loads on the subsoil under pavement, the growth of relatively small deformation in the initial phase is recognized, then this increase disappears, and the deformation takes the character completely reversible. The reliability of calculation model is combined with appropriate use (for a given type of analysis) of constitutive relationships. Phenomena occurring in the initial stage of the system “road construction – subsoil” is unfortunately difficult to interpret in the modeling process. The classic interpretation of the behavior of the material in the elastic-plastic model (e-p) is that elastic phase of the work (e) is undergoing to phase (e-p) by increasing the load (or growth of deformation in the damaging structure). The paper presents the essence of the calibration process of cooperating subsystem in the calculation model of the system “road construction – subsoil”, created for the mechanistic analysis. Calibration process was directed to show the impact of applied constitutive models on its deformation and stress response. The proper comparative base for assessing the reliability of created. This work was supported by the on-going research project “Stabilization of weak soil by application of layer of foamed concrete used in contact with subsoil” (LIDER/022/537/L-4/NCBR/2013) financed by The National Centre for Research and Development within the LIDER Programme. M. Kadela is with the Department of Building Construction Elements and Building Structures on Mining Areas, Building Research Institute, Silesian Branch, Katowice, Poland (phone: +48 32 730 29 47; fax: +48 32 730 25 22; e-mail: m.kadela@ itb.pl). models should be, however, the actual, monitored system “road construction – subsoil”. The paper presents too behavior of subsoil under cyclic load transmitted by pavement layers. The response of subsoil to cyclic load is recorded in situ by the observation system (sensors) installed on the testing ground prepared for this purpose, being a part of the test road near Katowice, in Poland. A different behavior of the homogeneous subsoil under pavement is observed for different seasons of the year, when pavement construction works as a flexible structure in summer, and as a rigid plate in winter. Albeit the observed character of subsoil response is the same regardless of the applied load and area values, this response can be divided into: - zone of indirect action of the applied load; this zone extends to the depth of 1,0 m under the pavement, - zone of a small strain, extending to about 2,0 m.Keywords: road structure, constitutive model, calculation model, pavement, soil, FEA, response of soil, monitored system
Procedia PDF Downloads 3574688 Effect of Co-Infection With Intestinal Parasites on COVID-19 Severity: A Prospective Observational Cohort Study
Authors: Teklay Gebrecherkos, Dawit Wolday, Muhamud Abdulkader
Abstract:
Background: COVID-19 symptomatology in Africa appears significantly less serious than in the industrialized world. Our hypothesis for this phenomenon, being a different, more activated immune system due to parasite infections contributes to reduced COVID-19 outcome. We investigated this hypothesis in an endemic area in sub sub-saharan Africa. Methods: Ethiopian COVID-19 patients were enrolled and screened for intestinal parasites, between July 2020 and March 2021. The primary outcome was the proportion of patients with severe COVID-19. SARS-CoV-2 infection was confirmed by RT-PCR on samples obtained from nasopharyngeal swabs, while direct microscopic examination, modified Ritchie concentration, and Kato-Katz methods were used to identify parasites and ova from a fresh stool sample. Ordinal logistic regression models were used to estimate the association between parasite infection and COVID-19 severity. Models were adjusted for sex, age, residence, education level, occupation, body mass index, and comorbidities. Data were analyzed using STATA version 14. P-value <0.05 was considered statistically significant. Results: A total of 751 SARS-CoV-2 infected patients were enrolled, of whom 284 (37•8%) had an intestinal parasitic infection. Only 27/255 (10•6%) severe COVID-19 patients were co-infected with intestinal parasites, while 257/496 (51•8%) non-severe COVID-19 patients appeared parasite positive (p<0.0001). Patients co-infected with parasites had lower odds of developing severe COVID-19, with an adjusted odds ratio (AOR) of 0•14 (95% CI 0•09–0•24; p<0•0001) for all parasites, AOR 0•20 ([95% CI 0•11–0•38]; p<0•0001) for protozoa, and AOR 0•13 ([95% CI 0•07–0•26]; p<0•0001) for helminths. When stratified by species, co-infection with Entamoeba spp., Hymenolopis nana, and Schistosoma mansoni implied a lower probability of developing severe COVID-19. There were 11 deaths (1•5%), and all were among patients without parasites (p=0•009). Conclusions: Parasite co-infection is associated with a reduced risk of severe COVID-19 in African patients. Parasite-driven immunomodulatory responses may mute hyper-inflammation associated with severe COVID-19.Keywords: COVID-19, SARS-COV-2, intestinal parasite, RT-PCR, co-infection
Procedia PDF Downloads 614687 Active Control Effects on Dynamic Response of Elevated Water Storage Tanks
Authors: Ali Etemadi, Claudia Fernanda Yasar
Abstract:
Elevated water storage tank structures (EWSTs) are high elevated-ponderous structural systems and very vulnerable to seismic vibrations. In past earthquake events, many of these structures exhibit poor performance and experienced severe damage. The dynamic analysis of the EWSTs under earthquake loads is, therefore, of significant importance for the design of the structure and a key issue for the development of modern methods, such as active control design. In this study, a reduced model of the EWSTs is explained, which is based on a tuned mass damper model (TMD). Vibration analysis of a structure under seismic excitation is presented and then used to propose an active vibration controller. MATLAB/Simulink is employed for dynamic analysis of the system and control of the seismic response. A single degree of freedom (SDOF) and two degree of freedom (2DOF) models of ELSTs are going to be used to study the concept of active vibration control. Lab-scale experimental models similar to pendulum are applied to suppress vibrations in ELST under seismic excitation. One of the most important phenomena in liquid storage tanks is the oscillation of fluid due to the movements of the tank body because of its base motions during an earthquake. Simulation results illustrate that the EWSTs vibration can be reduced by means of an input shaping technique that takes into account the dominant mode shape of the structure. Simulations with which to guide many of our designs are presented in detail. A simple and effective real-time control for seismic vibration damping can be, therefore, design and built-in practice.Keywords: elevated water storage tank, tuned mass damper model, real time control, shaping control, seismic vibration control, the laplace transform
Procedia PDF Downloads 1524686 Traumatic Brain Injury Induced Lipid Profiling of Lipids in Mice Serum Using UHPLC-Q-TOF-MS
Authors: Seema Dhariwal, Kiran Maan, Ruchi Baghel, Apoorva Sharma, Poonam Rana
Abstract:
Introduction: Traumatic brain injury (TBI) is defined as the temporary or permanent alteration in brain function and pathology caused by an external mechanical force. It represents the leading cause of mortality and morbidity among children and youth individuals. Various models of TBI in rodents have been developed in the laboratory to mimic the scenario of injury. Blast overpressure injury is common among civilians and military personnel, followed by accidents or explosive devices. In addition to this, the lateral Controlled cortical impact (CCI) model mimics the blunt, penetrating injury. Method: In the present study, we have developed two different mild TBI models using blast and CCI injury. In the blast model, helium gas was used to create an overpressure of 130 kPa (±5) via a shock tube, and CCI injury was induced with an impact depth of 1.5mm to create diffusive and focal injury, respectively. C57BL/6J male mice (10-12 weeks) were divided into three groups: (1) control, (2) Blast treated, (3) CCI treated, and were exposed to different injury models. Serum was collected on Day1 and day7, followed by biphasic extraction using MTBE/Methanol/Water. Prepared samples were separated on Charged Surface Hybrid (CSH) C18 column and acquired on UHPLC-Q-TOF-MS using ESI probe with inhouse optimized parameters and method. MS peak list was generated using Markerview TM. Data were normalized, Pareto-scaled, and log-transformed, followed by multivariate and univariate analysis in metaboanalyst. Result and discussion: Untargeted profiling of lipids generated extensive data features, which were annotated through LIPID MAPS® based on their m/z and were further confirmed based on their fragment pattern by LipidBlast. There is the final annotation of 269 features in the positive and 182 features in the negative mode of ionization. PCA and PLS-DA score plots showed clear segregation of injury groups to controls. Among various lipids in mild blast and CCI, five lipids (Glycerophospholipids {PC 30:2, PE O-33:3, PG 28:3;O3 and PS 36:1 } and fatty acyl { FA 21:3;O2}) were significantly altered in both injury groups at Day 1 and Day 7, and also had VIP score >1. Pathway analysis by Biopan has also shown hampered synthesis of Glycerolipids and Glycerophospholipiods, which coincides with earlier reports. It could be a direct result of alteration in the Acetylcholine signaling pathway in response to TBI. Understanding the role of a specific class of lipid metabolism, regulation and transport could be beneficial to TBI research since it could provide new targets and determine the best therapeutic intervention. This study demonstrates the potential lipid biomarkers which can be used for injury severity diagnosis and identification irrespective of injury type (diffusive or focal).Keywords: LipidBlast, lipidomic biomarker, LIPID MAPS®, TBI
Procedia PDF Downloads 1134685 Evaluation of Solid-Gas Separation Efficiency in Natural Gas Cyclones
Authors: W. I. Mazyan, A. Ahmadi, M. Hoorfar
Abstract:
Objectives/Scope: This paper proposes a mathematical model for calculating the solid-gas separation efficiency in cyclones. This model provides better agreement with experimental results compared to existing mathematical models. Methods: The separation ratio efficiency, ϵsp, is evaluated by calculating the outlet to inlet count ratio. Similar to mathematical derivations in the literature, the inlet and outlet particle count were evaluated based on Eulerian approach. The model also includes the external forces acting on the particle (i.e., centrifugal and drag forces). In addition, the proposed model evaluates the exact length that the particle travels inside the cyclone for the evaluation of number of turns inside the cyclone. The separation efficiency model derivation using Stoke’s law considers the effect of the inlet tangential velocity on the separation performance. In cyclones, the inlet velocity is a very important factor in determining the performance of the cyclone separation. Therefore, the proposed model provides accurate estimation of actual cyclone separation efficiency. Results/Observations/Conclusion: The separation ratio efficiency, ϵsp, is studied to evaluate the performance of the cyclone for particles ranging from 1 microns to 10 microns. The proposed model is compared with the results in the literature. It is shown that the proposed mathematical model indicates an error of 7% between its efficiency and the efficiency obtained from the experimental results for 1 micron particles. At the same time, the proposed model gives the user the flexibility to analyze the separation efficiency at different inlet velocities. Additive Information: The proposed model determines the separation efficiency accurately and could also be used to optimize the separation efficiency of cyclones at low cost through trial and error testing, through dimensional changes to enhance separation and through increasing the particle centrifugal forces. Ultimately, the proposed model provides a powerful tool to optimize and enhance existing cyclones at low cost.Keywords: cyclone efficiency, solid-gas separation, mathematical model, models error comparison
Procedia PDF Downloads 3934684 Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment
Authors: Carlos Tapia Cortez, Serkan Saydam, Jeff Coulton, Claude Sammut
Abstract:
Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively.Keywords: commodity price simulation, commodity price uncertainties, dynamic-cognition, dynamic systems
Procedia PDF Downloads 4634683 Experimental Study of Near Wake of Wind Turbines
Authors: Ramin Rezaei, Terry Ng, Abdollah Afjeh
Abstract:
Near wake development of a wind turbine affects the aerodynamic loads on the tower and the wind turbine. Design considerations of both isolated wind turbines and wind farms must include unsteady wake flow conditions under which the turbines must operate. The consequent aerodynamic loads could lead to over design of wind turbines and adversely affect the cost of wind turbines and, in turn, the cost of energy produced by wind turbines. Reducing the weight of turbine rotors is particularly desirable since larger wind turbine rotors can be utilized without significantly increasing the cost of the supporting structure. Larger rotor diameters produce larger swept areas and consequently greater energy production from the wind thereby reducing the levelized cost of wind energy. To understand the development and structure of the near tower wake of a wind turbine, an experimental study was conducted to describe the flow field of the near wake for both upwind and downwind turbines. The study was conducted under controlled environment of a wind tunnel using a scaled model of a turbine. The NREL 5 MW reference wind turbine was used as a baseline design and was modified as necessary to design and build upwind and downwind scaled wind turbine models. This paper presents the results of the wind tunnel study using turbine models to quantify the near wake of upwind and downwind wind turbine configurations for various lengths of tower-to-turbine spacing. The variations of mean velocity and turbulence are measured using a computer-controlled, traversing hot wire probe. Additionally, smoke flow visualizations were conducted to qualitatively study the wake. The results show a more rapid dissipation of the near wake for an upwind configuration. The results can readily be incorporated into low fidelity system level turbine simulation tools to more accurately account for the wake on the aerodynamic loads of a upwind and downwind turbines.Keywords: hot wire anemometry, near wake, upwind and downwind turbine. Hot wire anemometry, near wake, upwind and downwind turbine
Procedia PDF Downloads 6674682 Mathematical Model to Quantify the Phenomenon of Democracy
Authors: Mechlouch Ridha Fethi
Abstract:
This paper presents a recent mathematical model in political sciences concerning democracy. The model is represented by a logarithmic equation linking the Relative Index of Democracy (RID) to Participation Ratio (PR). Firstly the meanings of the different parameters of the model were presented; and the variation curve of the RID according to PR with different critical areas was discussed. Secondly, the model was applied to a virtual group where we show that the model can be applied depending on the gender. Thirdly, it was observed that the model can be extended to different language models of democracy and that little use to assess the state of democracy for some International organizations like UNO.Keywords: democracy, mathematic, modelization, quantification
Procedia PDF Downloads 3684681 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading
Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera
Abstract:
For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.Keywords: blast phenomenon, experimental methods, material models, numerical methods
Procedia PDF Downloads 1574680 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region
Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho
Abstract:
The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon
Procedia PDF Downloads 664679 Applications of Digital Tools, Satellite Images and Geographic Information Systems in Data Collection of Greenhouses in Guatemala
Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.
Abstract:
During the last 20 years, the globalization of economies, population growth, and the increase in the consumption of fresh agricultural products have generated greater demand for ornamentals, flowers, fresh fruits, and vegetables, mainly from tropical areas. This market situation has demanded greater competitiveness and control over production, with more efficient protected agriculture technologies, which provide greater productivity and allow us to guarantee the quality and quantity that is required in a constant and sustainable way. Guatemala, located in the north of Central America, is one of the largest exporters of agricultural products in the region and exports fresh vegetables, flowers, fruits, ornamental plants, and foliage, most of which were grown in greenhouses. Although there are no official agricultural statistics on greenhouse production, several thesis works, and congress reports have presented consistent estimates. A wide range of protection structures and roofing materials are used, from the most basic and simple ones for rain control to highly technical and automated structures connected with remote sensors for monitoring and control of crops. With this breadth of technological models, it is necessary to analyze georeferenced data related to the cultivated area, to the different existing models, and to the covering materials, integrated with altitude, climate, and soil data. The georeferenced registration of the production units, the data collection with digital tools, the use of satellite images, and geographic information systems (GIS) provide reliable tools to elaborate more complete, agile, and dynamic information maps. This study details a methodology proposed for gathering georeferenced data of high protection structures (greenhouses) in Guatemala, structured in four phases: diagnosis of available information, the definition of the geographic frame, selection of satellite images, and integration with an information system geographic (GIS). It especially takes account of the actual lack of complete data in order to obtain a reliable decision-making system; this gap is solved through the proposed methodology. A summary of the results is presented in each phase, and finally, an evaluation with some improvements and tentative recommendations for further research is added. The main contribution of this study is to propose a methodology that allows to reduce the gap of georeferenced data in protected agriculture in this specific area where data is not generally available and to provide data of better quality, traceability, accuracy, and certainty for the strategic agricultural decision öaking, applicable to other crops, production models and similar/neighboring geographic areas.Keywords: greenhouses, protected agriculture, GIS, Guatemala, satellite image, digital tools, precision agriculture
Procedia PDF Downloads 1944678 Validation of the Formula for Air Attenuation Coefficient for Acoustic Scale Models
Authors: Katarzyna Baruch, Agata Szelag, Aleksandra Majchrzak, Tadeusz Kamisinski
Abstract:
Methodology of measurement of sound absorption coefficient in scaled models is based on the ISO 354 standard. The measurement is realised indirectly - the coefficient is calculated from the reverberation time of an empty chamber as well as a chamber with an inserted sample. It is crucial to maintain the atmospheric conditions stable during both measurements. Possible differences may be amended basing on the formulas for atmospheric attenuation coefficient α given in ISO 9613-1. Model studies require scaling particular factors in compliance with specified characteristic numbers. For absorption coefficient measurement, these are for example: frequency range or the value of attenuation coefficient m. Thanks to the possibilities of modern electroacoustic transducers, it is no longer a problem to scale the frequencies which have to be proportionally higher. However, it may be problematic to reduce values of the attenuation coefficient. It is practically obtained by drying the air down to a defined relative humidity. Despite the change of frequency range and relative humidity of the air, ISO 9613-1 standard still allows the calculation of the amendment for little differences of the atmospheric conditions in the chamber during measurements. The paper discusses a number of theoretical analyses and experimental measurements performed in order to obtain consistency between the values of attenuation coefficient calculated from the formulas given in the standard and by measurement. The authors performed measurements of reverberation time in a chamber made in a 1/8 scale in a corresponding frequency range, i.e. 800 Hz - 40 kHz and in different values of the relative air humidity (40% 5%). Based on the measurements, empirical values of attenuation coefficient were calculated and compared with theoretical ones. In general, the values correspond with each other, but for high frequencies and low values of relative air humidity the differences are significant. Those discrepancies may directly influence the values of measured sound absorption coefficient and cause errors. Therefore, the authors made an effort to determine an amendment minimizing described inaccuracy.Keywords: air absorption correction, attenuation coefficient, dimensional analysis, model study, scaled modelling
Procedia PDF Downloads 4214677 Numerical Study of a Ventilation Principle Based on Flow Pulsations
Authors: Amir Sattari, Mac Panah, Naeim Rashidfarokhi
Abstract:
To enhance the mixing of fluid in a rectangular enclosure with a circular inlet and outlet, an energy-efficient approach is further investigated through computational fluid dynamics (CFD). Particle image velocimetry (PIV) measurements help confirm that the pulsation of the inflow velocity improves the mixing performance inside the enclosure considerably without increasing energy consumption. In this study, multiple CFD simulations with different turbulent models were performed. The results obtained were compared with experimental PIV results. This study investigates small-scale representations of flow patterns in a ventilated rectangular room. The objective is to validate the concept of an energy-efficient ventilation strategy with improved thermal comfort and reduction of stagnant air inside the room. Experimental and simulated results confirm that through pulsation of the inflow velocity, strong secondary vortices are generated downstream of the entrance wall-jet. The pulsatile inflow profile promotes a periodic generation of vortices with stronger eddies despite a relatively low inlet velocity, which leads to a larger boundary layer with increased kinetic energy in the occupied zone. A real-scale study was not conducted; however, it can be concluded that a constant velocity inflow profile can be replaced with a lower pulsated flow rate profile while preserving the mixing efficiency. Among the turbulent CFD models demonstrated in this study, SST-kω is most advantageous, exhibiting a similar global airflow pattern as in the experiments. The detailed near-wall velocity profile is utilized to identify the wall-jet instabilities that consist of mixing and boundary layers. The SAS method was later applied to predict the turbulent parameters in the center of the domain. In both cases, the predictions are in good agreement with the measured results.Keywords: CFD, PIV, pulsatile inflow, ventilation, wall-jet
Procedia PDF Downloads 1744676 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment
Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman
Abstract:
Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands
Procedia PDF Downloads 674675 A Qualitative Description of the Dynamics in the Interactions between Three Populations: Pollinators, Plants, and Herbivores
Authors: Miriam Sosa-Díaz, Faustino Sánchez-Garduño
Abstract:
In population dynamics the study of both, the abundance and the spatial distribution of the populations in a given habitat, is a fundamental issue a From ecological point of view, the determination of the factors influencing such changes involves important problems. In this paper a mathematical model to describe the temporal dynamic and the spatiotemporal dynamic of the interaction of three populations (pollinators, plants and herbivores) is presented. The study we present is carried out by stages: 1. The temporal dynamics and 2. The spatio-temporal dynamics. In turn, each of these stages is developed by considering three cases which correspond to the dynamics of each type of interaction. For instance, for stage 1, we consider three ODE nonlinear systems describing the pollinator-plant, plant-herbivore and plant-pollinator-herbivore, interactions, respectively. In each of these systems different types of dynamical behaviors are reported. Namely, transcritical and pitchfork bifurcations, existence of a limit cycle, existence of a heteroclinic orbit, etc. For the spatiotemporal dynamics of the two mathematical models a novel factor are introduced. This consists in considering that both, the pollinators and the herbivores, move towards those places of the habitat where the plant population density is high. In mathematical terms, this means that the diffusive part of the pollinators and herbivores equations depend on the plant population density. The analysis of this part is presented by considering pairs of populations, i. e., the pollinator-plant and plant-herbivore interactions and at the end the two mathematical model is presented, these models consist of two coupled nonlinear partial differential equations of reaction-diffusion type. These are defined on a rectangular domain with the homogeneous Neumann boundary conditions. We focused in the role played by the density dependent diffusion term into the coexistence of the populations. For both, the temporal and spatio-temporal dynamics, a several of numerical simulations are included.Keywords: bifurcation, heteroclinic orbits, steady state, traveling wave
Procedia PDF Downloads 3004674 Improvement of the Traditional Techniques of Artistic Casting through the Development of Open Source 3D Printing Technologies Based on Digital Ultraviolet Light Processing
Authors: Drago Diaz Aleman, Jose Luis Saorin Perez, Cecile Meier, Itahisa Perez Conesa, Jorge De La Torre Cantero
Abstract:
Traditional manufacturing techniques used in artistic contexts compete with highly productive and efficient industrial procedures. The craft techniques and associated business models tend to disappear under the pressure of the appearance of mass-produced products that compete in all niche markets, including those traditionally reserved for the work of art. The surplus value derived from the prestige of the author, the exclusivity of the product or the mastery of the artist, do not seem to be sufficient reasons to preserve this productive model. In the last years, the adoption of open source digital manufacturing technologies in small art workshops can favor their permanence by assuming great advantages such as easy accessibility, low cost, and free modification, adapting to specific needs of each workshop. It is possible to use pieces modeled by computer and made with FDM (Fused Deposition Modeling) 3D printers that use PLA (polylactic acid) in the procedures of artistic casting. Models printed by PLA are limited to approximate minimum sizes of 3 cm, and optimal layer height resolution is 0.1 mm. Due to these limitations, it is not the most suitable technology for artistic casting processes of smaller pieces. An alternative to solve size limitation, are printers from the type (SLS) "selective sintering by laser". And other possibility is a laser hardens, by layers, metal powder and called DMLS (Direct Metal Laser Sintering). However, due to its high cost, it is a technology that is difficult to introduce in small artistic foundries. The low-cost DLP (Digital Light Processing) type printers can offer high resolutions for a reasonable cost (around 0.02 mm on the Z axis and 0.04 mm on the X and Y axes), and can print models with castable resins that allow the subsequent direct artistic casting in precious metals or their adaptation to processes such as electroforming. In this work, the design of a DLP 3D printer is detailed, using backlit LCD screens with ultraviolet light. Its development is totally "open source" and is proposed as a kit made up of electronic components, based on Arduino and easy to access mechanical components in the market. The CAD files of its components can be manufactured in low-cost FDM 3D printers. The result is less than 500 Euros, high resolution and open-design with free access that allows not only its manufacture but also its improvement. In future works, we intend to carry out different comparative analyzes, which allow us to accurately estimate the print quality, as well as the real cost of the artistic works made with it.Keywords: traditional artistic techniques, DLP 3D printer, artistic casting, electroforming
Procedia PDF Downloads 1424673 Hyperelastic Constitutive Modelling of the Male Pelvic System to Understand the Prostate Motion, Deformation and Neoplasms Location with the Influence of MRI-TRUS Fusion Biopsy
Authors: Muhammad Qasim, Dolors Puigjaner, Josep Maria López, Joan Herrero, Carme Olivé, Gerard Fortuny
Abstract:
Computational modeling of the human pelvis using the finite element (FE) method has become extremely important to understand the mechanics of prostate motion and deformation when transrectal ultrasound (TRUS) guided biopsy is performed. The number of reliable and validated hyperelastic constitutive FE models of the male pelvis region is limited, and given models did not precisely describe the anatomical behavior of pelvis organs, mainly of the prostate and its neoplasms location. The motion and deformation of the prostate during TRUS-guided biopsy makes it difficult to know the location of potential lesions in advance. When using this procedure, practitioners can only provide roughly estimations for the lesions locations. Consequently, multiple biopsy samples are required to target one single lesion. In this study, the whole pelvis model (comprised of the rectum, bladder, pelvic muscles, prostate transitional zone (TZ), and peripheral zone (PZ)) is used for the simulation results. An isotropic hyperelastic approach (Signorini model) was used for all the soft tissues except the vesical muscles. The vesical muscles are assumed to have a linear elastic behavior due to the lack of experimental data to determine the constants involved in hyperelastic models. The tissues and organ geometry is taken from the existing literature for 3D meshes. Then the biomechanical parameters were obtained under different testing techniques described in the literature. The acquired parametric values for uniaxial stress/strain data are used in the Signorini model to see the anatomical behavior of the pelvis model. The five mesh nodes in terms of small prostate lesions are selected prior to biopsy and each lesion’s final position is targeted when TRUS probe force of 30 N is applied at the inside rectum wall. Code_Aster open-source software is used for numerical simulations. Moreover, the overall effects of pelvis organ deformation were demonstrated when TRUS–guided biopsy is induced. The deformation of the prostate and neoplasms displacement showed that the appropriate material properties to organs altered the resulting lesion's migration parametrically. As a result, the distance traveled by these lesions ranged between 3.77 and 9.42 mm. The lesion displacement and organ deformation are compared and analyzed with our previous study in which we used linear elastic properties for all pelvic organs. Furthermore, the visual comparison of axial and sagittal slices are also compared, which is taken for Magnetic Resource Imaging (MRI) and TRUS images with our preliminary study.Keywords: code-aster, magnetic resonance imaging, neoplasms, transrectal ultrasound, TRUS-guided biopsy
Procedia PDF Downloads 874672 A New Nonlinear State-Space Model and Its Application
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this work, a new nonlinear model will be introduced. The model is in the state-space form. The nonlinearity of this model is in the state equation where the state vector is multiplied by its self. This technique makes our model generalizes many famous models as Lotka-Volterra model and Lorenz model which have many applications in the real life. We will apply our new model to estimate the wind speed by using a new nonlinear estimator which suitable to work with our model.Keywords: nonlinear systems, state-space model, Kronecker product, nonlinear estimator
Procedia PDF Downloads 6914671 Anticipating the Change: Visions and Perspectives towards a Post-Car World
Authors: Farzaneh Bahrami
Abstract:
Different indicators, such as modal shares in mobility practices or car ownership, may suggest that the century of car dominance - at least in Europe and North America - is already behind us. If the emergence of the car had radical spatial and social consequences, what would be the implications of its gradual disappearance - which could be expected in the context of ecological consciousness, economic and energetic constraints as a result of both urban policies as well as lifestyle choices? To what extend shall urban experts account for this limited but visible transition from car-dominated systems towards alternative models of mobility in which the individual-motorized mobility (car) is not central; what models of urbanity could be imagined to support such a transformation? We have examined a selection of projects at different scales and within different contexts - new planned cities, dense urban areas or territories of dispersion – whose visions involve a significant shift from the current car system. We have been looking into their tools, strategies and different measures of car reduction, as well as their varied approaches to public space as an inevitable corollary to this change. The car’s dominance was formerly questioned by advocates of public space, rather than through interests in ecological urban design or other urban planning concerns. In the 60s already a universal longing for the qualities of traditional urban space led to a critique of the proliferation of fast roads, and thus the car’s colonization of everyday life. Reclamation of public space as the city’s quintessential social territory reappears today in contemporary discourses and reinforces the shift-provoking trends towards a new urbanity freed from car dominance. In a hypothetical process of the progressive phasing-out of the car, we shall expect fundamental transformations in spatial practices of the city, accompanied by the physical configuration of its public spaces. What will be the main characteristics of the new emerging spaces of sociability and where shall we encounter them? This contribution is an ongoing research within the framework of Post-Car World, an interdisciplinary project that explores the future of mobility through the role of the car.Keywords: mobility, urbanity, future visions, public space
Procedia PDF Downloads 3704670 Assimilating Multi-Mission Satellites Data into a Hydrological Model
Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn
Abstract:
Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF
Procedia PDF Downloads 2894669 The Effect of Metformin in Combination with Dexamethasone on the CXCR4 Level in Multiple Myeloma Cell Line
Authors: Seyede Sanaz Seyedebrahimi, Shima Rahimi, Shohreh Fakhari, Ali Jalili
Abstract:
Background: CXCR4, as a chemokine receptor, plays well-known roles in various types of cancers. Several studies have been conducted to overcome CXCR4 axis acts in multiple myeloma (MM) pathogenesis and progression. Dexamethasone, a standard treatment for multiple myeloma, has been shown to increase CXCR4 levels in multiple myeloma cell lines. Herein, we focused on the effects of metformin and dexamethasone on CXCR4 at the cellular level and the migration rate of cell lines after exposure to a combination compared to single-agent models. Materials and Method: Multiple myeloma cell lines (U266 and RPMI8226) were cultured with different metformin and dexamethasone concentrations in single-agent and combination models. The simultaneous combination doses were calculated by CompuSyn software. Cell surface and mRNA expression of CXCR4 were determined using flow cytometry and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay, respectively. The Transwell cell migration assay evaluated the migration ability. Results: In concurred with previous studies, our results showed a dexamethasone up-regulation effect on CXCR4 in a dose-dependent manner. Although, the metformin single-agent model could reduce CXCR4 expression of U266 and RPMI8226 in cell surface and mRNA expression level. Moreover, the administration of metformin and dexamethasone simultaneously exerted a higher suppression effect on CXCR4 expression than the metformin single-agent model. The migration rate through the combination model's matrigel membrane was remarkably lower than the metformin and dexamethasone single-agent model. Discussion: According to our findings, the combination of metformin and dexamethasone effectively inhibited dexamethasone-induced CXCR4 expression in multiple myeloma cell lines. As a result, metformin may be counted as an alternative medicine combined with other chemotherapies to combat multiple myeloma. However, more research is required.Keywords: CXCR4, dexamethasone, metformin, migration, multiple myeloma
Procedia PDF Downloads 1564668 Determination of the Axial-Vector from an Extended Linear Sigma Model
Authors: Tarek Sayed Taha Ali
Abstract:
The dependence of the axial-vector coupling constant gA on the quark masses has been investigated in the frame work of the extended linear sigma model. The field equations have been solved in the mean-field approximation. Our study shows a better fitting to the experimental data compared with the existing models.Keywords: extended linear sigma model, nucleon properties, axial coupling constant, physic
Procedia PDF Downloads 4464667 Experimental Study Damage in a Composite Structure by Vibration Analysis- Glass / Polyester
Authors: R. Abdeldjebar, B. Labbaci, L. Missoum, B. Moudden, M. Djermane
Abstract:
The basic components of a composite material made him very sensitive to damage, which requires techniques for detecting damage reliable and efficient. This work focuses on the detection of damage by vibration analysis, whose main objective is to exploit the dynamic response of a structure to detect understand the damage. The experimental results are compared with those predicted by numerical models to confirm the effectiveness of the approach.Keywords: experimental, composite, vibration analysis, damage
Procedia PDF Downloads 6744666 Pomegranate Attenuated Levodopa-Induced Dyskinesia and Dopaminergic Degeneration in MPTP Mice Models of Parkinson’s Disease
Authors: Mahsa Hadipour Jahromy, Sara Rezaii
Abstract:
Parkinson’s disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Soon after the discovery of levodopa and its beneficial effects in chronic administration, debilitating involuntary movements observed, termed levodopa-induced dyskinesia (LID) with poorly understood pathogenesis. Polyphenol-rich compounds, like pomegranate, provided neuroprotection in several animal models of brain diseases. In the present work, we investigated whether pomegranate has preventive effects following 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic degenerations and the potential to diminish LID in mice. Mice model of PD was induced by MPTP (30 mg/kg daily for five consecutive days). To induce a mice model of LID, valid PD mice were treated with levodopa (50 mg/kg, i.p) for 15 days. Then the effects of chronic co-administration of pomegranate juice (20 ml/kg) with levodopa and continuing for 10 days, evaluated. Behavioural tests were performed in all groups, every other day including: Abnormal involuntary movements (AIMS), forelimb adjusting steps, cylinder, and catatonia tests. Finally, brain tissue sections were prepared to study substantia nigra changes and dopamine neuron density after treatments. With this MPTP regimen, significant movement disorders revealed in AIMS tests and there was a reduction in dopamine striatal density. Levodopa attenuates their loss caused by MPTP, however, in chronic administration, dyskinesia observed in forelimb adjusting step and cylinder tests. Besides, catatonia observed in some cases. Chronic pomegranate co-administration significantly improved LID in both tests and reduced dopaminergic loss in substantia nigra. These data indicate that pomegranate might be a good adjunct for preserving dopaminergic neurons in the substantia nigra and reducing LID in mice.Keywords: levodopa-induced dyskinesia, MPTP, Parkinson’s disease, pomegranate
Procedia PDF Downloads 4924665 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves
Authors: Dmytro Zubov, Francesco Volponi
Abstract:
In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.Keywords: heat wave, D-wave, forecast, Ising model, quantum computing
Procedia PDF Downloads 5004664 Buy-and-Hold versus Alternative Strategies: A Comparison of Market-Timing Techniques
Authors: Jonathan J. Burson
Abstract:
With the rise of virtually costless, mobile-based trading platforms, stock market trading activity has increased significantly over the past decade, particularly for the millennial generation. This increased stock market attention, combined with the recent market turmoil due to the economic upset caused by COVID-19, make the topics of market-timing and forecasting particularly relevant. While the overall stock market saw an unprecedented, historically-long bull market from March 2009 to February 2020, the end of that bull market reignited a search by investors for a way to reduce risk and increase return. Similar searches for outperformance occurred in the early, and late 2000’s as the Dotcom bubble burst and the Great Recession led to years of negative returns for mean-variance, index investors. Extensive research has been conducted on fundamental analysis, technical analysis, macroeconomic indicators, microeconomic indicators, and other techniques—all using different methodologies and investment periods—in pursuit of higher returns with lower risk. The enormous variety of timeframes, data, and methodologies used by the diverse forecasting methods makes it difficult to compare the outcome of each method directly to other methods. This paper establishes a process to evaluate the market-timing methods in an apples-to-apples manner based on simplicity, performance, and feasibility. Preliminary findings show that certain technical analysis models provide a higher return with lower risk when compared to the buy-and-hold method and to other market-timing strategies. Furthermore, technical analysis models tend to be easier for individual investors both in terms of acquiring the data and in analyzing it, making technical analysis-based market-timing methods the preferred choice for retail investors.Keywords: buy-and-hold, forecast, market-timing, probit, technical analysis
Procedia PDF Downloads 974663 A Study on the Construction Process and Sustainable Renewal Development of High-Rise Residential Areas in Chongqing (1978-2023)
Authors: Xiaoting Jing, Ling Huang
Abstract:
After the reform and opening up, Chongqing has formed far more high-rise residential areas than other cities in its more than 40 years of urban construction. High-rise residential areas have become one of the main modern living models in Chongqing and an important carrier reflecting the city's high quality of life. Reviewing the construction process and renewal work helps understand the characteristics of high-rise residential areas in Chongqing at different stages, clarify current development demands, and look forward to the focus of future renewal work. Based on socio-economic development and policy background, the article sorts the construction process of high-rise residential areas in Chongqing into four stages: the early experimental construction period of high-rise residential areas (1978-1996), the rapid start-up period of high-rise commodity housing construction (1997-2006), the large-scale construction period of high-rise commodity housing and public rental housing (2007-2014), and the period of renewal and renovation of high-rise residential areas and step-by-step construction of quality commodity housing (2015-present). Based on the construction demands and main construction types of each stage, the article summarizes that the construction of high-rise residential areas in Chongqing features large scale, high speed, and high density. It points out that a large number of high-rise residential areas built after 2000 will become important objects of renewal and renovation in the future. Based on existing renewal work experience, it is urgent to explore a path for sustainable renewal and development in terms of policy mechanisms, digital supervision, and renewal and renovation models, leading the high-rise living in Chongqing toward high-quality development.Keywords: high-rise residential areas, construction process, renewal and renovation, Chongqing
Procedia PDF Downloads 684662 GIS Based Spatial Modeling for Selecting New Hospital Sites Using APH, Entropy-MAUT and CRITIC-MAUT: A Study in Rural West Bengal, India
Authors: Alokananda Ghosh, Shraban Sarkar
Abstract:
The study aims to identify suitable sites for new hospitals with critical obstetric care facilities in Birbhum, one of the vulnerable and underserved districts of Eastern India, considering six main and 14 sub-criteria, using GIS-based Analytic Hierarchy Process (AHP) and Multi-Attribute Utility Theory (MAUT) approach. The criteria were identified through field surveys and previous literature. After collecting expert decisions, a pairwise comparison matrix was prepared using the Saaty scale to calculate the weights through AHP. On the contrary, objective weighting methods, i.e., Entropy and Criteria Importance through Interaction Correlation (CRITIC), were used to perform the MAUT. Finally, suitability maps were prepared by weighted sum analysis. Sensitivity analyses of AHP were performed to explore the effect of dominant criteria. Results from AHP reveal that ‘maternal death in transit’ followed by ‘accessibility and connectivity’, ‘maternal health care service (MHCS) coverage gap’ were three important criteria with comparatively higher weighted values. Whereas ‘accessibility and connectivity’ and ‘maternal death in transit’ were observed to have more imprint in entropy and CRITIC, respectively. While comparing the predictive suitable classes of these three models with the layer of existing hospitals, except Entropy-MAUT, the other two are pointing towards the left-over underserved areas of existing facilities. Only 43%-67% of existing hospitals were in the moderate to lower suitable class. Therefore, the results of the predictive models might bring valuable input in future planning.Keywords: hospital site suitability, analytic hierarchy process, multi-attribute utility theory, entropy, criteria importance through interaction correlation, multi-criteria decision analysis
Procedia PDF Downloads 684661 A New Model for Production Forecasting in ERP
Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang
Abstract:
ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.Keywords: ERP, grey system, LSSVM, production forecasting
Procedia PDF Downloads 4634660 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors
Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff
Abstract:
Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns
Procedia PDF Downloads 156