Search results for: rectilinear propagation of light
4318 Enhancement of Light Out Efficiency of PLED Device Employing Designed Substrate Combined with Nano-Line Patterns
Authors: Ting-Ting Wen, H. C. Lin
Abstract:
This paper reports a study for the light outcoupling efficiency of the PLED device. In use of a designed substrate combined with nano-line patterns in PLED device, the light outcoupling efficiency can be significantly enhanced. The designed substrate was made by UV imprinting technology, such as triangular microlens arrays on the front and periodic corrugated patterns on the back surface. The nano-line patterns in PLED device was fabricated by advanced microstamping and ink-jet printing techniques. For high angles of observation with respect to the substrate surface normal, the light out intensity of the developed PLED device is increased from 0.05 (a.u.) up to 0.69 (a.u.) at the view angle 85 degree. The designed integration leads to 64% increase of the light out intensity compared with the conventional PLED device.Keywords: triangular microlens, corrugation patterns, nano-line patterns, PLED device, UV imprinting technology, microstamping
Procedia PDF Downloads 4784317 Accurate Cortical Reconstruction in Narrow Sulci with Zero-Non-Zero Distance (ZNZD) Vector Field
Authors: Somojit Saha, Rohit K. Chatterjee, Sarit K. Das, Avijit Kar
Abstract:
A new force field is designed for propagation of the parametric contour into deep narrow cortical fold in the application of knowledge based reconstruction of cerebral cortex from MR image of brain. Designing of this force field is highly inspired by the Generalized Gradient Vector Flow (GGVF) model and markedly differs in manipulation of image information in order to determine the direction of propagation of the contour. While GGVF uses edge map as its main driving force, the newly designed force field uses the map of distance between zero valued pixels and their nearest non-zero valued pixel as its main driving force. Hence, it is called Zero-Non-Zero Distance (ZNZD) force field. The objective of this force field is forceful propagation of the contour beyond spurious convergence due to partial volume effect (PVE) in to narrow sulcal fold. Being function of the corresponding non-zero pixel value, the force field has got an inherent property to determine spuriousness of the edge automatically. It is effectively applied along with some morphological processing in the application of cortical reconstruction to breach the hindrance of PVE in narrow sulci where conventional GGVF fails.Keywords: deformable model, external force field, partial volume effect, cortical reconstruction, MR image of brain
Procedia PDF Downloads 3984316 Visualization of Wave Propagation in Monocoupled System with Effective Negative Stiffness, Effective Negative Mass, and Inertial Amplifier
Authors: Abhigna Bhatt, Arnab Banerjee
Abstract:
A periodic system with only a single coupling degree of freedom is called a monocoupled system. Monocoupled systems with mechanisms like mass in the mass system generates effective negative mass, mass connected with rigid links generates inertial amplification, and spring-mass connected with a rigid link generateseffective negative stiffness. In this paper, the representative unit cell is introduced, considering all three mechanisms combined. Further, the dynamic stiffness matrix of the unit cell is constructed, and the dispersion relation is obtained by applying the Bloch theorem. The frequency response function is also calculated for the finite length of periodic unit cells. Moreover, the input displacement signal is given to the finite length of periodic structure and using inverse Fourier transform to visualize the wave propagation in the time domain. This visualization explains the sudden attenuation in metamaterial due to energy dissipation by an embedded resonator at the resonance frequency. The visualization created for wave propagation is found necessary to understand the insights of physics behind the attenuation characteristics of the system.Keywords: mono coupled system, negative effective mass, negative effective stiffness, inertial amplifier, fourier transform
Procedia PDF Downloads 1274315 Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs
Authors: Abdul Jamil Nazari, Shigeo Honma
Abstract:
This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront.Keywords: fractional flow, relative permeability, oil recovery, water fingering
Procedia PDF Downloads 3034314 Mechanical Characteristics on Fatigue Crack Propagation in Aluminum Plate
Authors: A. Chellil, A. Nour, S. Lecheb , H. Mechakra, L. Addar, H. Kebir
Abstract:
This paper present a mechanical characteristics on fatigue crack propagation in Aluminium Plate based on strain and stress distribution using the abaqus software. The changes in shear strain and stress distribution during the fatigue cycle with crack growth is identified. In progressive crack in the strain distribution and the stress is increase in the critical zone. Numerical Modal analysis of the model developed, prove that the Eigen frequencies of aluminium plate were decreased after cracking, and this reduce is nonlinear. These results can provide a reference for analysts and designers of aluminium alloys in aeronautical systems. Therefore, the modal analysis is an important factor for monitoring the aeronautic structures.Keywords: aluminum alloys, plate, crack, failure
Procedia PDF Downloads 4284313 Stimulation of Stevioside Accumulation on Stevia rebaudiana (Bertoni) Shoot Culture Induced with Red LED Light in TIS RITA® Bioreactor System
Authors: Vincent Alexander, Rizkita Esyanti
Abstract:
Leaves of Stevia rebaudiana contain steviol glycoside which mainly comprise of stevioside, a natural sweetener compound that is 100-300 times sweeter than sucrose. Current cultivation method of Stevia rebaudiana in Indonesia has yet to reach its optimum efficiency and productivity to produce stevioside as a safe sugar substitute sweetener for people with diabetes. An alternative method that is not limited by environmental factor is in vitro temporary immersion system (TIS) culture method using recipient for automated immersion (RITA®) bioreactor. The aim of this research was to evaluate the effect of red LED light induction towards shoot growth and stevioside accumulation in TIS RITA® bioreactor system, as an endeavour to increase the secondary metabolite synthesis. The result showed that the stevioside accumulation in TIS RITA® bioreactor system induced with red LED light for one hour during night was higher than that in TIS RITA® bioreactor system without red LED light induction, i.e. 71.04 ± 5.36 μg/g and 42.92 ± 5.40 μg/g respectively. Biomass growth rate reached as high as 0.072 ± 0.015/day for red LED light induced TIS RITA® bioreactor system, whereas TIS RITA® bioreactor system without induction was only 0.046 ± 0.003/day. Productivity of Stevia rebaudiana shoots induced with red LED light was 0.065 g/L medium/day, whilst shoots without any induction was 0.041 g/L medium/day. Sucrose, salt, and inorganic consumption in both bioreactor media increased as biomass increased. It can be concluded that Stevia rebaudiana shoot in TIS RITA® bioreactor induced with red LED light produces biomass and accumulates higher stevioside concentration, in comparison to bioreactor without any light induction.Keywords: LED, Stevia rebaudiana, Stevioside, TIS RITA
Procedia PDF Downloads 3724312 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model
Authors: A. Clementking, C. Jothi Venkateswaran
Abstract:
Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining
Procedia PDF Downloads 4774311 A Unified Ghost Solid Method for the Elastic Solid-Solid Interface
Authors: Abouzar Kaboudian, Boo Cheong Khoo
Abstract:
The Ghost Solid Method (GSM) based algorithms have been extensively used for numerical calculation of wave propagation in the limit of abrupt changes in materials. In this work, we present a unified version of the GSMs that can be successfully applied to both abrupt as well as smooth changes of the material properties in a medium. The application of this method enables us to use the previously-matured numerical algorithms which were developed to be applied to homogeneous mediums, with only minor modifications. This method is developed for one-dimensional settings and its extension to multi-dimensions is briefly discussed. Various numerical experiments are presented to show the applicability of this unified GSM to wave propagation problems in sharply as well as smoothly varying mediums.Keywords: elastic solid, functionally graded material, ghost solid method, solid-solid interaction
Procedia PDF Downloads 4144310 The Application of Artificial Neural Network for Bridge Structures Design Optimization
Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri
Abstract:
This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.Keywords: bridge structures, ANN, optimization, back propagation
Procedia PDF Downloads 3744309 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution
Authors: A. Amar
Abstract:
A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy.Keywords: nuclear physics, nuclear lattice, study nucleus as crystal, light nuclei till to ⁸Be
Procedia PDF Downloads 1774308 An Improved Visible Range Absorption Spectroscopy on Soil Macronutrient
Authors: Suhaila Isaak, Yusmeeraz Yusof, Khairunnisa Mohd Yusof, Ahmad Safuan Abdul Rashid
Abstract:
Soil fertility is commonly evaluated by soil macronutrients such as nitrate, potassium, and phosphorus contents. Optical spectroscopy is an emerging technology which is rapid and simple has been widely used in agriculture to measure soil fertility. For visible and near infrared absorption spectroscopy, the absorbed light level in is useful for soil macro-nutrient measurement. This is because the absorption of light in a soil sample influences sensitivity of the measurement. This paper reports the performance of visible and near infrared absorption spectroscopy in the 400–1400 nm wavelength range using light-emitting diode as the excitation light source to predict the soil macronutrient content of nitrate, potassium, and phosphorus. The experimental results show an improved linear regression analysis of various soil specimens based on the Beer–Lambert law to determine sensitivity of soil spectroscopy by evaluating the absorption of characteristic peaks emitted from a light-emitting diode and detected by high sensitivity optical spectrometer. This would denote in developing a simple and low-cost soil spectroscopy with light-emitting diode for future implementation.Keywords: macronutrients absorption, optical spectroscopy, soil, absorption
Procedia PDF Downloads 2934307 Visualization of Latent Sweat Fingerprints Deposit on Paper by Infrared Radiation and Blue Light
Authors: Xiaochun Huang, Xuejun Zhao, Yun Zou, Feiyu Yang, Wenbin Liu, Nan Deng, Ming Zhang, Nengbin Cai
Abstract:
A simple device termed infrared radiation (IR) was developed for rapid visualization of sweat fingerprints deposit on paper with blue light (450 nm, 11 W). In this approach, IR serves as the pretreatment device before the sweat fingerprints was illuminated by blue light. An annular blue light source was adopted for visualizing latent sweat fingerprints. Sample fingerprints were examined under various conditions after deposition, and experimental results indicate that the recovery rate of the latent sweat fingerprints is in the range of 50%-100% without chemical treatments. A mechanism for the observed visibility is proposed based on transportation and re-impregnation of fluorescer in paper at the region of water. And further exploratory experimental results gave the full support to the visible mechanism. Therefore, such a method as IR-pretreated in detecting latent fingerprints may be better for examination in the case where biological information of samples is needed for consequent testing.Keywords: forensic science, visualization, infrared radiation, blue light, latent sweat fingerprints, detection
Procedia PDF Downloads 4974306 Evaluation and Analysis of Light Emitting Diode Distribution in an Indoor Visible Light Communication
Authors: Olawale J. Olaluyi, Ayodele S. Oluwole, O. Akinsanmi, Johnson O. Adeogo
Abstract:
Communication using visible light VLC is considered a cutting-edge technology used for data transmission and illumination since it uses less energy than radio frequency (RF) technology and has a large bandwidth, extended lifespan, and high security. The room's irregular distribution of small base stations, or LED array distribution, is the cause of the obscured area, minimum signal-to-noise ratio (SNR), and received power. In order to maximize the received power distribution and SNR at the center of the room for an indoor VLC system, the researchers offer an innovative model for the placement of eight LED array distributions in this work. We have investigated the arrangement of the LED array distribution with regard to receiving power to fill the open space in the center of the room. The suggested LED array distribution saved 36.2% of the transmitted power, according to the simulation findings. Aside from that, the entire room was equally covered. This leads to an increase in both received power and SNR.Keywords: visible light communication (VLC), light emitted diodes (LED), optical power distribution, signal-to-noise ratio (SNR).
Procedia PDF Downloads 914305 Multi-Scale Control Model for Network Group Behavior
Authors: Fuyuan Ma, Ying Wang, Xin Wang
Abstract:
Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior
Procedia PDF Downloads 234304 Effects of Incident Angle and Distance on Visible Light Communication
Authors: Taegyoo Woo, Jong Kang Park, Jong Tae Kim
Abstract:
Visible Light Communication (VLC) provides wireless communication features in illumination systems. One of the key applications is to recognize the user location by indoor illuminators such as light emitting diodes. For localization of individual receivers in these systems, we usually assume that receivers and transmitters are placed in parallel. However, it is difficult to satisfy this assumption because the receivers move randomly in real case. It is necessary to analyze the case when transmitter is not placed perfectly parallel to receiver. It is also important to identify changes on optical gain by the tilted angles and distances of them against the illuminators. In this paper, we simulate optical gain for various cases where the tilt of the receiver and the distance change. Then, we identified changing patterns of optical gains according to tilted angles of a receiver and distance. These results can help many VLC applications understand the extent of the location errors with regard to optical gains of the receivers and identify the root cause.Keywords: visible light communication, incident angle, optical gain, light emitting diode
Procedia PDF Downloads 3364303 Design and Simulation of 3-Transistor Active Pixel Sensor Using MATLAB Simulink
Authors: H. Alheeh, M. Alameri, A. Al Tarabsheh
Abstract:
There has been a growing interest in CMOS-based sensors technology in cameras as they afford low-power, small-size, and cost-effective imaging systems. This article describes the CMOS image sensor pixel categories and presents the design and the simulation of the 3-Transistor (3T) Active Pixel Sensor (APS) in MATLAB/Simulink tool. The analysis investigates the conversion of the light into an electrical signal for a single pixel sensing circuit, which consists of a photodiode and three NMOS transistors. The paper also proposes three modes for the pixel operation; reset, integration, and readout modes. The simulations of the electrical signals for each of the studied modes of operation show how the output electrical signals are correlated to the input light intensities. The charging/discharging speed for the photodiodes is also investigated. The output voltage for different light intensities, including in dark case, is calculated and showed its inverse proportionality with the light intensity.Keywords: APS, CMOS image sensor, light intensities photodiode, simulation
Procedia PDF Downloads 1784302 Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast
Authors: Saskya E. Carrera P., Ben Hankamer, Melanie Oey
Abstract:
The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures.Keywords: chlamydomonas reinhardtii, light, mixotrophic, recombinant protein
Procedia PDF Downloads 2554301 In Vitro Propagation of Vanilla Planifolia Using Nodal Explants and Varied Concentrations of Naphthaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP).
Authors: Jessica Arthur, Duke Amegah, Kingsley Akenten Wiafe
Abstract:
Background: Vanilla planifolia is the only edible fruit of the orchid family (Orchidaceae) among the over 35,000 Orchidaceae species found worldwide. In Ghana, Vanilla was discovered in the wild, but it is underutilized for commercial production, most likely due to a lack of knowledge on the best NAA and BAP combinations for in vitro propagation to promote successfully regenerated plant acclimatization. The growing interest and global demand for elite Vanilla planifolia plants and natural vanilla flavour emphasize the need for an effective industrial-scale micropropagation protocol. Tissue culture systems are increasingly used to grow disease-free plants and reliable in vitro methods can also produce plantlets with typically modest proliferation rates. This study sought to develop an efficient protocol for in vitro propagation of vanilla using nodal explants by testing different concentrations of NAA and BAP, for the proliferation of the entire plant. Methods: Nodal explants with dormant axillary buds were obtained from year-old laboratory-grown Vanilla planifolia plants. MS media was prepared with a nutrient stock solution (containing macronutrients, micronutrients, iron solution and vitamins) and semi-solidified using phytagel. It was supplemented with different concentrations of NAA and BAP to induce multiple shoots and roots (0.5mg/L BAP with NAA at 0, 0.5, 1, 1.5, 2.0mg/L and vice-versa). The explants were sterilized, cultured in labelled test tubes and incubated at 26°C ± 2°C with 16/8 hours light/dark cycle. Data on shoot and root growth, leaf number, node number, and survival percentage were collected over three consecutive two-week periods. The data were square root transformed and subjected to ANOVA and LSD at a 5% significance level using the R statistical package. Results: Shoots emerged at 8 days and roots at 12 days after inoculation with 94% survival rate. It was discovered that for the NAA treatments, MS media supplemented with 2.00 mg/l NAA resulted in the highest shoot length (10.45cm), maximum root number (1.51), maximum shoot number (1.47) and the highest number of leaves (1.29). MS medium containing 1.00 mg/l NAA produced the highest number of nodes (1.62) and root length (14.27cm). Also, a similar growth pattern for the BAP treatments was observed. MS medium supplemented with 1.50 mg/l BAP resulted in the highest shoot length (14.98 cm), the highest number of nodes (4.60), the highest number of leaves (1.75) and the maximum shoot number (1.57). MS medium containing 0.50 mg/l BAP and 1.0 mg/l BAP generated a maximum root number (1.44) and the highest root length (13.25cm), respectively. However, the best concentration combination for maximizing shoot and root was media containing 1.5mg/l BAP combined with 0.5mg/l NAA, and 1.0mg/l NAA combined with 0.5mg/l of BAP respectively. These concentrations were optimum for in vitro growth and production of Vanilla planifolia. Significance: This study presents a standardized protocol for labs to produce clean vanilla plantlets, enhancing cultivation in Ghana and beyond. It provides insights into Vanilla planifolia's growth patterns and hormone responses, aiding future research and cultivation.Keywords: Vanilla planifolia, In vitro propagation, plant hormones, MS media
Procedia PDF Downloads 704300 Risk Propagation in Electricity Markets: Measuring the Asymmetric Transmission of Downside and Upside Risks in Energy Prices
Authors: Montserrat Guillen, Stephania Mosquera-Lopez, Jorge Uribe
Abstract:
An empirical study of market risk transmission between electricity prices in the Nord Pool interconnected market is done. Crucially, it is differentiated between risk propagation in the two tails of the price variation distribution. Thus, the downside risk from upside risk spillovers is distinguished. The results found document an asymmetric nature of risk and risk propagation in the two tails of the electricity price log variations. Risk spillovers following price increments in the market are transmitted to a larger extent than those after price reductions. Also, asymmetries related to both, the size of the transaction area and related to whether a given area behaves as a net-exporter or net-importer of electricity, are documented. For instance, on the one hand, the bigger the area of the transaction, the smaller the size of the volatility shocks that it receives. On the other hand, exporters of electricity, alongside countries with a significant dependence on renewable sources, tend to be net-transmitters of volatility to the rest of the system. Additionally, insights on the predictive power of positive and negative semivariances for future market volatility are provided. It is shown that depending on the forecasting horizon, downside and upside shocks to the market are featured by a distinctive persistence, and that upside volatility impacts more on net-importers of electricity, while the opposite holds for net-exporters.Keywords: electricity prices, realized volatility, semivariances, volatility spillovers
Procedia PDF Downloads 1764299 Green Synthesis and Photo Catalytic Activity of Monoclinic α-Bi2O3 Nanocrystals
Authors: R. Yuvakkumar, S. I. Hong
Abstract:
Visible light driven monoclinic α-Bi2O3 photocatalyst was synthesized employing green synthesis method using rambutan peel wastes. 10 ml rambutan extract was added to 50 ml of 0.1M Bi(NO3)3 under stirring at about 80°C for 2 hours. The centrifuged and dried product was calcinated in a muffle furnace at 450°C to get pure α-Bi2O3. The characterized product photocatalytic activity was evaluated employing methyl orange (MeO) as model pollutant with 10 mg l-1 concentration at pH 7. The obtained product optical absorption edges located at 484 nm clearly revealed the photocatalyst excitation by visible light irradiation. The obtained yellow color photocatalyst accord with its strong absorption spectrum revealed the visible light absorption due to the band gap transition. The band gap energy of α-Bi2O3 was estimated to be 2.81 eV indicating the absorption of α-Bi2O3 in visible light region. The photocatalytic results of MeO degradation revealed that green synthesized Bi2O3 can effectively degrade 92% MeO within 240 min under visible light (>400 nm), which is slightly increased to that of chemically synthesized Bi2O3 (90%).Keywords: green synthesis, bismuth oxide, photocatalytic activity, nano
Procedia PDF Downloads 2134298 Microfluidic Based High Throughput Screening System for Photodynamic Therapy against Cancer Cells
Authors: Rina Lee, Chung-Hun Oh, Eunjin Lee, Jeongyun Kim
Abstract:
The Photodynamic therapy (PDT) is a treatment that uses a photosensitizer as a drug to damage and kill cancer cells. After injecting the photosensitizer into the bloodstream, the drug is absorbed by cancer cells selectively. Then the area to be treated is exposed to specific wavelengths of light and the photosensitizer produces a form of oxygen that kills nearby cancer cells. PDT is has an advantage to destroy the tumor with minimized side-effects on normal cells. But, PDT is not a completed method for cancer therapy. Because the mechanism of PDT is quite clear yet and the parameters such as intensity of light and dose of photosensitizer are not optimized for different types of cancers. To optimize these parameters, we suggest a novel microfluidic system to automatically control intensity of light exposure with a personal computer (PC). A polydimethylsiloxane (PDMS) microfluidic chip is composed with (1) a cell culture channels layer where cancer cells were trapped to be tested with various dosed photofrin (1μg/ml used for the test) as the photosensitizer and (2) a color dye layer as a neutral density (ND) filter to reduce intensity of light which exposes the cell culture channels filled with cancer cells. Eight different intensity of light (10%, 20%, …, 100%) are generated through various concentrations of blue dye filling the ND filter. As a light source, a light emitting diode (LED) with 635nm wavelength was placed above the developed PDMS microfluidic chip. The total time for light exposure was 30 minutes and HeLa and PC3 cell lines of cancer cells were tested. The cell viability of cells was evaluated with a Live/Dead assay kit (L-3224, Invitrogen, USA). The stronger intensity of light exposed, the lower viability of the cell was observed, and vice versa. Therefore, this system was demonstrated through investigating the PDT against cancer cell to optimize the parameters as critical light intensity and dose of photosensitizer. Our results suggest that the system can be used for optimizing the combinational parameters of light intensity and photosensitizer dose against diverse cancer cell types.Keywords: photodynamic therapy, photofrin, high throughput screening, hela
Procedia PDF Downloads 3854297 White Light Emission through Downconversion of Terbium and Europium Doped CEF3 Nanophosphors
Authors: Mohit Kalra, Varun S., Mayuri Gandhi
Abstract:
CeF3 nanophosphors has been extensively investigated in the recent years for lighting and numerous bio-applications. Down conversion emissions in CeF3:Eu3+/Tb3+ phosphors were studied with the aim of obtaining a white light emitting composition, by a simple co-precipitation method. The material was characterized by X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HR-TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Photoluminescence (PL). Uniformly distributed nanoparticles were obtained with an average particle size 8-10 nm. Different doping concentrations were performed and fluorescence study was carried out to optimize the dopants concentration for maximum luminescence intensity. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Different concentrations of Tb 3+, Eu 3+ were doped to achieve a white light emitting phosphor for UV-based Light Emitting Diodes (LEDs). The nanoparticles showed characteristic emission of respective dopants (Eu 3+, Tb3+) when excited at the 4f→5d transition of Ce3+. The chromaticity coordinates for these samples were calculated and the CeF3 doped with Eu 3+ and Tb3+ gave an emission very close to white light. These materials may find its applications in optoelectronics and various bio applications.Keywords: white light down-conversion, nanophosphors, LEDs, rare earth, cerium fluoride, lanthanides
Procedia PDF Downloads 4054296 Usage of Visual Tools for Light Exploring with Children in the Geographical Istria Region Kindergartens in Republic of Croatia and Republic of Slovenia
Authors: Urianni Merlin, Đeni Zuliani Blašković
Abstract:
Inspired by the Reggio Pedagogy approach that explores light from physical, mathematical, artistic, and natural perspectives, emphasizes the value of visual tools in light exploring that opens up a wide area of experiential discovery and knowledge, especially if used in kindergartens with children. While there is some literature evidence of visual tool usage for light exploring in kindergartens in the Republic of Slovenia, in the Republic of Croatia there are few researches, and those published are focused at shadow exploring, exploring of physical characteristics and teatrical play of light and shadow. The objectives of this research are to assess how much visual tools are used for light exploring by preschool teachers from geographical Istria kindergartens as part of the activities offered to children and if the usage of the visual tool for light exploring it’s different regarding the work environment (Slovenian and Croatian Istria kindergartens; city vs. village kindergartens; preschool teachers age and length of service). One hundred one preschool teachers from Croatian Istria Region and 70 preschool teachers from Slovenian Istria Region responded to a self-made questionnaire regarding visual tool usage habits in their work. As predicted, results show significant differences in visual tool usage regarding preschool teachers' work environment, length of service, and age. Preschool teachers from Slovenian Istria that work in kindergartens located in the city that have from 15 to 19 years of service and are more than 30 years of age use significantly more visual tools for light exploring. The results highlight the differences in visual tools usage for light exploring in the small Istria peninsula that can be attributed to different University art curricula in Slovenia and Croatia or lifelong education offered in Slovenia that is more open to Italian reggio pedagogy influence and are further used by older preschool teachers with more service experience. Considering the small number of researches, this research significantly contributes to science and motivates preschool teachers and scientists to implement the use of light tools in the preschool and university curriculum, especially in Croatia.Keywords: activities with light, light exploring, preschool children, visual tools
Procedia PDF Downloads 824295 Simulation and Characterization of Organic Light Emitting Diodes and Organic Photovoltaics Using Physics Based Tool
Authors: T. A. Shahul Hameed, P. Predeep, Anju Iqbal, M. R. Baiju
Abstract:
Research and development in organic photovoltaic cells and Organic Light Emitting Diodes have gained wider acceptance due to the advent of many advanced techniques to enhance the efficiency and operational hours. Here we report our work on design, simulation and characterizationracterize the bulk heterojunction organic photo cell and polymer light emitting diodes in different layer configurations using ATLAS, a licensed device simulation tool. Bulk heterojuction and multilayer devices were simulated for comparing their performance parameters.Keywords: HOMO, LUMO, PLED, OPV
Procedia PDF Downloads 5864294 Numerical Simulation of Filtration Gas Combustion: Front Propagation Velocity
Authors: Yuri Laevsky, Tatyana Nosova
Abstract:
The phenomenon of filtration gas combustion (FGC) had been discovered experimentally at the beginning of 80’s of the previous century. It has a number of important applications in such areas as chemical technologies, fire-explosion safety, energy-saving technologies, oil production. From the physical point of view, FGC may be defined as the propagation of region of gaseous exothermic reaction in chemically inert porous medium, as the gaseous reactants seep into the region of chemical transformation. The movement of the combustion front has different modes, and this investigation is focused on the low-velocity regime. The main characteristic of the process is the velocity of the combustion front propagation. Computation of this characteristic encounters substantial difficulties because of the strong heterogeneity of the process. The mathematical model of FGC is formed by the energy conservation laws for the temperature of the porous medium and the temperature of gas and the mass conservation law for the relative concentration of the reacting component of the gas mixture. In this case the homogenization of the model is performed with the use of the two-temperature approach when at each point of the continuous medium we specify the solid and gas phases with a Newtonian heat exchange between them. The construction of a computational scheme is based on the principles of mixed finite element method with the usage of a regular mesh. The approximation in time is performed by an explicit–implicit difference scheme. Special attention was given to determination of the combustion front propagation velocity. Straight computation of the velocity as grid derivative leads to extremely unstable algorithm. It is worth to note that the term ‘front propagation velocity’ makes sense for settled motion when some analytical formulae linking velocity and equilibrium temperature are correct. The numerical implementation of one of such formulae leading to the stable computation of instantaneous front velocity has been proposed. The algorithm obtained has been applied in subsequent numerical investigation of the FGC process. This way the dependence of the main characteristics of the process on various physical parameters has been studied. In particular, the influence of the combustible gas mixture consumption on the front propagation velocity has been investigated. It also has been reaffirmed numerically that there is an interval of critical values of the interfacial heat transfer coefficient at which a sort of a breakdown occurs from a slow combustion front propagation to a rapid one. Approximate boundaries of such an interval have been calculated for some specific parameters. All the results obtained are in full agreement with both experimental and theoretical data, confirming the adequacy of the model and the algorithm constructed. The presence of stable techniques to calculate the instantaneous velocity of the combustion wave allows considering the semi-Lagrangian approach to the solution of the problem.Keywords: filtration gas combustion, low-velocity regime, mixed finite element method, numerical simulation
Procedia PDF Downloads 3034293 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time
Procedia PDF Downloads 3484292 The Study of Visible Light Active Bismuth Modified Nitrogen Doped Titanium Dioxide Photocatlysts
Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury
Abstract:
The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi -N- TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping
Procedia PDF Downloads 3784291 Informing Lighting Designs Through a Comprehensive Review of Light Pollution Impacts
Authors: Stephen M. Simmons, Stuart W. Baur, William L. Gillis
Abstract:
In recent years, increasing concern has been shown towards the issue of light pollution, especially with the spread of brighter, more blue-rich LED bulbs. Much research has been conducted in order to study the effects of artificial light at night, and many adverse impacts have been discovered, such as circadian disruption, degradation of the night sky, and interference oftheprocesses and behaviors of plants and animals. Despite a plethora of informationin the literature regarding the numerous illeffects of this type of pollution, there does not appear to be a complete summary of these impacts, including their magnitudes, which would facilitate the balancing of risks and benefits in the design of an exterior lighting system. This paperprovides a comprehensive review of the known impacts of light pollution, divided into four categories - human health, night sky, plants, and animals; additionally, it includes a synopsis of what likely remains unknown at this point in time. This review will attempt to showcase the relative significance of differentimpacts within each category, as well as their sensitivity to changes in lighting specifications (brightness, color temperature, shielding, and mounting height). Methods to be employed in this research include an extensive literature review and the gathering of expert knowledge and opinions. The findings of this review will be used to inform the creation of an optimized lighting design for the Missouri University of Science and Technology campus. It is hoped that future research willexplore the known impacts of light pollution further, as well as search for what still remains to be found regarding the consequencesof artificial light at night.Keywords: comprehensive review, impacts, light pollution, lighting design, literature review
Procedia PDF Downloads 1374290 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data
Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim
Abstract:
Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth
Procedia PDF Downloads 3184289 Characteristic Study on Conventional and Soliton Based Transmission System
Authors: Bhupeshwaran Mani, S. Radha, A. Jawahar, A. Sivasubramanian
Abstract:
Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20 Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system, respectively, and evaluate the system performance in terms of quality factor. From the analysis, we could prove that the soliton pulse has more consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200 Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0.Keywords: dispersion length, retrun-to-zero (rz), soliton, soliton period, q-factor
Procedia PDF Downloads 346