Search results for: iron deficiency anemia
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1396

Search results for: iron deficiency anemia

1216 Iron Recovery from Red Mud As Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method

Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Panut Mulyono, Widi Astuti

Abstract:

In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The bauxite residue sample came from the Tayan mine, Indonesia, which contains high hematite (Fe₂O₃). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30 - 110 °C. Variations of current density, red mud: NaOH ratio and temperature were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 20% recovery at a current density of 920,945 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.

Keywords: alumina, red mud, electrochemical reduction, iron production

Procedia PDF Downloads 80
1215 Effect of Dissolved Oxygen Concentration on Iron Dissolution by Liquid Sodium

Authors: Sami Meddeb, M. L Giorgi, J. L. Courouau

Abstract:

This work presents the progress of studies aiming to guarantee the lifetime of 316L(N) steel in a sodium-cooled fast reactor by determining the elementary corrosion mechanism, which is akin to an accelerated dissolution by dissolved oxygen. The mechanism involving iron, the main element of steel, is particularly studied in detail, from the viewpoint of the data available in the literature, the modeling of the various mechanisms hypothesized. Experiments performed in the CORRONa facility at controlled temperature and dissolved oxygen content are used to test both literature data and hypotheses. Current tests, performed at various temperatures and oxygen content, focus on specifying the chemical reaction at play, determining its free enthalpy, as well as kinetics rate constants. Specific test configuration allows measuring the reaction kinetics and the chemical equilibrium state in the same test. In the current state of progress of these tests, the dissolution of iron accelerated by dissolved oxygen appears as directly related to a chemical complexation reaction of mixed iron-sodium oxide (Na-Fe-O), a compound that is soluble in the liquid sodium solution. Results obtained demonstrate the presence in the solution of this corrosion product, whose kinetics is the limiting step under the conditions of the test. This compound, the object of hypotheses dating back more than 50 years, is predominant in solution compared to atomic iron, presumably even for the low oxygen concentration, and cannot be neglected for the long-term corrosion modeling of any heat transfer system.

Keywords: corrosion, sodium fast reactors, iron, oxygen

Procedia PDF Downloads 180
1214 Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles

Authors: Khaoula Bensaida, Osama Eljamal

Abstract:

The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation.

Keywords: bacterial growth, electricity generation, microbial fuel cell MFC, nano zero-valent iron NZVI.

Procedia PDF Downloads 144
1213 Effect of Electrodes Spacing on Energy Consumption of Electrocoagulation Cells

Authors: Khalid S. Hashim, Andy Shaw, Rafid Al-Khaddar, Montserrat Ortoneda Pedrola

Abstract:

In spite of the acknowledged advantages of the electrocoagulation (EC) method to remove a wide range of pollutants from waters and wastewaters, its efficiency is limited by several operational parameters (such as electrolysis time, current density, electrode material, distance between electrodes, and water temperature). Hence, optimizing these key operating parameters is considered a vital step to remove a pollutant efficiently. In this context, the present study has been carried out to explore the influence of electrodes spacing on energy consumption, temperature of the water being treated, and iron removal from water. To achieve this target, iron containing synthetic water samples were electrolysed for 20 min, using a new flow column electrocoagulation reactor (FCER), at three different gaps between electrodes (5, 10, and 20 mm). These batch experiments were commenced at a constant current density of 1.5 mA/cm² and initial pH of 6. The obtained results demonstrated that increasing gap between electrodes negatively influenced the performance of the EC method. It was found that increasing the gap between electrodes from 5 to 20 mm increased the energy consumption from about 3.3 to 7.3 kW.h/m³, and water temperature from 20.2 to 22 °C, respectively. In addition, it has been found, after 20 min of electrolysing, that increasing the gap between electrodes from 5 to 20 mm increased the residual iron concentration from 0.05 to 1.01 mg/L, respectively.

Keywords: electrocoagulation, water, electrodes, iron

Procedia PDF Downloads 264
1212 Magnetorheological Elastomer Composites Obtained by Extrusion

Authors: M. Masłowski, M. Zaborski

Abstract:

Magnetorheological elastomer composites based on micro- and nano-sized magnetite, gamma iron oxide and carbonyl iron powder in ethylene-octene rubber are reported and studied. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy). The use of extrusion method instead of traditional preparation processes (two-roll mill, mixer) of composites is presented. Micro and nan-sized magnetites as well as gamma iron oxide and carbonyl iron powder were found to be an active fillers improving the mechanical properties of elastomers. They also changed magnetic properties of composites. Application of extrusion process also influenced the mechanical properties of composites and the dispersion of magnetic fillers. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Scanning electron microscopy images (SEM) show that the dispersion improvement had significant effect on the composites properties. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties.

Keywords: extrusion, magnetic fillers, magnetorheological elastomers, mechanical properties

Procedia PDF Downloads 320
1211 Speciation of Iron(III) Oxide Nanoparticles and other Paramagnetic Intermediates during High-Temperature Oxidative Pyrolysis of 1-Methylnaphthalene

Authors: M. Paul Herring, Lavrent Khachatryan, Barry Dellinger

Abstract:

Low Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1-MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron(III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)2O3 nanoparticles clusters, characterized by g-factors of 2.00, 2.28, 3.76 and 4.37 were detected on a cold finger maintained at 77K after accumulation over a multitude of experiments. Additionally, a high valence Fe(IV) paramagnetic intermediate and superoxide anion-radicals, O2•- adsorbed on nanoparticle surfaces in the form of Fe(IV)---O2•- were detected from the quenching area of Zone 1 in the gas-phase.

Keywords: cryogenic trapping, EPFRs, dendrimer, Fe2O3 doped silica, soot

Procedia PDF Downloads 410
1210 To Study the Effect of Optic Fibre Laser Cladding of Cast Iron with Silicon Carbide on Wear Rate

Authors: Kshitij Sawke, Pradnyavant Kamble, Shrikant Patil

Abstract:

The study investigates the effect on wear rate of laser clad of cast iron with silicon carbide. Metal components fail their desired use because they wear, which causes them to lose their functionality. The laser has been used as a heating source to create a melt pool over the surface of cast iron, and then a layer of hard silicon carbide is deposited. Various combinations of power and feed rate of laser have experimented. A suitable range of laser processing parameters was identified. Wear resistance and wear rate properties were evaluated and the result showed that the wear resistance of the laser treated samples was exceptional to that of the untreated samples.

Keywords: laser clad, processing parameters, wear rate, wear resistance

Procedia PDF Downloads 259
1209 Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture

Authors: Chun-Qing Li, Guoyang Fu, Wei Yang

Abstract:

A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines.

Keywords: corrosion, inclined surface cracks, pressurized cast iron pipes, stress intensity

Procedia PDF Downloads 322
1208 Testing Nitrogen and Iron Based Compounds as an Environmentally Safer Alternative to Control Broadleaf Weeds in Turf

Authors: Simran Gill, Samuel Bartels

Abstract:

Turfgrass is an important component of urban and rural lawns and landscapes. However, broadleaf weeds such as dandelions (Taraxacum officinale) and white clovers (Trifolium repens) pose major challenges to the health and aesthetics of turfgrass fields. Chemical weed control methods, such as 2,4-D weedicides, have been widely deployed; however, their safety and environmental impacts are often debated. Alternative, environmentally friendly control methods have been considered, but experimental tests for their effectiveness have been limited. This study investigates the use and effectiveness of nitrogen and iron compounds as nutrient management methods of weed control. In a two-phase experiment, the first conducted on a blend of cool season turfgrasses in plastic containers, the blend included Perennial ryegrass (Lolium perenne), Kentucky bluegrass (Poa pratensis) and Creeping red fescue (Festuca rubra) grown under controlled conditions in the greenhouse, involved the application of different combinations of nitrogen (urea and ammonium sulphate) and iron (chelated iron and iron sulphate) compounds and their combinations (urea × chelated iron, urea × iron sulphate, ammonium sulphate × chelated iron, ammonium sulphate × iron sulphate) contrasted with chemical 2, 4-D weedicide and a control (no application) treatment. There were three replicates of each of the treatments, resulting in a total of 30 treatment combinations. The parameters assessed during weekly data collection included a visual quality rating of weeds (nominal scale of 0-9), number of leaves, longest leaf span, number of weeds, chlorophyll fluorescence of grass, the visual quality rating of grass (0-9), and the weight of dried grass clippings. The results drawn from the experiment conducted over the period of 12 weeks, with three applications each at an interval of every 4 weeks, stated that the combination of ammonium sulphate and iron sulphate appeared to be most effective in halting the growth and establishment of dandelions and clovers while it also improved turf health. The second phase of the experiment, which involved the ammonium sulphate × iron sulphate, weedicide, and control treatments, was conducted outdoors on already established perennial turf with weeds under natural field conditions. After 12 weeks of observation, the results were comparable among the treatments in terms of weed control, but the ammonium sulphate × iron sulphate treatment fared much better in terms of the improved visual quality of the turf and other quality ratings. Preliminary results from these experiments thus suggest that nutrient management based on nitrogen and iron compounds could be a useful environmentally friendly alternative for controlling broadleaf weeds and improving the health and quality of turfgrass.

Keywords: broadleaf weeds, nitrogen, iron, turfgrass

Procedia PDF Downloads 75
1207 Energy Efficiency Measures in Canada’s Iron and Steel Industry

Authors: A. Talaei, M. Ahiduzzaman, A. Kumar

Abstract:

In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.

Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation

Procedia PDF Downloads 398
1206 Production of Ferroboron by SHS-Metallurgy from Iron-Containing Rolled Production Wastes for Alloying of Cast Iron

Authors: G. Zakharov, Z. Aslamazashvili, M. Chikhradze, D. Kvaskhvadze, N. Khidasheli, S. Gvazava

Abstract:

Traditional technologies for processing iron-containing industrial waste, including steel-rolling production, are associated with significant energy costs, the long duration of processes, and the need to use complex and expensive equipment. Waste generated during the industrial process negatively affects the environment, but at the same time, it is a valuable raw material and can be used to produce new marketable products. The study of the effectiveness of self-propagating high-temperature synthesis (SHS) methods, which are characterized by the simplicity of the necessary equipment, the purity of the final product, and the high processing speed, is under the wide scientific and practical interest to solve the set problem. The work presents technological aspects of the production of Ferro boron by the method of SHS - metallurgy from iron-containing wastes of rolled production for alloying of cast iron and results of the effect of alloying element on the degree of boron assimilation with liquid cast iron. Features of Fe-B system combustion have been investigated, and the main parameters to control the phase composition of synthesis products have been experimentally established. Effect of overloads on patterns of cast ligatures formation and mechanisms structure formation of SHS products was studied. It has been shown that an increase in the content of hematite Fe₂O₃ in iron-containing waste leads to an increase in the content of phase FeB and, accordingly, the amount of boron in the ligature. Boron content in ligature is within 3-14%, and the phase composition of obtained ligatures consists of Fe₂B and FeB phases. Depending on the initial composition of the wastes, the yield of the end product reaches 91 - 94%, and the extraction of boron is 70 - 88%. Combustion processes of high exothermic mixtures allow to obtain a wide range of boron-containing ligatures from industrial wastes. In view of the relatively low melting point of the obtained SHS-ligature, the positive dynamics of boron absorption by liquid iron is established. According to the obtained data, the degree of absorption of the ligature by alloying gray cast iron at 1450°C is 80-85%. When combined with the treatment of liquid cast iron with magnesium, followed by alloying with the developed ligature, boron losses are reduced by 5-7%. At that, uniform distribution of boron micro-additives in the volume of treated liquid metal is provided. Acknowledgment: This work was supported by Shota Rustaveli Georgian National Science Foundation of Georgia (SRGNSFG) under the GENIE project (grant number № CARYS-19-802).

Keywords: self-propagating high-temperature synthesis, cast iron, industrial waste, ductile iron, structure formation

Procedia PDF Downloads 123
1205 Association of Vitamin D Levels in Obese and Non-Obese Patients with Polycystic Ovarian Syndrome in East Indian Populations

Authors: Dipanshu Sur, Ratnabali Chakravorty

Abstract:

Introduction: Polycystic ovary syndrome (PCOS) is the most common metabolic abnormality such as changes in lipid profile, diabetes, hypertension and metabolic syndrome occurring in women. Hypovitaminsis D was found to be associated with the development of obesity and insulin resistance in women with PCOS. Aim: To evaluate the association of vitamin D levels in obese and non-obese patients with PCOS in an East Indian populations. Methods: A case control study was conducted. It enrolled 100 cases of PCOS based on Rotterdam criteria and 100 ovulatory normal cases matched for their age and BMI. Vitamin D levels were compared in the obese and non-obese PCOS groups and also with the controls. Results: The mean age of subjects was 29.48 ± 3.29 years in the PCOS group and 26.24 ± 2.56 years in the control group. Hypovitaminosis D was present in 75 out of 100 PCOS women (75.0%) and 25 women (25.0%) showed sufficient 25OHD levels ≥30 ng/ml. Women with PCOS had significantly lower total serum calcium (8.4 ± 0.25 mg/dl versus 9.8 ± 0.17 mg/dl in controls), and 25 OHD (21.2 ± 2.56 ng/ml versus 32.6 ± 2.23 ng/ml in control group) than ovulatory normal women. This difference remained significant for both groups after adjustment for BMI. Obese women in both groups had significantly lower concentration of calcium and 25OHD than normal weight patients in this study. Conclusion: Our study shows majority of the patients and controls had vitamin D deficiency and there was significant difference in the vitamin D levels in PCOS group and controls as well as obese and non-obese groups. This may reflect the vitamin D deficiency status of the community. Vitamin D deficiency should demands immediate attention as it is a severe problem among the East Indian population.

Keywords: vitamin D deficiency, polycystic ovary syndrome, obese, hypovitaminsis D

Procedia PDF Downloads 317
1204 Co-design Workshop Approach: Barriers and Facilitators of Using IV Iron in Anaemic Pregnant Women in Malawi - A Qualitative Study

Authors: Elisabeth Mamani-Mategula

Abstract:

Background: Anaemia has significant consequences on both the mother and child's health as it results in maternal haemorrhage, low childbirth weight, premature delivery, poor organ development, and infections at birth and hence the need for treatment. In low-middle income countries, anaemic pregnant women are recommended to take 30 mg to 60 mg of elemental iron daily throughout pregnancy which are often poorly tolerated and adhered to. A potential alternative to oral iron is intravenous (IV) iron which allows the saturation of the body’s iron stores quickly. Currently, a randomised controlled trial on the Effect of intravenous iron on Anaemia in Malawian Pregnant women (REVAMP) is underway. Since this is new in Africa and Malawi is the second country to implement it, its acceptability to both the providers and end-users is not known. Suppose the use of IV iron during pregnancy would be acceptable in Malawi, it could change how we treat and manage pregnant women with anaemia and be scaled up throughout Malawi to improve maternal and child health. Objectives: To identify the barriers and facilitators of implementing IV iron in the Malawian healthcare system and identify ‘touchpoints’ and co-develop strategies to support and inform the implementation of the trial Methodology: A qualitative study was conducted with policymakers, government partners, and health managers through in-depth interviews to identify barriers and facilitators relating to the implementation of IV iron in the health system of Malawi. From the interviews, touchpoints were identified that formed the basis of the discussion in further discussing the barriers and suggested solutions in the co-design workshops with the community members and the health workers, respectively. We purposively recruited 20 health workers (10 male, 10 Female). 20 community members (10 male, 10 female) were recruited randomly. Data was collected through group discussions and interactive sessions and was recorded through audios, flip charts, and sticky notes. We familiarized ourselves with the data and identified themes. Results: Two co-design workshops were conducted with different community members and different health worker carders. Identified individual factors included lack of knowledge about anaemia, lack of male involvement, the attitude of health workers and patient non-compliance with appointments. Community factors included myths and misconceptions about IV iron, including associating the use of IV iron with vampirism and covid 19 vaccination. Health system factors identified were a shortage of staff and equipment, unfamiliarity with IV iron and its cost. Discussion: The use of IV iron, as suggested by the community members and health workers, demands civic education through bringing awareness to end-users and training to providers. Through these co-design workshops, community sensitization and awareness, briefing and training of health workers and creation of educational materials were done.

Keywords: acceptability, IV iron, barriers, facilitators, co-design

Procedia PDF Downloads 130
1203 The Effect of Double Fortification of Iron and Zinc of Synbiotic Fermented Milk on Growth of Rat

Authors: Endri Yuliati, Siti Helmyati, Narendra Yoga Hendarta, Moh. Darussalam, Maharani Jibbriella, Fauziah Oktavira Hayati Fakhruddin, Faisal Hanin

Abstract:

Background: Both of iron and zinc has vital role in growth. The prebiotics fermentation by probiotics lower the acidity of intestine thus increase mineral absorption. Objective: To know the effect of double fortification of synbiotic fermented milk on growth. Methods: An Indonesian local isolate, Lactobacillus plantarum Dad-13 and Fructo-oligosaccharides (FOS) were used in making synbiotic fermented milk. It, then was double fortified with 100 ppm Fe and 50 ppm Zn. A total of 15 Wistar rats were divided into 3 groups and given: synbiotic fermented milk (CO), synbiotic fermented milk with NaFeEDTA and Zn acetate (NZ) and synbiotic fermented milk with Fe gluconate and Zn acetate (FZ) every day for one month. Body weight and body length were measured before, every week and after intervention. Results: Body weight and body length were similar at baseline among three groups (p > 0.05). All groups showed similar growth after intervention, from 62,40 + 6,1 to 109,0 + 9,0; 62,0 + 7,9 to 110,3 + 14,2; and 64,40 + 4,7 to 115,1 + 7,7 g for CO, NZ, and FZ, respectively (p > 0.05). The body length after intervention was also similar (p > 0.05). Conclusion: Fortification of iron and zinc did not modify effect of synbiotic fermented milk on growth.

Keywords: probiotics, prebiotics, iron, zinc, growth

Procedia PDF Downloads 466
1202 Optimization of Groundwater Utilization in Fish Aquaculture

Authors: M. Ahmed Eldesouky, S. Nasr, A. Beltagy

Abstract:

Groundwater is generally considered as the best source for aquaculture as it is well protected from contamination. The most common problem limiting the use of groundwater in Egypt is its high iron, manganese and ammonia content. This problem is often overcome by applying the treatment before use. Aeration in many cases is not enough to oxidize iron and manganese in complex forms with organics. Most of the treatment we use potassium permanganate as an oxidizer followed by a pressurized closed green sand filter. The aim of present study is to investigate the optimum characteristics of groundwater to give lowest iron, manganese and ammonia, maximum production and quality of fish in aquaculture in El-Max Research Station. The major design goal of the system was determined the optimum time for harvesting the treated water, pH, and Glauconite weight to use it for aquaculture process in the research site and achieve the Egyptian law (48/1982) and EPA level required for aquaculture. The water characteristics are [Fe = 0.116 mg/L, Mn = 1.36 mg/L,TN = 0.44 mg/L , TP = 0.07 mg/L , Ammonia = 0.386 mg/L] by using the glauconite filter we obtained high efficiency for removal for [(Fe, Mn and Ammonia] ,but in the Lab we obtained result for (Fe, 43-97), ( Mn,92-99 ), and ( Ammonia, 66-88 )]. We summarized the results to show the optimum time, pH, Glauconite weight, and the best model for design in the region.

Keywords: aquaculture, ammonia in groundwater, groundwater, iron and manganese in water, groundwater treatment

Procedia PDF Downloads 234
1201 Iron Oxide Magnetic Nanoparticles as MRI Contrast Agents

Authors: Suhas Pednekar, Prashant Chavan, Ramesh Chaughule, Deepak Patkar

Abstract:

Iron oxide (Fe3O4) magnetic nanoparticles (MNPs) are one of the most attractive nanomaterials for various biomedical applications. An important potential medical application of polymer-coated iron oxide nanoparticles (NPs) is as imaging agents. Composition, size, morphology and surface chemistry of these nanoparticles can now be tailored by various processes to not only improve magnetic properties but also affect the behavior of nanoparticles in vivo. MNPs are being actively investigated as the next generation of magnetic resonance imaging (MRI) contrast agents. Also, there is considerable interest in developing magnetic nanoparticles and their surface modifications with therapeutic agents. Our study involves the synthesis of biocompatible cancer drug coated with iron oxide nanoparticles and to evaluate their efficacy as MRI contrast agents. A simple and rapid microwave method to prepare Fe3O4 nanoparticles has been developed. The drug was successfully conjugated to the Fe3O4 nanoparticles which can be used for various applications. The relaxivity R2 (reciprocal of the spin-spin relaxation time T2) is an important factor to determine the efficacy of Fe nanoparticles as contrast agents for MRI experiments. R2 values of the coated magnetic nanoparticles were also measured using MRI technique and the results showed that R2 of the Fe complex consisting of Fe3O4, polymer and drug was higher than that of bare Fe nanoparticles and polymer coated nanoparticles. This is due to the increase in hydrodynamic sizes of Fe NPs. The results with various amounts of iron molar concentrations are also discussed. Using MRI, it is seen that the R2 relaxivity increases linearly with increase in concentration of Fe NPs in water.

Keywords: cancer drug, hydrodynamic size, magnetic nanoparticles, MRI

Procedia PDF Downloads 489
1200 Observation of the Effect of Yingyangbao Intervention on Infants and Young Children Aged 6 to 23 Months in Poor Rural Areas of China

Authors: Jin Li, Jing Sun, Xiangkun Cai, Lijuanwang, Yanbin Tang, Junsheng Huo

Abstract:

In order to improve the malnutrition of infants and young children in poor rural areas of China, Chinese government implement a project on improvement of children's nutrition in poor rural areas. Each infant or young child aged 6 to 23 months in selected poor rural areas of China was provided a package of Yingyangbao (YYB) per day, which is a full fat soy powder mixed with multiple micronutrient powders. A technical direction to implement this project comprehensively in poor rural areas of China will be provided by assessing the nutritional status of infants and feeding practices of caregiver. The nutritional intervention was conducted using Yingyangbao for infants aged 6 to 23 months in six poor counties of Shanxi, Yunnan and Hubei Provinces. The caregiver or parents of infants were educated on feeding knowledge and practice. A total of 1840 infants were assessed before the intervention and 1789 infants one year later. The length, weight, hemoglobin concentration of infants were measured to evaluate nutritional status before and after the intervention respectively. The questionnaires were designed to collect data for the basic demographic information and feeding practices. The average weight of infants aged 6 to 23 months increased from 9.59 ± 1.54kg to 9.73 ± 1.61kg one years later (p<0.01), and the average length from 76.0±6.0 to 77.0±6.1(p<0.01). The weight and length of infants aged 12 to 17 months had most obviously improving effect among the three age groups. Before the intervention, the hemoglobin concentration value of infants was 11.7±1.2g/L, and the anemia prevalence was 32.9%. One year later, the hemoglobin concentration value of the infants was increased to 12.0±1.1g/dL, and the anemia prevalence was decreased to 26.0%. There were both statistically significant (p <0.01). The anemia prevalence of infants aged 18 to 23 months had most obviously improving effect,which decreased from 25.0% to 17.2%(p<0.01). The proportion of infants aged 6 to 8 months who received solid, semi-solid or soft foods in time was increased from 89.4% to 91.6%, while there was no statistically significant. The proportion of 6-23 month-old infants who received minimum dietary diversity increased from 55.6% to 60.3%(p <0.01). The differences of the proportion of infants who received minimum meal frequency was no statistically significant between before and after the intervention. The nutritional intervention using Yingyangbao showed the significant effect for improving infants aged 6 to 23 months anemia status, weight and length. The feeding practices were improved through education in the process of nutritional intervention, while the effect is not significant. It is need for Chinese government to explore new publicity pattern.

Keywords: nutritional intervention, infants, nutritional status, feeding practice

Procedia PDF Downloads 444
1199 Engineered Reactor Components for Durable Iron Flow Battery

Authors: Anna Ivanovskaya, Alexandra E. L. Overland, Swetha Chandrasekaran, Buddhinie S. Jayathilake

Abstract:

Iron-based redox flow batteries (IRFB) are promising for grid-scale storage because of their low-cost and environmental safety. Earth-abundant iron can enable affordable grid-storage to meet DOE’s target material cost <$20/kWh and levelized cost for storage $0.05/kWh. In conventional redox flow batteries, energy is stored in external electrolyte tanks and electrolytes are circulated through the cell units to achieve electrochemical energy conversions. However, IRFBs are hybrid battery systems where metallic iron deposition at the negative side of the battery controls the storage capacity. This adds complexity to the design of a porous structure of 3D-electrodes to achieve a desired high storage capacity. In addition, there is a need to control parasitic hydrogen evolution reaction which accompanies the metal deposition process, increases the pH, lowers the energy efficiency, and limits the durability. To achieve sustainable operation of IRFBs, electrolyte pH, which affects the solubility of reactants and the rate of parasitic reactions, needs to be dynamically readjusted. In the present study we explore the impact of complexing agents on maintaining solubility of the reactants and find the optimal electrolyte conditions and battery operating regime, which are specific for IRFBs with additives, and demonstrate the robust operation.

Keywords: flow battery, iron-based redox flow battery, IRFB, energy storage, electrochemistry

Procedia PDF Downloads 79
1198 Mid-Temperature Methane-Based Chemical Looping Reforming for Hydrogen Production via Iron-Based Oxygen Carrier Particles

Authors: Yang Li, Mingkai Liu, Qiong Rao, Zhongrui Gai, Ying Pan, Hongguang Jin

Abstract:

Hydrogen is an ideal and potential energy carrier due to its high energy efficiency and low pollution. An alternative and promising approach to hydrogen generation is the chemical looping steam reforming of methane (CL-SRM) over iron-based oxygen carriers. However, the process faces challenges such as high reaction temperature (>850 ℃) and low methane conversion. We demonstrate that Ni-mixed Fe-based oxygen carrier particles have significantly improved the methane conversion and hydrogen production rate in the range of 450-600 ℃ under atmospheric pressure. The effect on the reaction reactivity of oxygen carrier particles mixed with different Ni-based particle mass ratios has been determined in the continuous unit. More than 85% of methane conversion has been achieved at 600 ℃, and hydrogen can be produced in both reduction and oxidation steps. Moreover, the iron-based oxygen carrier particles exhibited good cyclic performance during 150 consecutive redox cycles at 600 ℃. The mid-temperature iron-based oxygen carrier particles, integrated with a moving-bed chemical looping system, might provide a powerful approach toward more efficient and scalable hydrogen production.

Keywords: chemical looping, hydrogen production, mid-temperature, oxygen carrier particles

Procedia PDF Downloads 145
1197 Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers

Authors: Khryslyn Araño, Dela Cruz, Michael Leo, Dela Pena, Eden May, Leslie Joy Diaz

Abstract:

Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 Å to 13.6 Å and 12.6 Å after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.

Keywords: electrospinning, nanofibers, montmorillonite, materials science

Procedia PDF Downloads 345
1196 Innate Immune Dysfunction in Niemann Pick Disease Type C

Authors: Stephanie Newman

Abstract:

Niemann-Pick Type C disease is a rare, usually fatal lysosomal storage disorder. Although clinically characterized by progressive neurodegeneration, there is also evidence of altered innate immune responses such as neuroinflammation that promote disease progression. We have initiated an investigation into whether phagocytosis, an important innate immune activity and the process by which particles are ingested is defective in NPC. Using an in vitro assay, we have shown that NPC macrophages have a deficiency in the phagocytosis of different particles. We plan to investigate the mechanistic basis for impaired phagocytosis, the contribution that this deficiency makes to disease pathology, and whether therapies that have shown in vivo benefit are able to restore phagocytic activity.

Keywords: Niemann Pick Disease C, phagocytosis, innate immunity, lysosomal storage disorder

Procedia PDF Downloads 392
1195 Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking

Authors: M. Bahgat, H. Hanafy, H. Al-Tassan

Abstract:

Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore.

Keywords: reduction, ironmaking, steel dust, coating

Procedia PDF Downloads 303
1194 Application of Nanoparticles in Biomedical and MRI

Authors: Raziyeh Mohammadi

Abstract:

At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation, and low toxicity effects. Superparamagnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI. (Processes in the tissue where the blood brain barrier is intact in this way shielded from the contact to this conventional contrast agent and will only reveal changes in the tissue if it involves an alteration in the vasculature. This technique is very useful for detecting tumors and can even be used for detecting metabolic functional alterations in the brain, such as epileptic activity.SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible.

Keywords: nanoparticles, MRI, biomedical, iron oxide, spions

Procedia PDF Downloads 215
1193 Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation

Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze

Abstract:

Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.

Keywords: calorimetry, entropy, enthalpy, heat capacity, gibbs energy of formation, rare earth iron garnets

Procedia PDF Downloads 384
1192 Standard Gibbs Energy of Formation and Entropy of Lanthanide-Iron Oxides of Garnet Crystal Structure

Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze

Abstract:

Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity and by using the semi-empirical method for calculation of ΔH298.15 (formation). Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.

Keywords: calorimetry, entropy, heat capacity, Gibbs energy of formation, rare earth iron garnets

Procedia PDF Downloads 355
1191 Preparation and Characterization of Nanostructured FeN Electrocatalyst for Air Cathode Microbial Fuel Cell (MFC)

Authors: Md. Maksudur Rahman Khan, Chee Wai Woon, Huei Ruey Ong, Vignes Rasiah, Chin Kui Cheng, Kar Min Chan, E. Baranitharan

Abstract:

The present work represents a preparation of non-precious iron-based electrocatalyst (FeN) for ORR in air-cathode microbial fuel cell by pyrolysis treatment. Iron oxalate which recovered from the industrial wastewater and Phenanthroline (Phen) were used as the iron and nitrogen precursors, respectively in preparing FeN catalyst. The performance of as prepared catalyst (FeN) was investigated in a single chambered air cathode MFC in which anaerobic sludge was used as inoculum and palm oil mill effluent as substrate. The maximum open circuit potential (OCV) and the highest power density recorded were 0.543 V and 4.9 mW/m2, respectively. Physical characterization of FeN was elucidated by using Brunauner Emmett Teller (BET), X-Ray Diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) while the electrochemical properties were characterized by cyclic voltammetry (CV) analysis. The presence of biofilm on anode surface was examined using FESEM and confirmed using Infrared Spectroscopy and Thermogravimetric Analysis. The findings of this study demonstrated that FeN is electrochemically active and further modification is needed to increase the ORR catalytic activity.

Keywords: iron based catalyst, microbial fuel cells, oxygen reduction reaction, palm oil mill effluent

Procedia PDF Downloads 334
1190 Lithological Mapping and Iron Deposits Identification in El-Bahariya Depression, Western Desert, Egypt, Using Remote Sensing Data Analysis

Authors: Safaa M. Hassan; Safwat S. Gabr, Mohamed F. Sadek

Abstract:

This study is proposed for the lithological and iron oxides detection in the old mine areas of El-Bahariya Depression, Western Desert, using ASTER and Landsat-8 remote sensing data. Four old iron ore occurrences, namely; El-Gedida, El-Haraa, Ghurabi, and Nasir mine areas found in the El-Bahariya area. This study aims to find new high potential areas for iron mineralization around El-Baharyia depression. Image processing methods such as principle component analysis (PCA) and band ratios (b4/b5, b5/b6, b6/b7, and 4/2, 6/7, band 6) images were used for lithological identification/mapping that includes the iron content in the investigated area. ASTER and Landsat-8 visible and short-wave infrared data found to help mapping the ferruginous sandstones, iron oxides as well as the clay minerals in and around the old mines area of El-Bahariya depression. Landsat-8 band ratio and the principle component of this study showed well distribution of the lithological units, especially ferruginous sandstones and iron zones (hematite and limonite) along with detection of probable high potential areas for iron mineralization which can be used in the future and proved the ability of Landsat-8 and ASTER data in mapping these features. Minimum Noise Fraction (MNF), Mixture Tuned Matched Filtering (MTMF), pixel purity index methods as well as Spectral Ange Mapper classifier algorithm have been successfully discriminated the hematite and limonite content within the iron zones in the study area. Various ASTER image spectra and ASD field spectra of hematite and limonite and the surrounding rocks are compared and found to be consistent in terms of the presence of absorption features at range from 1.95 to 2.3 μm for hematite and limonite. Pixel purity index algorithm and two sub-pixel spectral methods, namely Mixture Tuned Matched Filtering (MTMF) and matched filtering (MF) methods, are applied to ASTER bands to delineate iron oxides (hematite and limonite) rich zones within the rock units. The results are validated in the field by comparing image spectra of spectrally anomalous zone with the USGS resampled laboratory spectra of hematite and limonite samples using ASD measurements. A number of iron oxides rich zones in addition to the main surface exposures of the El-Gadidah Mine, are confirmed in the field. The proposed method is a successful application of spectral mapping of iron oxides deposits in the exposed rock units (i.e., ferruginous sandstone) and present approach of both ASTER and ASD hyperspectral data processing can be used to delineate iron-rich zones occurring within similar geological provinces in any parts of the world.

Keywords: Landsat-8, ASTER, lithological mapping, iron exploration, western desert

Procedia PDF Downloads 146
1189 Mechanism and Kinetic of Layers Growth: Application to Nitriding of 32CrMoV13 Steel

Authors: Torchane Lazhar

Abstract:

In this work, our task consists in optimizing the nitriding treatment at low-temperature of the steel 32CrMoV13 by the way of the mixtures of ammonia gas, nitrogen and hydrogen to improve the mechanical properties of the surface (good wear resistance, friction and corrosion), and of the diffusion layer of the nitrogen (good resistance to fatigue and good tenacity with heart). By limiting our work to the pure iron and to the alloys iron-chromium and iron-chrome-carbon, we have studied the various parameters which manage the nitriding: flow rate and composition of the gaseous phase, the interaction chromium-nitrogen and chromium-carbon by the help of experiments of nitriding realized in the laboratory by thermogravimetry. The acquired knowledge have been applied by the mastery of the growth of the combination layer on the diffusion layer in the case of the industrial steel 32CrMoV13.

Keywords: diffusion of nitrogen, gaseous nitriding, layer growth kinetic, steel

Procedia PDF Downloads 412
1188 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: magnetic nanoparticles, MNPs, differential magnetic susceptibility, DMS, magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D

Procedia PDF Downloads 140
1187 Vitamin D and Prevention of Rickets in Children

Authors: Mousa Saleh Daoud

Abstract:

Rickets is a condition that affects the development of bones in children. It causes soft bones, which can become bowed or curved, this bending and curvature is evident in the age of Walking. The most common cause of rickets is dietary deficiency of vitamin D or Lack of exposure to sunlight or both together. The link between vitamin D and rickets has been known for many years and is well understood by doctors and scientists. If a child does not get enough of the vitamin D, the bones cannot form hard outer shells. This is why they become soft and weak. This study was conducted on children who reviewed by our medical clinic between the years 2011-2013. The study included 400 children, aged between one and six years. 11 children had clear clinical manifestations of rickets of varying degrees and all of them due to lack of vitamin D except for one case of rickets resistant to vitamin D. 389 cases ranged between natural and deficiency in vitamin D without clinical manifestations of Rickets.

Keywords: rickts, bone metabolic diseases, vitamin D, child

Procedia PDF Downloads 415