Search results for: composite membrane
2865 An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation
Authors: Zhaoyang Liu
Abstract:
It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications.Keywords: membrane, inorganic nanofibers, oil/water separation, emulsions
Procedia PDF Downloads 1732864 Using Composite Flour in Bread Making: Cassava and Wheat Flour
Authors: Aishatu Ibrahim, Ijeoma Chinyere Ukonu
Abstract:
The study set out to produce bread using composite cassava flour. The main objective of the work is to determine the possibility of using composite cassava flour in bread production and to find out whether it is acceptable in the hospitality industry and by the general public. The research questions were formed and analyzed. A sample size of 10 professional catering judges was used in the department of hospitality management/food science and technology. Relevant literature was received. Data collected was analyzed using mean deviation. Product A which is 20% cassava flour and 80% wheat flour product, and D which is 100% wheat flour product were competing with high acceptability. It was observed that the composite cassava dough needed to be allowed to proof for a longer period. Lastly, the researcher recommends that the caterers should be encouraged to use composite cassava flour in the production of bread in order to reduce cost.Keywords: bread, cassava, flour, wheat
Procedia PDF Downloads 3412863 CO₂ Capture by Membrane Applied to Steel Production Process
Authors: Alexandra-Veronica Luca, Letitia Petrescu
Abstract:
Steel production is a major contributor to global warming potential. An average value of 1.83 tons of CO₂ is emitted for every ton of steel produced, resulting in over 3.3 Mt of CO₂ emissions each year. The present paper is focused on the investigation and comparison of two O₂ separation methods and two CO₂ capture technologies applicable to iron and steel industry. The O₂ used in steel production comes from an Air Separation Unit (ASU) using distillation or from air separation using membranes. The CO₂ capture technologies are represented by a two-stage membrane separation process and the gas-liquid absorption using methyl di-ethanol amine (MDEA). Process modelling and simulation tools, as well as environmental tools, are used in the present study. The production capacity of the steel mill is 4,000,000 tones/year. In order to compare the two CO₂ capture technologies in terms of efficiency, performance, and sustainability, the following cases have been investigated: Case 1: steel production using O₂ from ASU and no CO₂ capture; Case 2: steel production using O₂ from ASU and gas-liquid absorption for CO₂ capture; Case 3: steel production using O₂ from ASU and membranes for CO₂ capture; Case 4: steel production using O₂ from membrane separation method and gas-liquid absorption for CO₂ capture and Case-5: steel production using membranes for air separation and CO₂ capture. The O₂ separation rate obtained in the distillation technology was about 96%, and about 33% in the membrane technology. Similarly, the O₂ purity resulting in the conventional process (i.e. distillation) is higher compared to the O₂ purity obtained in the membrane unit (e.g., 99.50% vs. 73.66%). The air flow-rate required for membrane separation is about three times higher compared to the air flow-rate for cryogenic distillation (e.g., 549,096.93 kg/h vs. 189,743.82 kg/h). A CO₂ capture rate of 93.97% was obtained in the membrane case, while the CO₂ capture rate for the gas-liquid absorption was 89.97%. A quantity of 6,626.49 kg/h CO₂ with a purity of 95.45% is separated from the total 23,352.83 kg/h flue-gas in the membrane process, while with absorption of 6,173.94 kg/h CO₂ with a purity of 98.79% is obtained from 21,902.04 kg/h flue-gas and 156,041.80 kg/h MDEA is recycled. The simulation results, performed using ChemCAD process simulator software, lead to the conclusion that membrane-based technology can be a suitable alternative for CO₂ removal for steel production. An environmental evaluation using Life Cycle Assessment (LCA) methodology was also performed. Considering the electricity consumption, the performance, and environmental indicators, Case 3 can be considered the most effective. The environmental evaluation, performed using GaBi software, shows that membrane technology can lead to lower environmental emissions if membrane production is based on benzene derived from toluene hydrodealkilation and chlorine and sodium hydroxide are produced using mixed technologies.Keywords: CO₂ capture, gas-liquid absorption, Life Cycle Assessment, membrane separation, steel production
Procedia PDF Downloads 2932862 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers
Authors: H. Ucar, U. Aridogan
Abstract:
Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.Keywords: FRP composite, operational challenges, piezoelectric transducers, FE modeling
Procedia PDF Downloads 1742861 Experimental Study of Various Sandwich Composites
Authors: R. Naveen, E. Vanitha, S. Gayathri
Abstract:
The use of Sandwich composite materials in aerospace and civil infrastructure application has been increasing especially due to their enormously low weight that leads to a reduction in the total weight and fuel consumption, high flexural and transverse shear stiffness, and corrosion resistance. The essential properties of sandwich materials vary according to the application area of the structure. The objectives of this study are to identify the mechanical behaviour and failure mechanisms of sandwich structures made of bamboo, V- board and metal (Aluminium as face sheet and Foam as Core material). The three-point bending test and UTM (Universal testing machine) experimental tests are done for three specimens for each type of sandwich composites. From the experiment results of three sandwich composites, bamboo shows high Young’s modulus of elasticity and low density.Keywords: bamboo sandwich composite, metal sandwich composite, sandwich composite, v-board sandwich composite
Procedia PDF Downloads 2582860 Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study
Authors: Mohammad Zamzam, Wesam Bachir, Imad Asaad
Abstract:
Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite.Keywords: enamel, Er:YAG, geometrical parameters, orthodontic composite, remnant composite
Procedia PDF Downloads 5542859 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab
Authors: Veronika Přivřelová
Abstract:
Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.Keywords: composite beams, high-performance concrete, high-strength steel, lightweight concrete slab, modeling
Procedia PDF Downloads 4092858 Influence of La0.1Sr0.9Co1-xFexO3-δ Catalysts on Oxygen Permeation Using Mixed Conductor
Authors: Y. Muto, S. Araki, H. Yamamoto
Abstract:
The separation of oxygen is one key technology to improve the efficiency and to reduce the cost for the processed of the partial oxidation of the methane and the condensation of the carbon dioxide. Particularly, carbon dioxide at high concentration would be obtained by the combustion using pure oxygen separated from air. However, the oxygen separation process occupied the large part of energy consumption. Therefore, it is considered that the membrane technologies enable to separation at lower cost and lower energy consumption than conventional methods. In this study, it is examined that the separation of oxygen using membranes of mixed conductors. Oxygen permeation through the membrane is occurred by the following three processes. At first, the oxygen molecules dissociate into oxygen ion at feed side of the membrane, subsequently, oxygen ions diffuse in the membrane. Finally, oxygen ions recombine to form the oxygen molecule. Therefore, it is expected that the membrane of thickness and material, or catalysts of the dissociation and recombination affect the membrane performance. However, there is little article about catalysts for the dissociation and recombination. We confirmed the performance of La0.6Sr0.4Co1.0O3-δ (LSC) based catalyst which was commonly used as the dissociation and recombination. It is known that the adsorbed amount of oxygen increase with the increase of doped Fe content in B site of LSC. We prepared the catalysts of La0.1Sr0.9Co0.9Fe0.1O3-δ(C9F1), La0.1Sr0.9Co0.5Fe0.5O3-δ(C5F5) and La0.1Sr0.9Co0.3Fe0.7O3-δ(C7F3). Also, we used Pr2NiO4 type mixed conductor as a membrane material. (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG) shows the high oxygen permeability and the stability against carbon dioxide. Oxygen permeation experiments were carried out using a homemade apparatus at 850 -975 °C. The membrane was sealed with Pyrex glass at both end of the outside dense alumina tubes. To measure the oxygen permeation rate, air was fed to the film side at 50 ml min-1, helium as the sweep gas and reference gas was fed at 20 ml min-1. The flow rates of the sweep gas and the gas permeated through the membrane were measured using flow meter and the gas concentrations were determined using a gas chromatograph. Then, the permeance of the oxygen was determined using the flow rate and the concentration of the gas on the permeate side of the membrane. The increase of oxygen permeation was observed with increasing temperature. It is considered that this is due to the catalytic activities are increased with increasing temperature. Another reason is the increase of oxygen diffusivity in the bulk of membrane. The oxygen permeation rate is improved by using catalyst of LSC or LSCF. The oxygen permeation rate of membrane with LSCF showed higher than that of membrane with LSC. Furthermore, in LSCF catalysts, oxygen permeation rate increased with the increase of the doped amount of Fe. It is considered that this is caused by the increased of adsorbed amount of oxygen.Keywords: membrane separation, oxygen permeation, K2NiF4-type structure, mixed conductor
Procedia PDF Downloads 5192857 Time-Dependent Analysis of Composite Steel-Concrete Beams Subjected to Shrinkage
Authors: Rahal Nacer, Beghdad Houda, Tehami Mohamed, Souici Abdelaziz
Abstract:
Although the shrinkage of the concrete causes undesirable parasitic effects to the structure, it can then harm the resistance and the good appearance of the structure. Long term behaviourmodelling of steel-concrete composite beams requires the use of the time variable and the taking into account of all the sustained stress history of the concrete slab constituting the cross section. The work introduced in this article is a theoretical study of the behaviour of composite beams with respect to the phenomenon of concrete shrinkage. While using the theory of the linear viscoelasticity of the concrete, and on the basis of the rate of creep method, in proposing an analytical model, made up by a system of two linear differential equations, emphasizing the effects caused by shrinkage on the resistance of a steel-concrete composite beams. Results obtained from the application of the suggested model to a steel-concrete composite beam are satisfactory.Keywords: composite beams, shrinkage, time, rate of creep method, viscoelasticity theory
Procedia PDF Downloads 5302856 Study the Behavior of Different Composite Short Columns (DST) with Prismatic Sections under Bending Load
Authors: V. Sadeghi Balkanlou, M. Reza Bagerzadeh Karimi, A. Hasanbakloo, B. Bagheri Azar
Abstract:
In this paper, the behavior of different types of DST columns has been studied under bending load. Briefly, composite columns consist of an internal carbon steel tube and an external stainless steel wall that the between the walls are filled with concrete. Composite columns are expected to combine the advantages of all three materials and have the advantage of high flexural stiffness of CFDST columns. In this research, ABAQUS software is used for finite element analysis then the results of ultimate strength of the composite sections are illustrated.Keywords: DST, stainless steel, carbon steel, ABAQUS, straigh columns, tapered columns
Procedia PDF Downloads 3902855 Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor
Authors: Junior B. N. Adohinzin, Ling Xu
Abstract:
Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen. Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal.Keywords: membrane bioreactor (MBR), moving bed biofilm reactor (MBBR), nutrients removal, simultaneous nitrification and denitrification
Procedia PDF Downloads 3472854 Production and Characterization of Al-BN Composite Materials by Using Powder Metallurgy
Authors: Ahmet Yonetken, Ayhan Erol
Abstract:
Aluminum matrix composites containing 3, 6, 9, 12 and 15% BN has been fabricated by conventional microwave sintering at 550°C temperature. Compounds formation between Al and BN powders is observed after sintering under Ar shroud. XRD, SEM (Scanning Electron Microscope), mechanical testing and measurements were employed to characterize the properties of Al + BN composite. Experimental results suggest that the best properties as hardness 42,62 HV were obtained for Al+12% BN composite. In this study, the powder metallurgy method was used. It is aimed to produce a light composite with Al matrix BN powders. It has been increased in strength and hardness besides its lightness. Ceramic powders are added to improve mechanical properties.Keywords: ceramic-metal composites, proporties, powder metallurgy, sintering
Procedia PDF Downloads 1962853 Utilization of Activated Carbon for the Extraction and Separation of Methylene Blue in the Presence of Acid Yellow 61 Using an Inclusion Polymer Membrane
Authors: Saâd Oukkass, Abderrahim Bouftou, Rachid Ouchn, L. Lebrun, Miloudi Hlaibi
Abstract:
We invariably exist in a world steeped in colors, whether in our clothing, food, cosmetics, or even medications. However, most of the dyes we use pose significant problems, being both harmful to the environment and resistant to degradation. Among these dyes, methylene blue and acid yellow 61 stand out, commonly used to dye various materials such as cotton, wood, and silk. Fortunately, various methods have been developed to treat and remove these polluting dyes, among which membrane processes play a prominent role. These methods are praised for their low energy consumption, ease of operation, and their ability to achieve effective separation of components. Adsorption on activated carbon is also a widely employed technique, complementing the basic processes. It proves particularly effective in capturing and removing organic compounds from water due to its substantial specific surface area while retaining its properties unchanged. In the context of our study, we examined two crucial aspects. Firstly, we explored the possibility of selectively extracting methylene blue from a mixture containing another dye, acid yellow 61, using a polymer inclusion membrane (PIM) made of PVA. After characterizing the morphology and porosity of the membrane, we applied kinetic and thermodynamic models to determine the values of permeability (P), initial flux (J0), association constant (Kass), and apparent diffusion coefficient (D*). Subsequently, we measured activation parameters (activation energy (Ea), enthalpy (ΔH#ass), entropy (ΔS#)). Finally, we studied the effect of activated carbon on the processes carried out through the membrane, demonstrating a clear improvement. These results make the membrane developed in this study a potentially pivotal player in the field of membrane separation.Keywords: dyes, methylene blue, membrane, activated carbon
Procedia PDF Downloads 822852 Harvesting of Kinetic Energy of the Raindrops
Authors: K. C. R.Perera, V. P. C Dassanayake, B. M. Hapuwatte, B. G. Smapath
Abstract:
This paper presents a methodology to harvest the kinetic energy of the raindrops using piezoelectric devices. In the study 1m×1m PVDF (Polyvinylidene fluoride) piezoelectric membrane, which is fixed by the four edges, is considered for the numerical simulation on deformation of the membrane due to the impact of the raindrops. Then according to the drop size of the rain, the simulation is performed classifying the rainfall types into three categories as light stratiform rain, moderate stratiform rain and heavy thundershower. The impact force of the raindrop is dependent on the terminal velocity of the raindrop, which is a function of raindrop diameter. The results were then analyzed to calculate the harvestable energy from the deformation of the piezoelectric membrane.Keywords: raindrop, piezoelectricity, deformation, terminal velocity
Procedia PDF Downloads 3242851 Experimental and Comparative Study of Composite Thin Cylinder Subjected to Internal Pressure
Authors: Hakim S. Sultan Aljibori
Abstract:
An experimental procedure is developed to study the performance of composite thin wall cylinders subjected to internal pressure loading for investigations of stress distribution through the composite cylinders wall. Three types of fibers were used in this study are; woven roving glass fiber/epoxy, hybrid fiber/epoxy, and Kevlar fiber/epoxy composite specimens were fabricated and tested. All of these specimens subjected to uniformed pressure load using the hydraulic pump. Axial stress is identified, and values were found after collecting all the results. Comparison between the deferent types of specimens was done. Thus, the present investigation concludes the efficient and effective composite cylinder experimentally and provides a considerable advantage for using woven roving fibers in pressure vessels applications.Keywords: stress distribution, composite material, internal pressure, glass fiber, hybrid fiber
Procedia PDF Downloads 1662850 Removal of Tartrazine Dye Form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite
Authors: Salem Ali Jebreil
Abstract:
In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature.Keywords: adsorption, composite, dye, polyaniline, tartrazine
Procedia PDF Downloads 2882849 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method
Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González
Abstract:
This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.Keywords: finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea
Procedia PDF Downloads 3632848 Experimental Modal Analysis of a Suspended Composite Beam
Authors: First A. Lahmar Lahbib, Second B. Abdeldjebar Rabiâ, Third C. Moudden B, forth D. Missoum L
Abstract:
Vibration tests are used to identify the elasticity modulus in two directions. This strategy is applied to composite materials glass / polyester. Experimental results made on a specimen in free vibration showed the efficiency of this method. Obtained results were validated by a comparison to results stemming from static tests.Keywords: beam, characterization, composite, elasticity modulus, vibration.
Procedia PDF Downloads 4632847 Fractal Analysis of Polyacrylamide-Graphene Oxide Composite Gels
Authors: Gülşen Akın Evingür, Önder Pekcan
Abstract:
The fractal analysis is a bridge between the microstructure and macroscopic properties of gels. Fractal structure is usually provided to define the complexity of crosslinked molecules. The complexity in gel systems is described by the fractal dimension (Df). In this study, polyacrylamide- graphene oxide (GO) composite gels were prepared by free radical crosslinking copolymerization. The fractal analysis of polyacrylamide- graphene oxide (GO) composite gels were analyzed in various GO contents during gelation and were investigated by using Fluorescence Technique. The analysis was applied to estimate Df s of the composite gels. Fractal dimension of the polymer composite gels were estimated based on the power law exponent values using scaling models. In addition, here we aimed to present the geometrical distribution of GO during gelation. And we observed that as gelation proceeded GO plates first organized themselves into 3D percolation cluster with Df=2.52, then goes to diffusion limited clusters with Df =1.4 and then lines up to Von Koch curve with random interval with Df=1.14. Here, our goal is to try to interpret the low conductivity and/or broad forbidden gap of GO doped PAAm gels, by the distribution of GO in the final form of the produced gel.Keywords: composite gels, fluorescence, fractal, scaling
Procedia PDF Downloads 3082846 Dynamic Response and Damage Modeling of Glass Fiber Reinforced Epoxy Composite Pipes: Numerical Investigation
Authors: Ammar Maziz, Mostapha Tarfaoui, Said Rechak
Abstract:
The high mechanical performance of composite pipes can be adversely affected by their low resistance to impact loads. Loads in dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, an advanced 3-D finite element (FE) model, based on the use of intralaminar damage models was developed and used to predict damage under low-velocity impact. The performance of the numerical model is validated with the confrontation with the results of experimental tests. The results show that at low impact energy, the damage happens mainly by matrix cracking and delamination. The model capabilities to simulate the low-velocity impact events on the full-scale composite structures were proved.Keywords: composite materials, low velocity impact, FEA, dynamic behavior, progressive damage modeling
Procedia PDF Downloads 1722845 Examining the Effects of Production Method on Aluminium A356 Alloy and A356-10%SiCp Composite for Hydro Turbine Bucket Application
Authors: Williams S. Ebhota, Freddie L. Inambao
Abstract:
This study investigates the use of centrifugal casting method to fabricate functionally graded aluminium A356 Alloy and A356-10%SiCp composite for hydro turbine bucket application. The study includes the design and fabrication of a permanent mould. The mould was put into use and the buckets of A356 Alloy and A356-10%SiCp composite were cast, cut and machined into specimens. Some specimens were given T6 heat treatment and the specimens were prepared for different examinations accordingly. The SiCp particles were found to be more at inner periphery of the bucket. The maximum hardness of As-Cast A356 and A356-10%SiCp composite was recorded at the inner periphery to be 60 BRN and 95BRN, respectively. And these values were appreciated to 98BRN and 122BRN for A356 alloy and A356-10%SiCp composite, respectively. It was observed that the ultimate tensile stress and yield tensile stress prediction curves show the same trend.Keywords: A356 alloy, A356-10%SiCp composite, centrifugal casting, Pelton bucket, turbine blade
Procedia PDF Downloads 2802844 Study of the Effect of Sewing on Non Woven Textile Waste at Dry and Composite Scales
Authors: Wafa Baccouch, Adel Ghith, Xavier Legrand, Faten Fayala
Abstract:
Textile waste recycling has become a necessity considering the augmentation of the amount of waste generated each year and the ecological problems that landfilling and burning can cause. Textile waste can be recycled into many different forms according to its composition and its final utilization. Using this waste as reinforcement to composite panels is a new recycling area that is being studied. Compared to virgin fabrics, recycled ones present the disadvantage of having lower structural characteristics, when they are eco-friendly and with low cost. The objective of this work is transforming textile waste into composite material with good characteristic and low price. In this study, we used sewing as a method to improve the characteristics of the recycled textile waste in order to use it as reinforcement to composite material. Textile non-woven waste was afforded by a local textile recycling industry. Performances tests were evaluated using tensile testing machine and based on the testing direction for both reinforcements and composite panels; machine and transverse direction. Tensile tests were conducted on sewed and non sewed fabrics, and then they were used as reinforcements to composite panels via epoxy resin infusion method. Rule of mixtures is used to predict composite characteristics and then compared to experimental ones.Keywords: composite material, epoxy resin, non woven waste, recycling, sewing, textile
Procedia PDF Downloads 5882843 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.Keywords: emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi method
Procedia PDF Downloads 2882842 Excision and Reconstruction of a Hypertrophic and Functional Bleb with Bovine Pericardium (Tutopatch®) and Amniotic Membrane: A Case Report
Authors: Blanca Fatela Cantillo, Silvia Iglesias Cerrato, Guadalupe Garrido Ceca
Abstract:
Purpose: Bleb dysfunction is a late complication following glaucoma filtration surgery. We describe our surgical technique for excision and reconstruction of a hypertrophic bleb complication using bovine pericardium patch graft (Tutopatch®) and amniotic membrane. Material and methods: The case report presents a hypertrophic bleb over the cornea with good intraocular pressure control. The hanging bleb without leak caused dysesthesia and high irregular astigmatism. Bleb reconstruction involved the excision of corneal fibrous material and avascular conjunctiva, preserving the original scleral and tennon. Bovine pericardium patch graft (Tutopatch®) was sited over these with fixed sutures, reinforcing the underlying scleral, and the conjunctiva advanced. The superior epithelium corneal defect was covered using an amniotic membrane. Conclusion: Repair of bleb dysfunction with varied techniques has been reported, including conjunctival advancement, use of scleral patch graft, dural patch graft, or pericardium. Additional use of amniotic membrane promotes epithelialization and exhibits anti-fibrotic and anti-inflammatory features. Reconstruction with bovine pericardium patch graft and amniotic membrane resulted in pain relief, visual rehabilitation, and good aesthetic results, with preservation of bleb function.Keywords: reconstruction, hypertrophic bleb, bovine pericardium, amniotic membrane, dysesthesia of the bleb
Procedia PDF Downloads 782841 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane
Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu
Abstract:
A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced
Procedia PDF Downloads 2942840 A Novel Nanocomposite Membrane Designed for the Treatment of Oil/Gas Produced Water
Authors: Zhaoyang Liu, Detao Qin, Darren Delai Sun
Abstract:
The onshore production of oil and gas (for example, shale gas) generates large quantities of wastewater, referred to be ‘produced water’, which contains high contents of oils and salts. The direct discharge of produced water, if not appropriately treated, can be toxic to the environment and human health. Membrane filtration has been deemed as an environmental-friendly and cost-effective technology for treating oily wastewater. However, conventional polymeric membranes have their drawbacks of either low salt rejection rate or high membrane fouling tendency when treating oily wastewater. Recent years, forward osmosis (FO) membrane filtration has emerged as a promising technology with its unique advantages of low operation pressure and less membrane fouling tendency. However, until now there is still no report about FO membranes specially designed and fabricated for treating the oily and salty produced water. In this study, a novel nanocomposite FO membrane was developed specially for treating oil- and salt-polluted produced water. By leveraging the recent advance of nanomaterials and nanotechnology, this nanocomposite FO membrane was designed to be made of double layers: an underwater oleophobic selective layer on top of a nanomaterial infused polymeric support layer. Wherein, graphene oxide (GO) nanosheets were selected to add into the polymeric support layer because adding GO nanosheets can optimize the pore structures of the support layer, thus potentially leading to high water flux for FO membranes. In addition, polyvinyl alcohol (PVA) hydrogel was selected as the selective layer because hydrated and chemically-crosslinked PVA hydrogel is capable of simultaneously rejecting oil and salt. After nanocomposite FO membranes were fabricated, the membrane structures were systematically characterized with the instruments of TEM, FESEM, XRD, ATR-FTIR, surface zeta-potential and Contact angles (CA). The membrane performances for treating produced waters were tested with the instruments of TOC, COD and Ion chromatography. The working mechanism of this new membrane was also analyzed. Very promising experimental results have been obtained. The incorporation of GO nanosheets can reduce internal concentration polarization (ICP) effect in the polymeric support layer. The structural parameter (S value) of the new FO membrane is reduced by 23% from 265 ± 31 μm to 205 ± 23 μm. The membrane tortuosity (τ value) is decreased by 20% from 2.55 ± 0.19 to 2.02 ± 0.13 μm, which contributes to the decrease of S value. Moreover, the highly-hydrophilic and chemically-cross-linked hydrogel selective layer present high antifouling property under saline oil/water emulsions. Compared with commercial FO membrane, this new FO membrane possesses three times higher water flux, higher removal efficiencies for oil (>99.9%) and salts (>99.7% for multivalent ions), and significantly lower membrane fouling tendency (<10%). To our knowledge, this is the first report of a nanocomposite FO membrane with the combined merits of high salt rejection, high oil repellency and high water flux for treating onshore oil/gas produced waters. Due to its outstanding performance and ease of fabrication, this novel nanocomposite FO membrane possesses great application potential in wastewater treatment industry.Keywords: nanocomposite, membrane, polymer, graphene oxide
Procedia PDF Downloads 2502839 Post-Combustion CO₂ Capture: From Membrane Synthesis to Module Intensification
Authors: Imran Khan Swati, Mohammad Younas
Abstract:
This work aims to explore the potential applications of polymeric hydrophobic membranes and green ionic liquids (ILs). Protic and aprotic ILs were synthesized in the lab., characterized, and tested for CO₂/N₂ and CO₂/CH₄ separation using hydrophobic polymeric membranes via supported ionic liquid membrane (SILM). ILs were verified by FTIR spectroscopy. The SILMs were stable at room temperature up to 0.5 MPa. For CO₂, [BSmim][tos] had the greatest coefficient of solubility and permeability, along with all ILs. At 0.5 MPa, IL [BSmim][tos] was found with a selectivity of 56.2 and 47.5 for pure CO₂/N₂ and CO₂/CH₄, respectively. The ILs synthesized for this study are rated as [BSmim][tos]>[BSmpy][tos]>[Bmim][Cl]>[Bpy][Cl] based on their SILM separation performance. Furthermore, high values of selectivity of [BSmim][tos] and [BSmpy][tos] support the use of ILs for CO₂ separation using SILMs. The study was extended to synthesize and test the ammonium-based ILs, [2-HEA][f] and [2-HEA][Hs]. These ILs achieved 50 % less selectivity for CO₂/N₂ as compared to [BSmim][tos] and [BSmpy][tos]. Nevertheless, the permeability of CO₂ achieved with [2-HEA][f] and [2-HEA][Hs] is more than 20 times higher than the [BSmim][tos] and [BSmpy][tos]. Later, the CO₂/N₂ permeability and selectivity study was extended using a flat sheet membrane contactor with recirculated IL. The contact angle effects, liquid entry pressure (LEP), initial CO₂ concentration, and type of solvents and membrane material on the CO₂ capture efficiency and membrane wetting in the post-combustion capture (PCC) process have been experimentally investigated and evaluated. Polytetrafluoroethylene (PTFE) has shown the most hydrophobic property with 6-170 loss in the contact angle. Furthermore, [Omim][BF4] and [Bmim][BF6] have exhibited only 5-8 % loss in LEP using PTFE membrane support. The CO₂ capture efficiency has been achieved as 80.8-99.8 % in different combinations of ILs and membrane support, keeping all other variables constant. While increasing CO₂ concentration from 15 to 45 % vol., an increase of nearly three folds in the CO₂ mass transfer flux was observed. The combination of [Omim][BF4] and PTFE membrane witnessed good long-term stability with only a 20 % loss in CO₂ capture efficiency in 480 min of continuous operation. A 3- D simulation model for non-dispersive solvent absorption in membrane contactors provides insight into the optimum design of a separation system for a specific application minimizing the overall cost and making the process environment-friendly.Keywords: Post-combustion CO2 capture, membrane synthesis, process development, permeability and selectivity, ionic liquids
Procedia PDF Downloads 722838 Hybrid Method Development for the Removal of Crystal Violet Dye from Aqueous Medium
Authors: D. Nareshyadav, K. Anand Kishore, D. Bhagawan
Abstract:
Water scarcity is the much-identified issue all over the world. The available sources of water need to be reused to sustainable future. The present work explores the treatment of dye wastewater using combinative photocatalysis and ceramic nanofiltration membrane. Commercial ceramic membrane and TiO₂ catalyst were used in this study to investigate the removal of crystal violet dye from the aqueous solution. The effect of operating parameters such as inlet pressure, initial concentration of crystal violet dye, catalyst (TiO₂) loading, initial pH was investigated in the individual system as well as the combined system. In this study, 95 % of dye water was decolorized and 89 % of total organic carbon (TOC) was removed by the hybrid system for 500 ppm of dye and 0.75 g/l of TiO₂ concentrations at pH 9. The operation of the integrated photocatalytic reactor and ceramic membrane filtration has shown the maximum removal of crystal violet dye compared to individual systems. Hence this proposed method may be effective for the removal of Crystal violet dye from effluents.Keywords: advanced oxidation process, ceramic nanoporous membrane, dye degradation/removal, hybrid system, photocatalysis
Procedia PDF Downloads 1782837 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation
Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah
Abstract:
Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.Keywords: MFI membrane, nanocomposite, ceramic hollow fibre, CO2, ion-exchange
Procedia PDF Downloads 3002836 Numerical Simulation of Lightning Strike Direct Effects on Aircraft Skin Composite Laminate
Authors: Muhammad Khalil, Nader Abuelfoutouh, Gasser Abdelal, Adrian Murphy
Abstract:
Nowadays, the direct effects of lightning to aircrafts are of great importance because of the massive use of composite materials. In comparison with metallic materials, composites present several weaknesses for lightning strike direct effects. Especially, their low electrical and thermal conductivities lead to severe lightning strike damage. The lightning strike direct effects are burning, heating, magnetic force, sparking and arcing. As the problem is complex, we investigated it gradually. A magnetohydrodynamics (MHD) model is developed to simulate the lightning strikes in order to estimate the damages on the composite materials. Then, a coupled thermal-electrical finite element analysis is used to study the interaction between the lightning arc and the composite laminate and to investigate the material degradation.Keywords: composite structures, lightning multiphysics, magnetohydrodynamic (MHD), coupled thermal-electrical analysis, thermal plasmas.
Procedia PDF Downloads 371