Search results for: maritime security intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4400

Search results for: maritime security intelligence

2360 Role of Obama's Administration Counter-Terrorism Strategies towards Pakistan

Authors: Ahmed Bux Jamali

Abstract:

The purpose of this study is to examine and evaluate the overall counterterrorism cooperation during Obama Administration towards Pakistan. It aims and focuses on the performances and measures taken by United States of America during President Obama in office in order to eradicate terrorism from Pakistan. Being a grave national security threat, terrorism played a disastrous role in the domestic peace and stability of both countries. For the sake of curbing this menace in South Asia in general and Pakistan in particular, the role of Obama Administration is viable and results-oriented despite major ups and downs in Pakistan U.S Relations during that period of time. Obama administration formulated policies when he comes to office in 2009 by looking at the already efforts done by Bush Administration to counterterrorism from Pakistan. Obama’s foreign policy was revolving around defense and diplomacy when it comes to dealing with Pakistan. The concept of smart power was indeed a core principle of Obama’s administration to gain the strategic objectives in Pakistan. Obama’s strategies in terms of providing military aid packages and various assistance programs, working on institutional building and strengthening the economy helped Pakistan in strengthening the military capabilities to go for militant operation in the safe havens area in the tribal areas of Pakistan. It further helped building institutional mechanism in the governmental policies to counter terrorism and militancy. The training of combat forces, artillery, and equipment provided by US proved fatal for the militant terrorist organizations seeking hideouts in the tribal areas of Pakistan. Resultantly, many top leaders of al Qaeda and many affiliated militant groups were captured and given to US as well. Despite many ups and downs in the bilateral relations on various domestic and international issues, both countries didn’t compromise the elimination of terrorist phenomena from Pakistan which was indeed a great success of the Obama administration’s counterterrorism and counterinsurgency strategies in the long run.

Keywords: counterterrorism cooperation, national security strategy, Obama administration, Pakistan-US relations

Procedia PDF Downloads 180
2359 Gender-Specific Vulnerability on Climate Change and Food Security Status - A Catchment Approach on Agroforestry Systems - A Multi-Country Case Study

Authors: Zerihun Yohannes Amare Id, Bernhard Freyer, Ky Serge Stephane, Ouéda Adama, Blessing Mudombi, Jean Nzuma, Mekonen Getachew Abebe, Adane Tesfaye, Birtukan Atinkut Asmare, Tesfahun Asmamaw Kassie

Abstract:

The study was conducted in Ethiopia (Zege Catchment) (ZC), Zimbabwe (Upper Save Catchment) (USC), and Burkina Faso (Nakambe Catchment) (NC). The study utilized a quantitative approach with 180 participants and complemented it with qualitative methods, including 33 key informant interviews and 6 focus group discussions. Households in ZC (58%), NC (55%), and US (40%) do not cover their household food consumption from crop production. The households rely heavily on perennial cash crops rather than annual crop production. Exposure indicators in ZC (0.758), USC (0.774), and NC (0.944), and sensitivity indicators in ZC (0.849) and NC (0.937) show statistically significant and high correlation with vulnerability. In the USC, adaptive capacity (0.746) and exposure (0.774) are also statistically significant and highly correlated with vulnerability. Vulnerability levels of the NC are very high (0.75) (0.85 female and 0.65 male participants) compared to the USC (0.66) (0.69 female and 0.61 male participants) and ZC (0.47) (0.34 female and 0.58 male participants). Female-headed households had statistically significantly lower vulnerability index compared to males in ZC, while male-headed households had statistically significantly lower vulnerability index compared to females in USC and NC. The reason is land certification in ZC (80%) is higher than in the US (10%) and NC (8%). Agroforestry practices variables across the study catchments had statistically significant contributions to households' adaptive capacity. We conclude that agroforestry practices do have substantial benefits in increasing women's adaptive capacity and reducing their vulnerability to climate change and food insecurity.

Keywords: climate change vulnerability, agroforestry, gender, food security, Sub-Saharan Africa

Procedia PDF Downloads 98
2358 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 105
2357 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management

Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro

Abstract:

This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.

Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization

Procedia PDF Downloads 50
2356 Transformational Leadership in the United States to Negate Current Ethnocentrisms

Authors: Molly Meadows

Abstract:

Following the presidency of Donald J. Trump, Americans have become hyperaware of ethnocentrisms that plague the culture. The president's egoist ethics encouraged a divide between what the citizens of the US identified as just or unjust. In the race for global supremacy and leading ideology, fears have arisen, exacerbated by the ethnocentricity of the country's leader, pointing to the possible harmful ethical standards of competing nations. Due to the concept of ethical absolutism, an international code of ethics would not be possible, and the changes needed to eliminate the stigma surrounding other cultures of thought would need to come from the governing body of the US. As the current leading global ideology, the US would need its government to embody a transformational leadership style in order to unite the motivations of the citizens and encourage intercultural tolerance.

Keywords: ethics, transformational leadership, American politics, egoism, cultural intelligence, ethical relativism

Procedia PDF Downloads 95
2355 Assessing the Indicators Influencing Port Resilience: A Comprehensive Literature Review

Authors: Guo Rui, Cao Xinhu

Abstract:

In recent decades, the world has endured severe challenges in light of climate change, epidemics, geopolitics, terrorism, economic uncertainties, as well as regional conflicts and rivalries. The appropriate use of critical infrastructures (Cis) is confronted. Ports, as typical Cis cover more than 80% of the global freight movement. Within this context, even the minimal disruption of port operations could cause malfunction of the holistic supply chain network and substantial economic losses. Hence, it is crucial to evaluate port performance from the perspective of resilience. Research on resilience and risk/safety management has been increasing, however, it needs more attention, as it could prevent potential socio-economic losses and inspire decision-makers to make resilience-based decisions to answer the challenges, such as COVID-19. To facilitate better moves from decision-makers, ports need to identify proper factors influencing port resilience. Inappropriately influenced factor selection could have a cascading effect on undesirable port performances. Thus, a systematic evaluation of factors is essential to stimulate the improvement process of port resilience investigation. This study zooms into container ports considering their critical role in international trade and global supply chains. 440 articles are selected after relevance ranking, and consequently, 62 articles are scrutinized after the title and abstract screening. Forty-one articles are included for bibliographic analysis in the end. It is found that there is no standardized index system to measure port resilience. And most studies evaluate port resilience merely in the recovery phase. Only two articles cover absorption, adaption and recovery state. However, no literature involves the prevention state. Hence, a uniform resilience index system is expected with a clear resilience definition. And port safety and security should also be considered while evaluating port resilience.

Keywords: port resilience, port safety and security, literature review, index system, port performance

Procedia PDF Downloads 127
2354 Enhancing Transit Trade, Facilitation System and Supply Chain Security for Local, Regional and an International Corridor

Authors: Moh’d A. AL-Shboul

Abstract:

Recently, and due to Arab spring and terrorism around the globe, pushing and driving most governments potentially to harmonize their border measures particularly the regional and an international transit trade within and among Customs Unions. The main purpose of this study is to investigate and provide an insight for monitoring and controlling the trade supply chain within and among different countries by using technological advancement (i.e. an electronic tracking system, etc.); furthermore, facilitate the local and intra-regional trade among countries through reviewing the recent trends and practical implementation of an electronic transit traffic and cargo that related to customs measures by introducing and supporting some case studies of several international and landlocked transit trade countries. The research methodology employed in this study was described as qualitative by conducting few interviews with managers, transit truck drivers, and traders and reviewing the related literature to collect qualitative data from secondary sources such as statistical reports, previous studies, etc. The results in this study show that Jordan and other countries around the globe that used an electronic tracking system for monitoring transit trade has led to a significant reduction in cost, effort and time in physical movement of goods internally and crossing through other countries. Therefore, there is no need to escort transit trucks by customs staff; hence, the rate of escort transit trucks is reduced by more than ninety percent, except the bulky and high duty goods. Electronic transit traffic has been increased; the average transit time journey has been reduced by more than seventy percent and has led to decrease in rates of smuggling up to fifty percent. The researcher recommends considering Jordan as regional and international office for tracking electronically and monitoring the transit trade for many considerations.

Keywords: electronic tracking system, facilitation system, regional and international corridor, supply chain security, transit trade

Procedia PDF Downloads 503
2353 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen

Abstract:

In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence

Procedia PDF Downloads 656
2352 The Integration of Fintech Technologies in Crowdfunding: A Catalyst for Financial Inclusion and Responsible Finance

Authors: Badrane Hasnaa, Bouzahir Brahim

Abstract:

This article examines the impact of fintech technologies on crowdfunding, particularly their potential to enhance financial inclusion and promote responsible finance. It explores how the adoption of blockchain, artificial intelligence, and other fintech innovations is transforming crowdfunding by making it more accessible, transparent, and ethical. By analyzing case studies and recent data, the article illustrates how these technologies help overcome traditional barriers to financing while promoting sustainable financial practices. The findings suggest that integrating fintech into crowdfunding can not only broaden access to funding for marginalized populations but also encourage more responsible management of financial resources, contributing to a fairer and more resilient economy.

Keywords: crowdfunding, fintech, inclusion financière, finance responsible, blockchain, resilience financière

Procedia PDF Downloads 23
2351 ​​An Overview and Analysis of ChatGPT 3.5/4.0​

Authors: Sarah Mohammed, Huda Allagany, Ayah Barakat, Muna Elyas

Abstract:

This paper delves into the history and development of ChatGPT, tracing its evolution from its inception by OpenAI to its current state, and emphasizing its design improvements and strategic partnerships. It also explores the performance and applicability of ChatGPT versions 3.5 and 4 in various contexts, examining its capabilities and limitations in producing accurate and relevant responses. Utilizing a quantitative approach, user satisfaction, speed of response, learning capabilities, and overall utility in academic performance were assessed through surveys and analysis tools. Findings indicate that while ChatGPT generally delivers high accuracy and speed in responses, the need for clarification and more specific user instructions persists. The study highlights the tool's increasing integration across different sectors, showcasing its potential in educational and professional settings.

Keywords: artificial intelligence, chat GPT, analysis, education

Procedia PDF Downloads 51
2350 Autonomous Quantum Competitive Learning

Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally

Abstract:

Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.

Keywords: competitive learning, quantum gates, quantum gates, winner-take-all

Procedia PDF Downloads 472
2349 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector

Authors: Aron Witkowski, Andrzej Wodecki

Abstract:

Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.

Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing

Procedia PDF Downloads 49
2348 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks

Authors: Aydin Azizi, Aburrahman Tanira

Abstract:

The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.

Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel

Procedia PDF Downloads 405
2347 Proposal for a Web System for the Control of Fungal Diseases in Grapes in Fruits Markets

Authors: Carlos Tarmeño Noriega, Igor Aguilar Alonso

Abstract:

Fungal diseases are common in vineyards; they cause a decrease in the quality of the products that can be sold, generating distrust of the customer towards the seller when buying fruit. Currently, technology allows the classification of fruits according to their characteristics thanks to artificial intelligence. This study proposes the implementation of a control system that allows the identification of the main fungal diseases present in the Italia grape, making use of a convolutional neural network (CNN), OpenCV, and TensorFlow. The methodology used was based on a collection of 20 articles referring to the proposed research on quality control, classification, and recognition of fruits through artificial vision techniques.

Keywords: computer vision, convolutional neural networks, quality control, fruit market, OpenCV, TensorFlow

Procedia PDF Downloads 83
2346 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 283
2345 Emerging Technology for 6G Networks

Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily

Abstract:

Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and the year 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.

Keywords: 6G networks, artificial intelligence (AI), Li-Fi technology, Terahertz (THz) communication, visible light communication (VLC)

Procedia PDF Downloads 94
2344 Deployment of Attack Helicopters in Conventional Warfare: The Gulf War

Authors: Mehmet Karabekir

Abstract:

Attack helicopters (AHs) are usually deployed in conventional warfare to destroy armored and mechanized forces of enemy. In addition, AHs are able to perform various tasks in the deep, and close operations – intelligence, surveillance, reconnaissance, air assault operations, and search and rescue operations. Apache helicopters were properly employed in the Gulf Wars and contributed the success of campaign by destroying a large number of armored and mechanized vehicles of Iraq Army. The purpose of this article is to discuss the deployment of AHs in conventional warfare in the light of Gulf Wars. First, the employment of AHs in deep and close operations will be addressed regarding the doctrine. Second, the US armed forces AH-64 doctrinal and tactical usage will be argued in the 1st and 2nd Gulf Wars.

Keywords: attack helicopter, conventional warfare, gulf wars

Procedia PDF Downloads 473
2343 Terraria AI: YOLO Interface for Decision-Making Algorithms

Authors: Emmanuel Barrantes Chaves, Ernesto Rivera Alvarado

Abstract:

This paper presents a method to enable agents for the Terraria game to evaluate algorithms commonly used in general video game artificial intelligence competitions. The usage of the ‘You Only Look Once’ model in the first layer of the process obtains information from the screen, translating this information into a video game description language known as “Video Game Description Language”; the agents take that as input to make decisions. For this, the state-of-the-art algorithms were tested and compared; Monte Carlo Tree Search and Rolling Horizon Evolutionary; in this case, Rolling Horizon Evolutionary shows a better performance. This approach’s main advantage is that a VGDL beforehand is unnecessary. It will be built on the fly and opens the road for using more games as a framework for AI.

Keywords: AI, MCTS, RHEA, Terraria, VGDL, YOLOv5

Procedia PDF Downloads 96
2342 Trans-Boundary Water Disputes between India and Bangladesh and the Policy Responses

Authors: Aditaya Narayan Mishra

Abstract:

Unequal distribution of environmental resources as a possible cause of conflict has been the topic of substantial research, and these connections have ruled the post-Cold War attention in the discourse of environmental security. In this category, considerable concentration has been given to water resources, on account of their important standing for human existence. Thus, water is considered to be one of the most important non-conventional security issues. As per this consideration, the case of India-Bangladesh is one of the most critical examples of disputes over transboundary water sharing. The concern regarding sharing of trans-boundary rivers has been the main focus of Bangladesh and India‘s relationship for the last forty-five years. Both countries share fifty-four rivers, most of which have originated in the Himalayan range. The main causes for problems in the sharing of the waters of trans-boundary rivers between India and Bangladesh include the: Farakka Barrage, Teesta river sharing issue, River linking project and Tipaimukh Dam. The construction of Farakka barrage across the Ganga River was the beginning of water dispute. Attempts at unilateral exploitation of the trans-boundary water resources led to inter-state conflicts that spilled over into other areas of bilateral disputes between India and Bangladesh. Apart from Farakka, Barrage, the disputes over Teesta River sharing, River linking project and Tipaimukh Dam are also vital contents for the both countries bilateral diplomacy. Till date, India and Bangladesh have signed five treaties regarding water sharing. However, all these treaties have been rendered worthless due to mistrust and political upheaval in both countries. The current paper would address all these water sharing disputes between India and Bangladesh with focus on the various policy responses (both bilateral and multilateral initiatives) to deal with these water sharing disputes. It will try to analyze the previous agreements and their drawbacks and loopholes. In addition, it will mention the reasons for water sharing cooperation between India and Bangladesh.

Keywords: India and Bangladesh relations, water disputes, Teesta, river linking project, Tipaimukh Dam, Farakka, policy responses

Procedia PDF Downloads 230
2341 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: artificial neural network, back-propagation, tide data, training algorithm

Procedia PDF Downloads 484
2340 River Catchment’s Demography and the Dynamics of Access to Clean Water in the Rural South Africa

Authors: Yiseyon Sunday Hosu, Motebang Dominic Vincent Nakin, Elphina N. Cishe

Abstract:

Universal access to clean and safe drinking water and basic sanitation is one of the targets of the 6th Sustainable Development Goals (SDGs). This paper explores the evidence-based indicators of Water Rights Acts (2013) among households in the rural communities in the Mthatha River catchment of OR Tambo District Municipality of South Africa. Daily access to minimum 25 litres/person and the factors influencing clean water access were investigated in the catchment. A total number of 420 households were surveyed in the upper, peri-urban, lower and coastal regions of Mthatha Rivier catchment. Descriptive and logistic regression analyses were conducted on the data collected from the households to elicit vital information on domestic water security among rural community dwellers. The results show that approximately 68 percent of total households surveyed have access to the required minimum 25 litre/person/day, with 66.3 percent in upper region, 76 per cent in the peri-urban, 1.1 percent in the lower and 2.3 percent in the coastal regions. Only 30 percent among the total surveyed households had access to piped water either in the house or public taps. The logistic regression showed that access to clean water was influenced by lack of water infrastructure, proximity to urban regions, daily flow of pipe-borne water, household size and distance to public taps. This paper recommends that viable integrated rural community-based water infrastructure provision strategies between NGOs and local authority and the promotion of point of use (POU) technologies to enhance better access to clean water.

Keywords: domestic water, household technology, water security, rural community

Procedia PDF Downloads 353
2339 Healthy Architecture Applied to Inclusive Design for People with Cognitive Disabilities

Authors: Santiago Quesada-García, María Lozano-Gómez, Pablo Valero-Flores

Abstract:

The recent digital revolution, together with modern technologies, is changing the environment and the way people interact with inhabited space. However, in society, the elderly are a very broad and varied group that presents serious difficulties in understanding these modern technologies. Outpatients with cognitive disabilities, such as those suffering from Alzheimer's disease (AD), are distinguished within this cluster. This population group is in constant growth, and they have specific requirements for their inhabited space. According to architecture, which is one of the health humanities, environments are designed to promote well-being and improve the quality of life for all. Buildings, as well as the tools and technologies integrated into them, must be accessible, inclusive, and foster health. In this new digital paradigm, artificial intelligence (AI) appears as an innovative resource to help this population group improve their autonomy and quality of life. Some experiences and solutions, such as those that interact with users through chatbots and voicebots, show the potential of AI in its practical application. In the design of healthy spaces, the integration of AI in architecture will allow the living environment to become a kind of 'exo-brain' that can make up for certain cognitive deficiencies in this population. The objective of this paper is to address, from the discipline of neuroarchitecture, how modern technologies can be integrated into everyday environments and be an accessible resource for people with cognitive disabilities. For this, the methodology has a mixed structure. On the one hand, from an empirical point of view, the research carries out a review of the existing literature about the applications of AI to build space, following the critical review foundations. As a unconventional architectural research, an experimental analysis is proposed based on people with AD as a resource of data to study how the environment in which they live influences their regular activities. The results presented in this communication are part of the progress achieved in the competitive R&D&I project ALZARQ (PID2020-115790RB-I00). These outcomes are aimed at the specific needs of people with cognitive disabilities, especially those with AD, since, due to the comfort and wellness that the solutions entail, they can also be extrapolated to the whole society. As a provisional conclusion, it can be stated that, in the immediate future, AI will be an essential element in the design and construction of healthy new environments. The discipline of architecture has the compositional resources to, through this emerging technology, build an 'exo-brain' capable of becoming a personal assistant for the inhabitants, with whom to interact proactively and contribute to their general well-being. The main objective of this work is to show how this is possible.

Keywords: Alzheimer’s disease, artificial intelligence, healthy architecture, neuroarchitecture, architectural design

Procedia PDF Downloads 61
2338 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 83
2337 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
2336 Empowering Girls and Youth in Bangladesh: Importance of Creating Safe Digital Space for Online Learning and Education

Authors: Md. Rasel Mia, Ashik Billah

Abstract:

The empowerment of girls and youth in Bangladesh is a demanding issue in today's digital age, where online learning and education have become integral to personal and societal development. This abstract explores the critical importance of creating a secure online environment for girls and youth in Bangladesh, emphasizing the transformative impact it can have on their access to education and knowledge. Bangladesh, like many developing nations, faces gender inequalities in education and access to digital resources. The creation of a safe digital space not only mitigates the gender digital divide but also fosters an environment where girls and youth can thrive academically and professionally. This manuscript draws attention to the efforts through a mixed-method study to assess the current digital landscape in Bangladesh, revealing disparities in phone and internet access, online practices, and awareness of cyber security among diverse demographic groups. Moreover, the study unveils the varying levels of familial support and barriers encountered by girls and youth in their quest for digital literacy. It emphasizes the need for tailored training programs that address specific learning needs while also advocating for enhanced internet accessibility, safe online practices, and inclusive online platforms. The manuscript culminates in a call for collaborative efforts among stakeholders, including NGOs, government agencies, and telecommunications companies, to implement targeted interventions that bridge the gender digital divide and pave the way for a brighter, more equitable future for girls and youth in Bangladesh. In conclusion, this research highlights the undeniable significance of creating a safe digital space as a catalyst for the empowerment of girls and youth in Bangladesh, ensuring that they not only access but excel in the online space, thereby contributing to their personal growth and the advancement of society as a whole.

Keywords: collaboration, cyber security, digital literacy, digital resources, inclusiveness

Procedia PDF Downloads 61
2335 Sustainable Thermal Energy Storage Technologies: Enhancing Post-Harvest Drying Efficiency in Sub-Saharan Agriculture

Authors: Luís Miguel Estevão Cristóvão, Constâncio Augusto Machanguana, Fernando Chichango, Salvador Grande

Abstract:

Sub-Saharan African nations depend greatly on agriculture, a sector mainly marked by low production. Most of the farmers live in rural areas and employ basic labor-intensive technologies that lead to time inefficiencies and low overall effectiveness. Even with attempts to enhance farmers’ welfare through improved seeds and fertilizers, meaningful outcomes are yet to be achieved due to huge amounts of post-harvest losses. Such losses significantly endanger food security, economic stability, and result in unsustainable agricultural practices because more land, water, labor, energy, fertilizer, and other inputs must be used to produce more food. Drying, as a critical post-harvest process involving simultaneous heat and mass transfer, deserves attention. Among alternative green-energy sources, solar energy-based drying garners attention, particularly for small-scale farmers in remote communities. However, the intermittent nature of solar radiation poses challenges. To address this, energy storage solutions like rock-based thermal energy storage offer cost-effective solutions tailored to the needs of farmers. Methodologically, three solar dryers were constructed of metal, wood, and clay brick. Several tests were carried out with and without energy storage material. Notably, it has been demonstrated that soapstone stands out as a promising material due to its affordability and high specific energy capacity. By implementing these greener technologies, Sub-Saharan African countries could mitigate post-harvest losses, enhance food availability, improve nutrition, and promote sustainable resource utilization.

Keywords: energy storage, food security, post-harvest, solar dryer

Procedia PDF Downloads 25
2334 Mapping the Suitable Sites for Food Grain Crops Using Geographical Information System (GIS) and Analytical Hierarchy Process (AHP)

Authors: Md. Monjurul Islam, Tofael Ahamed, Ryozo Noguchi

Abstract:

Progress continues in the fight against hunger, yet an unacceptably large number of people still lack food they need for an active and healthy life. Bangladesh is one of the rising countries in the South-Asia but still lots of people are food insecure. In the last few years, Bangladesh has significant achievements in food grain production but still food security at national to individual levels remain a matter of major concern. Ensuring food security for all is one of the major challenges that Bangladesh faces today, especially production of rice in the flood and poverty prone areas. Northern part is more vulnerable than any other part of Bangladesh. To ensure food security, one of the best way is to increase domestic production. To increase production, it is necessary to secure lands for achieving optimum utilization of resources. One of the measures is to identify the vulnerable and potential areas using Land Suitability Assessment (LSA) to increase rice production in the poverty prone areas. Therefore, the aim of the study was to identify the suitable sites for food grain crop rice production in the poverty prone areas located at the northern part of Bangladesh. Lack of knowledge on the best combination of factors that suit production of rice has contributed to the low production. To fulfill the research objective, a multi-criteria analysis was done and produced a suitable map for crop production with the help of Geographical Information System (GIS) and Analytical Hierarchy Process (AHP). Primary and secondary data were collected from ground truth information and relevant offices. The suitability levels for each factor were ranked based on the structure of FAO land suitability classification as: Currently Not Suitable (N2), Presently Not Suitable (N1), Marginally Suitable (S3), Moderately Suitable (S2) and Highly Suitable (S1). The suitable sites were identified using spatial analysis and compared with the recent raster image from Google Earth Pro® to validate the reliability of suitability analysis. For producing a suitability map for rice farming using GIS and multi-criteria analysis tool, AHP was used to rank the relevant factors, and the resultant weights were used to create the suitability map using weighted sum overlay tool in ArcGIS 10.3®. Then, the suitability map for rice production in the study area was formed. The weighted overly was performed and found that 22.74 % (1337.02 km2) of the study area was highly suitable, while 28.54% (1678.04 km2) was moderately suitable, 14.86% (873.71 km2) was marginally suitable, and 1.19% (69.97 km2) was currently not suitable for rice farming. On the other hand, 32.67% (1920.87 km2) was permanently not suitable which occupied with settlements, rivers, water bodies and forests. This research provided information at local level that could be used by farmers to select suitable fields for rice production, and then it can be applied to other crops. It will also be helpful for the field workers and policy planner who serves in the agricultural sector.

Keywords: AHP, GIS, spatial analysis, land suitability

Procedia PDF Downloads 241
2333 Dual-use UAVs in Armed Conflicts: Opportunities and Risks for Cyber and Electronic Warfare

Authors: Piret Pernik

Abstract:

Based on strategic, operational, and technical analysis of the ongoing armed conflict in Ukraine, this paper will examine the opportunities and risks of using small commercial drones (dual-use unmanned aerial vehicles, UAV) for military purposes. The paper discusses the opportunities and risks in the information domain, encompassing both cyber and electromagnetic interference and attacks. The paper will draw conclusions on a possible strategic impact to the battlefield outcomes in the modern armed conflicts by the widespread use of dual-use UAVs. This article will contribute to filling the gap in the literature by examining based on empirical data cyberattacks and electromagnetic interference. Today, more than one hundred states and non-state actors possess UAVs ranging from low cost commodity models, widely are dual-use, available and affordable to anyone, to high-cost combat UAVs (UCAV) with lethal kinetic strike capabilities, which can be enhanced with Artificial Intelligence (AI) and Machine Learning (ML). Dual-use UAVs have been used by various actors for intelligence, reconnaissance, surveillance, situational awareness, geolocation, and kinetic targeting. Thus they function as force multipliers enabling kinetic and electronic warfare attacks and provide comparative and asymmetric operational and tactical advances. Some go as far as argue that automated (or semi-automated) systems can change the character of warfare, while others observe that the use of small drones has not changed the balance of power or battlefield outcomes. UAVs give considerable opportunities for commanders, for example, because they can be operated without GPS navigation, makes them less vulnerable and dependent on satellite communications. They can and have been used to conduct cyberattacks, electromagnetic interference, and kinetic attacks. However, they are highly vulnerable to those attacks themselves. So far, strategic studies, literature, and expert commentary have overlooked cybersecurity and electronic interference dimension of the use of dual use UAVs. The studies that link technical analysis of opportunities and risks with strategic battlefield outcomes is missing. It is expected that dual use commercial UAV proliferation in armed and hybrid conflicts will continue and accelerate in the future. Therefore, it is important to understand specific opportunities and risks related to the crowdsourced use of dual-use UAVs, which can have kinetic effects. Technical countermeasures to protect UAVs differ depending on a type of UAV (small, midsize, large, stealth combat), and this paper will offer a unique analysis of small UAVs both from the view of opportunities and risks for commanders and other actors in armed conflict.

Keywords: dual-use technology, cyber attacks, electromagnetic warfare, case studies of cyberattacks in armed conflicts

Procedia PDF Downloads 102
2332 The Burden and the Consequences of Waste Management in Nigeria: Geophysical Approach

Authors: Joseph Omeiza Alao

Abstract:

The wobbly state of waste management and the high level of environmental irresponsibility is a threat to environmental security, which invariably endangered public health, regional groundwater systems and atmospheric condition. The dumping of waste materials in water bodies and gutters and the frequent burning of waste materials heaped at dumpsites as well depict the highest level of environmental indiscipline. These unruly human factors have compelled this study to apply four different techniques for environmental impact assessment and the possible public health risks of poor waste management in Nigeria. The techniques include a geophysical survey (resistivity data acquisition), dispatched questionnaire surveys, physiochemical water analysis and a physical survey of several dumpsites. While the resistivity data indicates high-level dumpsite leachate invading the ground soil down to the water table, the physiochemical water analysis depicts high content of BOD (401 – 711) mg/l, COD (731 – 1312) mg/l, TDS (419 – 1871) mg/l and heavy metals (0.014 – 1.971) mg/l present in the regional groundwater systems, which have altered the chemistry of the regional groundwater. The resistivity data shows that the overburdened soil layer overlaying the regional groundwater systems was very low (4.5 Ωm – 151 Ωm) as against the existing data (180 Ωm – 3500 Ωm). However, the physical surveys and the dispatched questionnaire surveys explore the depth of environmental irresponsibility among the citizen. While the imprints of gross environmental indiscipline may be absolutely irreversible, adequate knowledge of the environmental implications of careless waste disposal. After a critical examination of the current waste management strategies in Nigeria, the study suggests a future direction for environmental security and sustainability. Several influential regional factors, such as geology, climatic conditions, and hydrology, were also discussed.

Keywords: groundwater, environmental indiscipline, waste management, water analysis, leachate plumes, public health

Procedia PDF Downloads 68
2331 To Include or Not to Include: Resolving Ethical Concerns over the 20% High Quality Cassava Flour Inclusion in Wheat Flour Policy in Nigeria

Authors: Popoola I. Olayinka, Alamu E. Oladeji, B. Maziya-Dixon

Abstract:

Cassava, an indigenous crop grown locally by subsistence farmers in Nigeria has potential to bring economic benefits to the country. Consumption of bread and other confectionaries has been on the rise due to lifestyle changes of Nigerian consumers. However, wheat, being the major ingredient for bread and confectionery production does not thrive well under Nigerian climate hence the huge spending on wheat importation. To reduce spending on wheat importation, the Federal Government of Nigeria intends passing into law mandatory inclusion of 20% high-quality cassava flour (HQCF) in wheat flour. While the proposed policy may reduce post harvest loss of cassava, and also increase food security and domestic agricultural productivity, there are downsides to the policy which include reduction in nutritional quality and low sensory appeal of cassava-wheat bread, reluctance of flour millers to use HQCF, technology and processing challenges among others. The policy thus presents an ethical dilemma which must be resolved for its successful implementation. While inclusion of HQCF to wheat flour in bread and confectionery is a topic that may have been well addressed, resolving the ethical dilemma resulting from the act has not received much attention. This paper attempts to resolve this dilemma using various approaches in food ethics (cost benefits, utilitarianism, deontological and deliberative). The Cost-benefit approach did not provide adequate resolution of the dilemma as all the costs and benefits of the policy could not be stated in the quantitative term. The utilitarianism approach suggests that the policy delivers greatest good to the greatest number while the deontological approach suggests that the act (inclusion of HQCF to wheat flour) is right hence the policy is not utterly wrong. The deliberative approach suggests a win-win situation through deliberation with the parties involved.

Keywords: HQCF, ethical dilemma, food security, composite flour, cassava bread

Procedia PDF Downloads 407