Search results for: fire prediction
705 Species Distribution Modelling for Assessing the Effect of Land Use Changes on the Habitat of Endangered Proboscis Monkey (Nasalis larvatus) in Kalimantan, Indonesia
Authors: Wardatutthoyyibah, Satyawan Pudyatmoko, Sena Adi Subrata, Muhammad Ali Imron
Abstract:
The proboscis monkey is an endemic species to the island of Borneo with conservation status IUCN (The International Union for Conservation of Nature) of endangered. The population of the monkey has a specific habitat and sensitive to habitat disturbances. As a consequence of increasing rates of land-use change in the last four decades, its population was reported significantly decreased. We quantified the effect of land use change on the proboscis monkey’s habitat through the species distribution modeling (SDM) approach with Maxent Software. We collected presence data and environmental variables, i.e., land cover, topography, bioclimate, distance to the river, distance to the road, and distance to the anthropogenic disturbance to generate predictive distribution maps of the monkeys. We compared two prediction maps for 2000 and 2015 data to represent the current habitat of the monkey. We overlaid the monkey’s predictive distribution map with the existing protected areas to investigate whether the habitat of the monkey is protected under the protected areas networks. The results showed that almost 50% of the monkey’s habitat reduced as the effect of land use change. And only 9% of the current proboscis monkey’s habitat within protected areas. These results are important for the master plan of conservation of the endangered proboscis monkey and provide scientific guidance for the future development incorporating biodiversity issue.Keywords: endemic species, land use change, maximum entropy, spatial distribution
Procedia PDF Downloads 155704 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 75703 Predicting Dose Level and Length of Time for Radiation Exposure Using Gene Expression
Authors: Chao Sima, Shanaz Ghandhi, Sally A. Amundson, Michael L. Bittner, David J. Brenner
Abstract:
In a large-scale radiologic emergency, potentially affected population need to be triaged efficiently using various biomarkers where personal dosimeters are not likely worn by the individuals. It has long been established that radiation injury can be estimated effectively using panels of genetic biomarkers. Furthermore, the rate of radiation, in addition to dose of radiation, plays a major role in determining biological responses. Therefore, a better and more accurate triage involves estimating both the dose level of the exposure and the length of time of that exposure. To that end, a large in vivo study was carried out on mice with internal emitter caesium-137 (¹³⁷Cs). Four different injection doses of ¹³⁷Cs were used: 157.5 μCi, 191 μCi, 214.5μCi, and 259 μCi. Cohorts of 6~7 mice from the control arm and each of the dose levels were sacrificed, and blood was collected 2, 3, 5, 7 and 14 days after injection for microarray RNA gene expression analysis. Using a generalized linear model with penalized maximum likelihood, a panel of 244 genes was established and both the doses of injection and the number of days after injection were accurately predicted for all 155 subjects using this panel. This has proven that microarray gene expression can be used effectively in radiation biodosimetry in predicting both the dose levels and the length of exposure time, which provides a more holistic view on radiation exposure and helps improving radiation damage assessment and treatment.Keywords: caesium-137, gene expression microarray, multivariate responses prediction, radiation biodosimetry
Procedia PDF Downloads 198702 Multi-Objective Optimization and Effect of Surface Conditions on Fatigue Performance of Burnished Components Made of AISI 52100 Steel
Authors: Ouahiba Taamallah, Tarek Litim
Abstract:
The study deals with the burnishing effect of AISI 52100 steel and parameters influence (Py, i and f on surface integrity. The results show that the optimal effects are closely related to the treatment parameters. With a 92% improvement in roughness, SB can be defined as a finishing operation within the machining range. Due to 85% gain in consolidation rate, this treatment constitutes an efficient process for work-hardening of material. In addition, a statistical study based on regression and Taguchi's design has made it possible to develop mathematical models to predict output responses according to the studied burnishing parameters. Response Surface Methodology RSM showed a simultaneous influence of the burnishing parameters and to observe the optimal parameters of the treatment. ANOVA Analysis of results led to validate the prediction model with a determination coefficient R2=94.60% and R2=93.41% for surface roughness and micro-hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=20 Kgf, i=5 passes and f=0.08 mm.rev-1, which favors minimum surface roughness and a maximum of micro-hardness. The result was validated by a composite desirability D_i=1 for both surface roughness and microhardness, respectively. Applying optimal parameters, burnishing showed its beneficial effects in fatigue resistance, especially for imposed loading in the low cycle fatigue of the material where the lifespan increased by 90%.Keywords: AISI 52100 steel, burnishing, Taguchi, fatigue
Procedia PDF Downloads 188701 Relationship between Institutional Perspective and Safety Performance: A Case on Ready-Made Garments Manufacturing Industry
Authors: Fahad Ibrahim, Raphaël Akamavi
Abstract:
Bangladesh has encountered several industrial disasters (e.g. fire and building collapse tragedies) leading to the loss of valuable human lives. Irrespective of various institutions’ making effort to improve the safety situation, industry compliance and safety behaviour have not yet been improved. Hence, one question remains, to what extent does the institutional elements efficient enough to make any difference in improving safety behaviours? Thus, this study explores the relationship between institutional perspective and safety performance. Structural equation modelling results, using survey data from 256 RMG workers’ of 128 garments manufacturing factories in Bangladesh, show that institutional facets strongly influence management safety commitment to induce workers participation in safety activities and reduce workplace accident rates. The study also found that by upholding industrial standards and inspecting the safety situations, institutions facets significantly and directly affect workers involvement in safety participations and rate of workplace accidents. Additionally, workers involvement to safety practices significantly predicts the safety environment of the workplace. Subsequently, our findings demonstrate that institutional culture, norms, and regulations enact play an important role in altering management commitment to set-up a safer workplace environment. As a result, when workers’ perceive their management having high level of commitment to safety, they are inspired to be involved more in the safety practices, which significantly alter the workplace safety situation and lessen injury experiences. Due to the fact that institutions have strong influence on management commitment, legislative members should endorse, regulate, and strictly monitor workplace safety laws to be exercised by the factory owners. Further, management should take initiatives for adopting OHS features and conceive strategic directions (i.e., set up safety committees, risk assessments, innovative training) for promoting a positive safety climate to provide a safe workplace environment. Arguably, an inclusive public-private partnership is recommended for ensuring better and safer workplace for RMG workers. However, as our data were under a cross-sectional design; the respondents’ perceptions might get changed over a period of time and hence, a longitudinal study is recommended. Finally, further research is needed to determine the impact of improvement mechanisms on workplace safety performance, such as how workplace design, safety training programs, and institutional enforcement policies protect the well-being of workers.Keywords: institutional perspective, management commitment, safety participation, work injury, safety performance, occupational health and safety
Procedia PDF Downloads 206700 Extrudable Foamed Concrete: General Benefits in Prefabrication and Comparison in Terms of Fresh Properties and Compressive Strength with Classic Foamed Concrete
Authors: D. Falliano, G. Ricciardi, E. Gugliandolo
Abstract:
Foamed concrete belongs to the category of lightweight concrete. It is characterized by a density which is generally ranging from 200 to 2000 kg/m³ and typically comprises cement, water, preformed foam, fine sand and eventually fine particles such as fly ash or silica fume. The foam component mixed with the cement paste give rise to the development of a system of air-voids in the cementitious matrix. The peculiar characteristics of foamed concrete elements are summarized in the following aspects: 1) lightness which allows reducing the dimensions of the resisting frame structure and is advantageous in the scope of refurbishment or seismic retrofitting in seismically vulnerable areas; 2) thermal insulating properties, especially in the case of low densities; 3) the good resistance against fire as compared to ordinary concrete; 4) the improved workability; 5) cost-effectiveness due to the usage of rather simple constituting elements that are easily available locally. Classic foamed concrete cannot be extruded, as the dimensional stability is not permitted in the green state and this severely limits the possibility of industrializing them through a simple and cost-effective process, characterized by flexibility and high production capacity. In fact, viscosity enhancing agents (VEA) used to extrude traditional concrete, in the case of foamed concrete cause the collapsing of air bubbles, so that it is impossible to extrude a lightweight product. These requirements have suggested the study of a particular additive that modifies the rheology of foamed concrete fresh paste by increasing cohesion and viscosity and, at the same time, stabilizes the bubbles into the cementitious matrix, in order to allow the dimensional stability in the green state and, consequently, the extrusion of a lightweight product. There are plans to submit the additive’s formulation to patent. In addition to the general benefits of using the extrusion process, extrudable foamed concrete allow other limits to be exceeded: elimination of formworks, expanded application spectrum, due to the possibility of extrusion in a range varying between 200 and 2000 kg/m³, which allows the prefabrication of both structural and non-structural constructive elements. Besides, this contribution aims to present the significant differences regarding extrudable and classic foamed concrete fresh properties in terms of slump. Plastic air content, plastic density, hardened density and compressive strength have been also evaluated. The outcomes show that there are no substantial differences between extrudable and classic foamed concrete compression resistances.Keywords: compressive strength, extrusion, foamed concrete, fresh properties, plastic air content, slump.
Procedia PDF Downloads 174699 Chatter Prediction of Curved Thin-walled Parts Considering Variation of Dynamic Characteristics Based on Acoustic Signals Acquisition
Authors: Damous Mohamed, Zeroudi Nasredine
Abstract:
High-speed milling of thin-walled parts with complex curvilinear profiles often encounters machining instability, commonly referred to as chatter. This phenomenon arises due to the dynamic interaction between the cutting tool and the part, exacerbated by the part's low rigidity and varying dynamic characteristics along the tool path. This research presents a dynamic model specifically developed to predict machining stability for such curved thin-walled components. The model employs the semi-discretization method, segmenting the tool trajectory into small, straight elements to locally approximate the behavior of an inclined plane. Dynamic characteristics for each segment are extracted through experimental modal analysis and incorporated into the simulation model to generate global stability lobe diagrams. Validation of the model is conducted through cutting tests where acoustic intensity is measured to detect instabilities. The experimental data align closely with the predicted stability limits, confirming the model's accuracy and effectiveness. This work provides a comprehensive approach to enhancing machining stability predictions, thereby improving the efficiency and quality of high-speed milling operations for thin-walled parts.Keywords: chatter, curved thin-walled part, semi-discretization method, stability lobe diagrams
Procedia PDF Downloads 26698 Precision Pest Management by the Use of Pheromone Traps and Forecasting Module in Mobile App
Authors: Muhammad Saad Aslam
Abstract:
In 2021, our organization has launched our proprietary mobile App i.e. Farm Intelligence platform, an industrial-first precision agriculture solution, to Pakistan. It was piloted at 47 locations (spanning around 1,200 hectares of land), addressing growers’ pain points by bringing the benefits of precision agriculture to their doorsteps. This year, we have extended its reach by more than 10 times (nearly 130,000 hectares of land) in almost 600 locations across the country. The project team selected highly infested areas to set up traps, which then enabled the sales team to initiate evidence-based conversations with the grower community about preventive crop protection products that includes pesticides and insecticides. Mega farmer meeting field visits and demonstrations plots coupled with extensive marketing activities, were setup to include farmer community. With the help of App real-time pest monitoring (using heat maps and infestation prediction through predictive analytics) we have equipped our growers with on spot insights that will help them optimize pesticide applications. Heat maps allow growers to identify infestation hot spots to fine-tune pesticide delivery, while predictive analytics enable preventive application of pesticides before the situation escalates. Ultimately, they empower growers to keep their crops safe for a healthy harvest.Keywords: precision pest management, precision agriculture, real time pest tracking, pest forecasting
Procedia PDF Downloads 90697 Risk Based Inspection and Proactive Maintenance for Civil and Structural Assets in Oil and Gas Plants
Authors: Mohammad Nazri Mustafa, Sh Norliza Sy Salim, Pedram Hatami Abdullah
Abstract:
Civil and structural assets normally have an average of more than 30 years of design life. Adding to this advantage, the assets are normally subjected to slow degradation process. Due to the fact that repair and strengthening work for these assets are normally not dependent on plant shut down, the maintenance and integrity restoration of these assets are mostly done based on “as required” and “run to failure” basis. However unlike other industries, the exposure in oil and gas environment is harsher as the result of corrosive soil and groundwater, chemical spill, frequent wetting and drying, icing and de-icing, steam and heat, etc. Due to this type of exposure and the increasing level of structural defects and rectification in line with the increasing age of plants, assets integrity assessment requires a more defined scope and procedures that needs to be based on risk and assets criticality. This leads to the establishment of risk based inspection and proactive maintenance procedure for civil and structural assets. To date there is hardly any procedure and guideline as far as integrity assessment and systematic inspection and maintenance of civil and structural assets (onshore) are concerned. Group Technical Solutions has developed a procedure and guideline that takes into consideration credible failure scenario, assets risk and criticality from process safety and structural engineering perspective, structural importance, modeling and analysis among others. Detailed inspection that includes destructive and non-destructive tests (DT & NDT) and structural monitoring is also being performed to quantify defects, assess severity and impact on integrity as well as identify the timeline for integrity restoration. Each defect and its credible failure scenario is assessed against the risk on people, environment, reputation and production loss. This technical paper is intended to share on the established procedure and guideline and their execution in oil & gas plants. In line with the overall roadmap, the procedure and guideline will form part of specialized solutions to increase production and to meet the “Operational Excellence” target while extending service life of civil and structural assets. As the result of implementation, the management of civil and structural assets is now more systematically done and the “fire-fighting” mode of maintenance is being gradually phased out and replaced by a proactive and preventive approach. This technical paper will also set the criteria and pose the challenge to the industry for innovative repair and strengthening methods for civil & structural assets in oil & gas environment, in line with safety, constructability and continuous modification and revamp of plant facilities to meet production demand.Keywords: assets criticality, credible failure scenario, proactive and preventive maintenance, risk based inspection
Procedia PDF Downloads 404696 Improved Classification Procedure for Imbalanced and Overlapped Situations
Authors: Hankyu Lee, Seoung Bum Kim
Abstract:
The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.Keywords: classification, imbalanced data with class overlap, split data space, support vector machine
Procedia PDF Downloads 308695 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran
Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani
Abstract:
The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation
Procedia PDF Downloads 241694 The Comparison of Bird’s Population between Naturally Regenerated Acacia Forest with Adjacent Secondary Indigenous Forest in Universiti Malaysia Sabah
Authors: Jephte Sompud, Emily A. Gilbert, Andy Russel Mojiol, Cynthia B. Sompud, Alim Biun
Abstract:
Naturally regenerated acacia forest and secondary indigenous forest forms some of the urban forests in Sabah. Naturally regenerated acacia trees are usually seen along the road that exists as forest islands. Acacia tree is not an indigenous tree species in Sabah that was introduced in the 1960’s as fire breakers that eventually became one of the preferred trees for forest plantation for paper and pulp production. Due to its adaptability to survive even in impoverished soils and poor-irrigated land, this species has rapidly spread throughout Sabah through natural regeneration. Currently, there is a lack of study to investigate the bird population in the naturally regenerated acacia forest. This study is important because it shed some light on the role of naturally regenerated acacia forest on bird’s population, as bird is known to be a good bioindicator forest health. The aim of this study was to document the bird’s population in naturally regenerated acacia forest with that adjacent secondary indigenous forest. The study site for this study was at Universiti Malaysia Sabah (UMS) Campus. Two forest types in the campus were chosen as a study site, of which were naturally regenerated Acacia Forest and adjacent secondary indigenous forest, located at the UMS Hill. A total of 21 sampling days were conducted in each of the forest types. The method used during this study was solely mist nets with three pockets. Whenever a bird is caught, it is extracted from the net to be identified and measurements were recorded in a standard data sheet. Mist netting was conducted from 6 morning until 5 evening. This study was conducted between February to August 2014. Birds that were caught were ring banded to initiate a long-term study on the understory bird’s population in the Campus The data was analyzed using descriptive analysis, diversity indices, and t-test. The bird population diversity at naturally regenerated Acacia forest with those at the secondary indigenous forest was calculated using two common indices, of which were Shannon-Wiener and Simpson diversity index. There were 18 families with 33 species that were recorded from both sites. The number of species recorded at the naturally regenerated acacia forest was 26 species while at the secondary indigenous forest were 19 species. The Shannon diversity index for Naturally Regenerated Acacia Forest and secondary indigenous forests were 2.87 and 2.46. The results show that there was very significantly higher species diversity at the Naturally Regenerated Acacia Forest as opposed to the secondary indigenous forest (p<0.001). This suggests that Naturally Regenerated Acacia forest plays an important role in urban bird conservation. It is recommended that Naturally Regenerated Acacia Forests should be considered as an established urban forest conservation area as they do play a role in biodiversity conservation. More future studies in Naturally Regenerated Acacia Forest should be encouraged to determine the status and value of biodiversity conservation of this ecosystem.Keywords: naturally regenerated acacia forest, bird population diversity, Universiti Malaysia Sabah, biodiversity conservation
Procedia PDF Downloads 427693 Torque Loss Prediction Test Method of Bolted Joints in Heavy Commercial Vehicles
Authors: Volkan Ayik
Abstract:
Loosening as a result of torque loss in bolted joints is one of the most encountered problems resulting in loss of connection between parts. The main reason for this is the dynamic loads to which the joints are subjected while the vehicle is moving. In particular, vibration-induced loads can loosen the joints in any size and geometry. The aim of this study is to study an improved method due to road-induced vibration in heavy commercial vehicles for estimating the vibration performance of bolted joints of the components connected to the chassis, before conducting prototype level vehicle structural strength tests on a proving ground. The frequency and displacements caused by the road conditions-induced vibration loads have been determined for the parts connected to the chassis, and various experimental design scenarios have been formed by matching specific components and vibration behaviors. In the studies, the performance of the torque, washer, test displacement, and test frequency parameters were observed by maintaining the connection characteristics on the vehicle, and the sensitivity ratios for these variables were calculated. As a result of these experimental design findings, tests performed on a developed device based on Junker’s vibration device and proving ground conditions versus test correlation levels were found.Keywords: bolted joints, junker’s test, loosening failure, torque loss
Procedia PDF Downloads 124692 Technology in the Calculation of People Health Level: Design of a Computational Tool
Authors: Sara Herrero Jaén, José María Santamaría García, María Lourdes Jiménez Rodríguez, Jorge Luis Gómez González, Adriana Cercas Duque, Alexandra González Aguna
Abstract:
Background: Health concept has evolved throughout history. The health level is determined by the own individual perception. It is a dynamic process over time so that you can see variations from one moment to the next. In this way, knowing the health of the patients you care for, will facilitate decision making in the treatment of care. Objective: To design a technological tool that calculates the people health level in a sequential way over time. Material and Methods: Deductive methodology through text analysis, extraction and logical knowledge formalization and education with expert group. Studying time: September 2015- actually. Results: A computational tool for the use of health personnel has been designed. It has 11 variables. Each variable can be given a value from 1 to 5, with 1 being the minimum value and 5 being the maximum value. By adding the result of the 11 variables we obtain a magnitude in a certain time, the health level of the person. The health calculator allows to represent people health level at a time, establishing temporal cuts being useful to determine the evolution of the individual over time. Conclusion: The Information and Communication Technologies (ICT) allow training and help in various disciplinary areas. It is important to highlight their relevance in the field of health. Based on the health formalization, care acts can be directed towards some of the propositional elements of the concept above. The care acts will modify the people health level. The health calculator allows the prioritization and prediction of different strategies of health care in hospital units.Keywords: calculator, care, eHealth, health
Procedia PDF Downloads 264691 Ballistic Performance of Magnesia Panels and Modular Wall Systems
Authors: Khin Thandar Soe, Mark Stephen Pulham
Abstract:
Ballistic building materials play a crucial role in ensuring the safety of the occupants within protective structures. Traditional options like Ordinary Portland Cement (OPC)-based walls, including reinforced concrete walls, precast concrete walls, masonry walls, and concrete blocks, are frequently employed for ballistic protection, but they have several drawbacks such as being thick, heavy, costly, and challenging to construct. On the other hand, glass and composite materials offer lightweight and easier construction alternatives, but they come with a high price tag. There has been no reported test data on magnesium-based ballistic wall panels or modular wall systems so far. This paper presents groundbreaking small arms test data related to the development of the world’s first magnesia cement ballistic wall panels and modular wall system. Non-hydraulic magnesia cement exhibits several superior properties, such as lighter weight, flexibility, acoustics, and fire performance, compared to the traditional Portland Cement. However, magnesia cement is hydrophilic and may degrade in prolonged contact with water. In this research, modified magnesia cement for water resistant and durability from UBIQ Technology is applied. The specimens are made of a modified magnesia cement formula and prepared in the Laboratory of UBIQ Technology Pty Ltd. The specimens vary in thickness, and the tests cover various small arms threats in compliance with standards AS/NZS2343 and UL752 and are performed up to the maximum threat level of Classification R2 (NATO) and UL-Level 8(NATO) by the Accredited Test Centre, BMT (Ballistic and Mechanical Testing, VIC, Australia). In addition, the results of the test conducted on the specimens subjected to the small 12mm diameter steel ball projectile impact generated by a gas gun are also presented and discussed in this paper. Gas gun tests were performed in UNSW@ADFA, Canberra, Australia. The tested results of the magnesia panels and wall systems are compared with one of concrete and other wall panels documented in the literature. The conclusion drawn is that magnesia panels and wall systems exhibit several advantages over traditional OPC-based wall systems, and they include being lighter, thinner, and easier to construct, all while providing equivalent protection against threats. This makes magnesia cement-based materials a compelling choice of application where efficiency and performance are critical to create a protective environment.Keywords: ballistics, small arms, gas gun, projectile, impact, wall panels, modular, magnesia cement
Procedia PDF Downloads 76690 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube
Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan
Abstract:
Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity
Procedia PDF Downloads 147689 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy
Authors: K. Petcharaporn
Abstract:
The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.Keywords: tomato, mold, quality, prediction, transmittance
Procedia PDF Downloads 362688 Understanding Evidence Dispersal Caused by the Effects of Using Unmanned Aerial Vehicles in Active Indoor Crime Scenes
Authors: Elizabeth Parrott, Harry Pointon, Frederic Bezombes, Heather Panter
Abstract:
Unmanned aerial vehicles (UAV’s) are making a profound effect within policing, forensic and fire service procedures worldwide. These intelligent devices have already proven useful in photographing and recording large-scale outdoor and indoor sites using orthomosaic and three-dimensional (3D) modelling techniques, for the purpose of capturing and recording sites during and post-incident. UAV’s are becoming an established tool as they are extending the reach of the photographer and offering new perspectives without the expense and restrictions of deploying full-scale aircraft. 3D reconstruction quality is directly linked to the resolution of captured images; therefore, close proximity flights are required for more detailed models. As technology advances deployment of UAVs in confined spaces is becoming more common. With this in mind, this study investigates the effects of UAV operation within active crimes scenes with regard to the dispersal of particulate evidence. To date, there has been little consideration given to the potential effects of using UAV’s within active crime scenes aside from a legislation point of view. Although potentially the technology can reduce the likelihood of contamination by replacing some of the roles of investigating practitioners. There is the risk of evidence dispersal caused by the effect of the strong airflow beneath the UAV, from the downwash of the propellers. The initial results of this study are therefore presented to determine the height of least effect at which to fly, and the commercial propeller type to choose to generate the smallest amount of disturbance from the dataset tested. In this study, a range of commercially available 4-inch propellers were chosen as a starting point due to the common availability and their small size makes them well suited for operation within confined spaces. To perform the testing, a rig was configured to support a single motor and propeller powered with a standalone mains power supply and controlled via a microcontroller. This was to mimic a complete throttle cycle and control the device to ensure repeatability. By removing the variances of battery packs and complex UAV structures to allow for a more robust setup. Therefore, the only changing factors were the propeller and operating height. The results were calculated via computer vision analysis of the recorded dispersal of the sample particles placed below the arm-mounted propeller. The aim of this initial study is to give practitioners an insight into the technology to use when operating within confined spaces as well as recognizing some of the issues caused by UAV’s within active crime scenes.Keywords: dispersal, evidence, propeller, UAV
Procedia PDF Downloads 163687 Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein
Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Milica Karadžić
Abstract:
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina.Keywords: anti-prion activity, chemometrics, molecular modeling, QSAR
Procedia PDF Downloads 304686 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares
Procedia PDF Downloads 73685 Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy
Authors: K. Petcharaporn, N. Prathengjit
Abstract:
The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.Keywords: tomato, mold, quality, prediction, transmittance
Procedia PDF Downloads 519684 A Radiographic Superimposition in Orthognathic Surgery of Class III Skeletal Malocclusion
Authors: Albert Suryaprawira
Abstract:
Patients requiring correction of severe Class III skeletal discrepancy historically has been among the most challenging treatments for orthodontists. Correction of an aesthetic and functional problem is crucially important. This is a case report of an adult male aged 18 years who complained of difficulty in chewing and speaking. Patient has a prominent profile with mandibular excess. The pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. The panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, the pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, the post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition between those radiographs was performed to analyse the outcome. It includes the superimposition of the cranial base, maxilla, and mandible. Superimposition is important to describe the amount of hard and soft tissue movement. It is also important to predict the possibility of relapse after the surgery. The patient needs to understand all the surgical plan, outcome and relapse prevention. The surgery included mandibular set back by bilateral sagittal split osteotomies. Although the discrepancy was severe using this combination of treatment and the use of radiographic superimposition, an aesthetically pleasing and stable result was achieved.Keywords: cephalometric, mandibular set back, orthognathic, superimposition
Procedia PDF Downloads 258683 The Relationship between Coping Styles and Internet Addiction among High School Students
Authors: Adil Kaval, Digdem Muge Siyez
Abstract:
With the negative effects of internet use in a person's life, the use of the Internet has become an issue. This subject was mostly considered as internet addiction, and it was investigated. In literature, it is noteworthy that some theoretical models have been proposed to explain the reasons for internet addiction. In addition to these theoretical models, it may be thought that the coping style for stressing events can be a predictor of internet addiction. It was aimed to test with logistic regression the effect of high school students' coping styles on internet addiction levels. Sample of the study consisted of 770 Turkish adolescents (471 girls, 299 boys) selected from high schools in the 2017-2018 academic year in İzmir province. Internet Addiction Test, Coping Scale for Child and Adolescents and a demographic information form were used in this study. The results of the logistic regression analysis indicated that the model of coping styles predicted internet addiction provides a statistically significant prediction of internet addiction. Gender does not predict whether or not to be addicted to the internet. The active coping style is not effective on internet addiction levels, while the avoiding and negative coping style are effective on internet addiction levels. With this model, % 79.1 of internet addiction in high school is estimated. The Negelkerke pseudo R2 indicated that the model accounted for %35 of the total variance. The results of this study on Turkish adolescents are similar to the results of other studies in the literature. It can be argued that avoiding and negative coping styles are important risk factors in the development of internet addiction.Keywords: adolescents, coping, internet addiction, regression analysis
Procedia PDF Downloads 173682 Predicting Entrepreneurial Intentions among Undergraduates Using Theory of Planned Behaviour
Authors: Mohammed Abubakar Mawoli
Abstract:
Theory of Planned Behavior (TPB) is a useful tool for predicting entrepreneurial intentions among individuals or groups of people. In view of the Nigerian government’s renewed educational policies and programs to prepare Nigerian undergraduates towards self-reliance and employers of labor after graduation, it becomes pertinent to empirically examine and predict the undergraduate’s entrepreneurial intentions at graduation. Thus, this study primarily examines the undergraduates entrepreneurial intentions using TPB, which includes perceived desirability, perceived social norm, and perceived feasibility factors. In so doing, a questionnaire research method was adopted in which 219 copies of a questionnaire distributed to final year undergraduates were belonging to five departments with a total population of 487 students. A combination of relative frequency, mean standard deviation and multiple regression statistical tools were employed for data analysis. The study found that TPB components exert a significant composite effect on undergraduate’s entrepreneurial intentions. Based on individual contribution of the independent variables, Perceived Desirability is the strongest predictor of the undergraduate’s entrepreneurial intentions, while Perceived Social Norm is a strong predictor of the undergraduate’s entrepreneurial intentions. However, Perceived Feasibility is not a strong predictor of student’s entrepreneurial intentions. The study therefore, recommends that the Perceived desirability, which is formed and shaped by ones level of education and skills acquisition, be improved upon to create the expected positive impact on graduates entrepreneurial intentions and possible venture creation.Keywords: entrepreneurship, entrepreneurship education, entrepreneurial intentions, planned behaviour, prediction, Nigeria
Procedia PDF Downloads 299681 A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines
Authors: P. Byrnes, F. A. DiazDelaO
Abstract:
The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations.Keywords: probabilistic classification vector machines, multi class classification, MCMC, support vector machines
Procedia PDF Downloads 221680 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles
Authors: Hee-Chang Lim
Abstract:
The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.Keywords: rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD
Procedia PDF Downloads 235679 The Possibility of Using Somatosensory Evoked Potential(SSEP) as a Parameter for Cortical Vascular Dementia
Authors: Hyunsik Park
Abstract:
As the rate of cerebrovascular disease increases in old populations, the prevalence rate of vascular dementia would be expected. Therefore, authors designed this study to find out the possibility of somatosensory evoked potentials(SSEP) as a parameter for early diagnosis and prognosis prediction of vascular dementia in cortical vascular dementia patients. 21 patients who met the criteria for vascular dementia according to DSM-IV,ICD-10and NINDS-AIREN with the history of recent cognitive impairment, fluctuation progression, and neurologic deficit. We subdivided these patients into two groups; a mild dementia and a severe dementia groups by MMSE and CDR score; and analysed comparison between normal control group and patient control group who have been cerebrovascular attack(CVA) history without dementia by using N20 latency and amplitude of median nerve. In this study, mild dementia group showed significant differences on latency and amplitude with normal control group(p-value<0.05) except patient control group(p-value>0.05). Severe dementia group showed significant differences both normal control group and patient control group.(p-value<0.05, <001). Since no significant difference has founded between mild dementia group and patient control group, SSEP has limitation to use for early diagnosis test. However, the comparison between severe dementia group and others showed significant results which indicate SSEP can predict the prognosis of vascular dementia in cortical vascular dementia patients.Keywords: SSEP, cortical vascular dementia, N20 latency, N20 amplitude
Procedia PDF Downloads 304678 Wind Speed Forecasting Based on Historical Data Using Modern Prediction Methods in Selected Sites of Geba Catchment, Ethiopia
Authors: Halefom Kidane
Abstract:
This study aims to assess the wind resource potential and characterize the urban area wind patterns in Hawassa City, Ethiopia. The estimation and characterization of wind resources are crucial for sustainable urban planning, renewable energy development, and climate change mitigation strategies. A secondary data collection method was used to carry out the study. The collected data at 2 meters was analyzed statistically and extrapolated to the standard heights of 10-meter and 30-meter heights using the power law equation. The standard deviation method was used to calculate the value of scale and shape factors. From the analysis presented, the maximum and minimum mean daily wind speed at 2 meters in 2016 was 1.33 m/s and 0.05 m/s in 2017, 1.67 m/s and 0.14 m/s in 2018, 1.61m and 0.07 m/s, respectively. The maximum monthly average wind speed of Hawassa City in 2016 at 2 meters was noticed in the month of December, which is around 0.78 m/s, while in 2017, the maximum wind speed was recorded in the month of January with a wind speed magnitude of 0.80 m/s and in 2018 June was maximum speed which is 0.76 m/s. On the other hand, October was the month with the minimum mean wind speed in all years, with a value of 0.47 m/s in 2016,0.47 in 2017 and 0.34 in 2018. The annual mean wind speed was 0.61 m/s in 2016,0.64, m/s in 2017 and 0.57 m/s in 2018 at a height of 2 meters. From extrapolation, the annual mean wind speeds for the years 2016,2017 and 2018 at 10 heights were 1.17 m/s,1.22 m/s, and 1.11 m/s, and at the height of 30 meters, were 3.34m/s,3.78 m/s, and 3.01 m/s respectively/Thus, the site consists mainly primarily classes-I of wind speed even at the extrapolated heights.Keywords: artificial neural networks, forecasting, min-max normalization, wind speed
Procedia PDF Downloads 75677 Reliability Modeling on Drivers’ Decision during Yellow Phase
Authors: Sabyasachi Biswas, Indrajit Ghosh
Abstract:
The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.Keywords: decision-making decision, dilemma zone, surrogate model, Kriging
Procedia PDF Downloads 309676 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 296