Search results for: electronic data interchange
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26303

Search results for: electronic data interchange

24263 Wireless Sensor Network for Forest Fire Detection and Localization

Authors: Tarek Dandashi

Abstract:

WSNs may provide a fast and reliable solution for the early detection of environment events like forest fires. This is crucial for alerting and calling for fire brigade intervention. Sensor nodes communicate sensor data to a host station, which enables a global analysis and the generation of a reliable decision on a potential fire and its location. A WSN with TinyOS and nesC for the capturing and transmission of a variety of sensor information with controlled source, data rates, duration, and the records/displaying activity traces is presented. We propose a similarity distance (SD) between the distribution of currently sensed data and that of a reference. At any given time, a fire causes diverging opinions in the reported data, which alters the usual data distribution. Basically, SD consists of a metric on the Cumulative Distribution Function (CDF). SD is designed to be invariant versus day-to-day changes of temperature, changes due to the surrounding environment, and normal changes in weather, which preserve the data locality. Evaluation shows that SD sensitivity is quadratic versus an increase in sensor node temperature for a group of sensors of different sizes and neighborhood. Simulation of fire spreading when ignition is placed at random locations with some wind speed shows that SD takes a few minutes to reliably detect fires and locate them. We also discuss the case of false negative and false positive and their impact on the decision reliability.

Keywords: forest fire, WSN, wireless sensor network, algortihm

Procedia PDF Downloads 262
24262 A Feasibility Study of Crowdsourcing Data Collection for Facility Maintenance Management

Authors: Mohamed Bin Alhaj, Hexu Liu, Mohammed Sulaiman, Osama Abudayyeh

Abstract:

An effective facility maintenance management (FMM) system plays a crucial role in improving the quality of services and maintaining the facility in good condition. Current FMM heavily relies on the quality of the data collection function of the FMM systems, at times resulting in inefficient FMM decision-making. The new technology-based crowdsourcing provides great potential to improve the current FMM practices, especially in terms of timeliness and quality of data. This research aims to investigate the feasibility of using new technology-driven crowdsourcing for FMM and highlight its opportunities and challenges. A survey was carried out to understand the human, data, system, geospatial, and automation characteristics of crowdsourcing for an educational campus FMM via social networks. The survey results were analyzed to reveal the challenges and recommendations for the implementation of crowdsourcing for FMM. This research contributes to the body of knowledge by synthesizing the challenges and opportunities of using crowdsourcing for facility maintenance and providing a road map for applying crowdsourcing technology in FMM. In future work, a conceptual framework will be proposed to support data-driven FMM using social networks.

Keywords: crowdsourcing, facility maintenance management, social networks

Procedia PDF Downloads 174
24261 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data

Authors: Elyta Widyaningrum

Abstract:

The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.

Keywords: automation, GIS environment, LiDAR processing, map quality

Procedia PDF Downloads 368
24260 Mixtures of Length-Biased Weibull Distributions for Loss Severity Modelling

Authors: Taehan Bae

Abstract:

In this paper, a class of length-biased Weibull mixtures is presented to model loss severity data. The proposed model generalizes the Erlang mixtures with the common scale parameter, and it shares many important modelling features, such as flexibility to fit various data distribution shapes and weak-denseness in the class of positive continuous distributions, with the Erlang mixtures. We show that the asymptotic tail estimate of the length-biased Weibull mixture is Weibull-type, which makes the model effective to fit loss severity data with heavy-tailed observations. A method of statistical estimation is discussed with applications on real catastrophic loss data sets.

Keywords: Erlang mixture, length-biased distribution, transformed gamma distribution, asymptotic tail estimate, EM algorithm, expectation-maximization algorithm

Procedia PDF Downloads 224
24259 Robust Data Image Watermarking for Data Security

Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan

Abstract:

In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.

Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms

Procedia PDF Downloads 515
24258 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors

Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde

Abstract:

In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.

Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance

Procedia PDF Downloads 124
24257 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data

Authors: Saeid Gharechelou, Ryutaro Tateishi

Abstract:

Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.

Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid damage monitoring, 2015-Nepal earthquake

Procedia PDF Downloads 172
24256 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks

Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi

Abstract:

In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.

Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks

Procedia PDF Downloads 378
24255 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 374
24254 Blockchain Technology Security Evaluation: Voting System Based on Blockchain

Authors: Omid Amini

Abstract:

Nowadays, technology plays the most important role in the life of human beings because people use technology to share data and to communicate with each other, but the challenge is the security of this data. For instance, as more people turn to technology in the world, more data is generated, and more hackers try to steal or infiltrate data. In addition, the data is under the control of the central authority, which can trigger the challenge of losing information and changing information; this can create widespread anxiety for different people in different communities. In this paper, we sought to investigate Blockchain technology that can guarantee information security and eliminate the challenge of central authority access to information. Now a day, people are suffering from the current voting system. This means that the lack of transparency in the voting system is a big problem for society and the government in most countries, but blockchain technology can be the best alternative to the previous voting system methods because it removes the most important challenge for voting. According to the results, this research can be a good start to getting acquainted with this new technology, especially on the security part and familiarity with how to use a voting system based on blockchain in the world. At the end of this research, it is concluded that the use of blockchain technology can solve the major security problem and lead to a secure and transparent election.

Keywords: blockchain, technology, security, information, voting system, transparency

Procedia PDF Downloads 132
24253 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 167
24252 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 159
24251 Compact Low Loss Design of SOI 1x2 Y-Branch Optical Power Splitter with S-Bend Waveguide and Study on the Variation of Transmitted Power with Various Waveguide Parameters

Authors: Nagaraju Pendam, C. P. Vardhani

Abstract:

A simple technology–compatible design of silicon-on-insulator based 1×2 optical power splitter is proposed. For developing large area Opto-electronic Silicon-on-Insulator (SOI) devices, the power splitter is a key passive device. The SOI rib- waveguide dimensions (height, width, and etching depth, refractive indices, length of waveguide) leading simultaneously to single mode propagation. In this paper a low loss optical power splitter is designed by using R Soft cad tool and simulated by Beam propagation method, here s-bend waveguides proposed. We concentrate changing the refractive index difference, branching angle, width of the waveguide, free space wavelength of the waveguide and observing transmitted power, effective refractive index in the designed waveguide, and choosing the best simulated results to be fabricated on silicon-on insulator platform. In this design 1550 nm free spacing are used.

Keywords: beam propagation method, insertion loss, optical power splitter, rib waveguide, transmitted power

Procedia PDF Downloads 663
24250 Design and Implementation of Flexible Metadata Editing System for Digital Contents

Authors: K. W. Nam, B. J. Kim, S. J. Lee

Abstract:

Along with the development of network infrastructures, such as high-speed Internet and mobile environment, the explosion of multimedia data is expanding the range of multimedia services beyond voice and data services. Amid this flow, research is actively being done on the creation, management, and transmission of metadata on digital content to provide different services to users. This paper proposes a system for the insertion, storage, and retrieval of metadata about digital content. The metadata server with Binary XML was implemented for efficient storage space and retrieval speeds, and the transport data size required for metadata retrieval was simplified. With the proposed system, the metadata could be inserted into the moving objects in the video, and the unnecessary overlap could be minimized by improving the storage structure of the metadata. The proposed system can assemble metadata into one relevant topic, even if it is expressed in different media or in different forms. It is expected that the proposed system will handle complex network types of data.

Keywords: video, multimedia, metadata, editing tool, XML

Procedia PDF Downloads 171
24249 System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data

Authors: Luís Pina

Abstract:

The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.

Keywords: GSM, marine biology, marine turtles, unstructured supplementary service data (USSD)

Procedia PDF Downloads 206
24248 High-Throughput Screening and Selection of Electrogenic Microbial Communities Using Single Chamber Microbial Fuel Cells Based on 96-Well Plate Array

Authors: Lukasz Szydlowski, Jiri Ehlich, Igor Goryanin

Abstract:

We demonstrate a single chamber, 96-well-plated based Microbial Fuel Cell (MFC) with printed, electronic components. This invention is aimed at robust selection of electrogenic microbial community under specific conditions, e.g., electrode potential, pH, nutrient concentration, salt concentration that can be altered within the 96 well plate array. This invention enables robust selection of electrogenic microbial community under the homogeneous reactor, with multiple conditions that can be altered to allow comparative analysis. It can be used as a standalone technique or in conjunction with other selective processes, e.g., flow cytometry, microfluidic-based dielectrophoretic trapping. Mobile conductive elements, like carbon paper, carbon sponge, activated charcoal granules, metal mesh, can be inserted inside to increase the anode surface area in order to collect electrogenic microorganisms and to transfer them into new reactors or for other analytical works. An array of 96-well plate allows this device to be operated by automated pipetting stations.

Keywords: bioengineering, electrochemistry, electromicrobiology, microbial fuel cell

Procedia PDF Downloads 149
24247 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising

Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri

Abstract:

Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.

Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing

Procedia PDF Downloads 589
24246 The Trend of Injuries in Building Fire in Tehran from 2002 to 2012

Authors: Mohammadreza Ashouri, Majid Bayatian

Abstract:

Analysis of fire data is a way for the implementation of any plan to improve the level of safety in cities. Such an analysis is able to reveal signs of changes in a given period and can be used as a measure of safety. The information of about 66,341 fires (from 2002 to 2012) released by Tehran Safety Services and Fire-Fighting Organization and data on the population and the number of households provided by Tehran Municipality and the Statistical Yearbook of Iran were extracted. Using the data, the fire changes, the rate of injuries, and mortality rate were determined and analyzed. The rate of injuries and mortality rate of fires per one million population of Tehran were 59.58% and 86.12%, respectively. During the study period, the number of fires and fire stations increased by 104.38% and 102.63%, respectively. Most fires (9.21%) happened in the 4th District of Tehran. The results showed that the recorded fire data have not been systematically planned for fire prevention since one of the ways to reduce injuries caused by fires is to develop a systematic plan for necessary actions in emergency situations. To determine a reliable source for fire prevention, the stages, definitions of working processes and the cause and effect chains should be considered. Therefore, a comprehensive statistical system should be developed for reported and recorded fire data.

Keywords: fire statistics, fire analysis, accident prevention, Tehran

Procedia PDF Downloads 184
24245 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services

Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung

Abstract:

This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.

Keywords: internet of things (IoT), IoT platform, serviceplatform, virtual file system (VSF)

Procedia PDF Downloads 502
24244 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment

Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis

Abstract:

Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.

Keywords: corrosion, surfactants, steel surface, quantum

Procedia PDF Downloads 377
24243 A Review on 3D Smart City Platforms Using Remotely Sensed Data to Aid Simulation and Urban Analysis

Authors: Slim Namouchi, Bruno Vallet, Imed Riadh Farah

Abstract:

3D urban models provide powerful tools for decision making, urban planning, and smart city services. The accuracy of this 3D based systems is directly related to the quality of these models. Since manual large-scale modeling, such as cities or countries is highly time intensive and very expensive process, a fully automatic 3D building generation is needed. However, 3D modeling process result depends on the input data, the proprieties of the captured objects, and the required characteristics of the reconstructed 3D model. Nowadays, producing 3D real-world model is no longer a problem. Remotely sensed data had experienced a remarkable increase in the recent years, especially data acquired using unmanned aerial vehicles (UAV). While the scanning techniques are developing, the captured data amount and the resolution are getting bigger and more precise. This paper presents a literature review, which aims to identify different methods of automatic 3D buildings extractions either from LiDAR or the combination of LiDAR and satellite or aerial images. Then, we present open source technologies, and data models (e.g., CityGML, PostGIS, Cesiumjs) used to integrate these models in geospatial base layers for smart city services.

Keywords: CityGML, LiDAR, remote sensing, SIG, Smart City, 3D urban modeling

Procedia PDF Downloads 135
24242 Solvent Free Microwave Extraction of Essential Oils: A Clean Chemical Processing in the Teaching and Research Laboratory

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Microwave Clevenger or microwave accelerated distillation (MAD) is a combination of microwave heating and distillation, performed at atmospheric pressure without added any solvent or water. Isolation and concentration of volatile compounds are performed by a single stage. MAD extraction of orange essential oil was studied using fresh orange peel from Valencia late cultivar oranges as the raw material. MAD has been compared with a conventional technique, which used a Clevenger apparatus with hydro-distillation (HD). MAD and HD were compared in term of extraction time, yields, chemical composition and quality of the essential oil, efficiency and costs of the process. Extraction of essential oils from orange peels with MAD was better in terms of energy saving, extraction time (30 min versus 3 h), oxygenated fraction (11.7% versus 7.9%), product yield (0.42% versus 0.39%) and product quality. Orange peels treated by MAD and HD were observed by scanning electronic microscopy (SEM). Micrographs provide evidence of more rapid opening of essential oil glands treated by MAD, in contrast to conventional hydro-distillation.

Keywords: clevenger, microwave, extraction; hydro-distillation, essential oil, orange peel

Procedia PDF Downloads 350
24241 Structural Damage Detection via Incomplete Model Data Using Output Data Only

Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.

Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation

Procedia PDF Downloads 365
24240 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 508
24239 Culture Dimensions of Information Systems Security in Saudi Arabia National Health Services

Authors: Saleh Alumaran, Giampaolo Bella, Feng Chen

Abstract:

The study of organisations’ information security cultures has attracted scholars as well as healthcare services industry to research the topic and find appropriate tools and approaches to develop a positive culture. The vast majority of studies in Saudi national health services are on the use of technology to protect and secure health services information. On the other hand, there is a lack of research on the role and impact of an organisation’s cultural dimensions on information security. This research investigated and analysed the role and impact of cultural dimensions on information security in Saudi Arabia health service. Hypotheses were tested and two surveys were carried out in order to collect data and information from three major hospitals in Saudi Arabia (SA). The first survey identified the main cultural-dimension problems in SA health services and developed an initial information security culture framework model. The second survey evaluated and tested the developed framework model to test its usefulness, reliability and applicability. The model is based on human behaviour theory, where the individual’s attitude is the key element of the individual’s intention to behave as well as of his or her actual behaviour. The research identified six cultural dimensions: Saudi national culture, Saudi health service leadership, employees’ trust, technology, multicultural interactions and employees’ job roles. The research also identified a set of cultural sub-dimensions. These include working values and norms, tribe values and norms, attitudes towards women, power sharing, vision, social interaction, respect and understanding, hospital intra-net, hospital employees’ language(s) used, multi-national culture, communication system, employees’ job satisfaction and job security. The research identified that (a) the human behaviour towards medical information in SA is one of the main threats to information security and one of the main challenges to SA health authority, (b) The current situation of SA hospitals’ IS cultures is falling short in protecting medical information due to the current value and norms towards information security, (c) Saudi national culture and employees’ job role are the main dimensions playing major roles in the employees’ attitude, and technology is the least important dimension playing a role in the employees’ attitudes.

Keywords: cultural dimension, electronic health record, information security, privacy

Procedia PDF Downloads 351
24238 Characterization of Electrospun Carbon Nanofiber Doped Polymer Composites

Authors: Atilla Evcin, Bahri Ersoy, Süleyman Akpınar, I. Sinan Atlı

Abstract:

Ceramic, polymer and composite nanofibers are nowadays begun to be utilized in many fields of nanotechnology. By the means of dimensions, these fibers are as small as nano scale but because of having large surface area and microstructural characteristics, they provide unique mechanic, optical, magnetic, electronic and chemical properties. In terms of nanofiber production, electrospinning has been the most widely used technique in recent years. In this study, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. Images of carbon nanofibers have been taken with scanning electron microscopy (SEM). The images have been analyzed to study the fiber morphology and to determine the distribution of the fiber diameter using FibraQuant 1.3 software. Then polymer composites have been produced from mixture of carbon nanofibers and silicone polymer. The final polymer composites have been characterized by X-ray diffraction method and scanning electron microscopy (SEM) energy dispersive X-ray (EDX) measurements. These results have been reported and discussed. At result, homogeneous carbon nanofibers with 100-167 nm of diameter were obtained with optimized electrospinning conditions.

Keywords: electrospinning, characterization, composites, nanofiber

Procedia PDF Downloads 394
24237 Expanding the Evaluation Criteria for a Wind Turbine Performance

Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin

Abstract:

The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.

Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses

Procedia PDF Downloads 390
24236 An Exhaustive All-Subsets Examination of Trade Theory on WTO Data

Authors: Masoud Charkhabi

Abstract:

We examine trade theory with this motivation. The full set of World Trade Organization data are organized into country-year pairs, each treated as a different entity. Topological Data Analysis reveals that among the 16 region and 240 region-year pairs there exists in fact a distinguishable group of region-period pairs. The generally accepted periods of shifts from dissimilar-dissimilar to similar-similar trade in goods among regions are examined from this new perspective. The period breaks are treated as cumulative and are flexible. This type of all-subsets analysis is motivated from computer science and is made possible with Lossy Compression and Graph Theory. The results question many patterns in similar-similar to dissimilar-dissimilar trade. They also show indications of economic shifts that only later become evident in other economic metrics.

Keywords: econometrics, globalization, network science, topological data, analysis, trade theory, visualization, world trade

Procedia PDF Downloads 372
24235 Using Probe Person Data for Travel Mode Detection

Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma

Abstract:

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.

Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine

Procedia PDF Downloads 359
24234 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)

Authors: Ali Pourkazemi

Abstract:

The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.

Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies

Procedia PDF Downloads 69