Search results for: climate mitigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3340

Search results for: climate mitigation

1300 Determinants of Inward Foreign Direct Investment: New Evidence from Bangladesh

Authors: Mohammad Maruf Hasan

Abstract:

Foreign Direct Investment (FDI) has been increased at a remarkable position around the globe in which emerging economies are getting more FDI compared to industrialized economies. This study aims to examine the determinants of inward FDI flows in Bangladesh. To estimate the long and short-run impact of the FDI determinants for 1996-2020, we employed the Autoregressive-Distributed Lag (ARDL) model. Results show that: (1) macroeconomic determinants, such as economic growth, infrastructure, and market size, have a significant and strong positive effect.(2) Inflation exchange rate shows insignificant effects, while trade openness has mixed (short-run negative, long-run positive) effects on FDI inflows in both the long and short run. (3) Current institutional determinants rule of law has a positive effect on FDI inflows but is statistically insignificant, political stability has a negative, and the rule of law has a considerable beneficial impact on inflows of FDI. (4) The macroeconomic factors have been determined to impact Bangladesh's FDI inflows. Finally, a stable macroeconomic climate is more effective at luring FDI, as this study confirms. From a policy perspective, this study will help the government and policymakers to make a new investment policy.

Keywords: determinants, FDI, ARDL, Bangladesh

Procedia PDF Downloads 73
1299 Growth Analysis in Wheat as Influenced by Water Stress and Variety in Sokoto, Sudan Savannah, Nigeria

Authors: M. B. Sokoto, I. U. Abubakar

Abstract:

The study was carried out on effect of water stress and variety on growth of wheat (Triticum aestivum L.), during 2009/10 and 2010/11 dry seasons. The treatments consisted of factorial combination of water stress at three critical growth stage which was imposed by withholding water at (Tillering, Flowering, Grain filling) and Control (No stress) and two varieties (Star 11 TR 77173/SLM and Kauze/Weaver) laid out in a split-plot design with three replications. Water stress was assigned to the main-plot while variety was assigned to the sub-plots. Result revealed significant (P<0.05) effect of water stress, water stress at tillering significantly (P<0.05) reduced plant height, LAI, CGR, and NAR. Variety had a significant effect on plant height, LAI, CGR and NAR. In conclusion water stress at tillering was observed to be most critical growth stage in wheat, and water stress at this period should be avoided because it results to decrease in growth components in wheat. Wheat should be sown in November or at least first week of December in this area and other area with similar climate. Star II TR 77173/LM is recommended variety for the area.

Keywords: wheat, growth, water stress, variety, Sudan savannah

Procedia PDF Downloads 335
1298 Phytodiversity and Phytogeographic Characterization Stands of Pistacia lentiscus L. in the Coastal Region of Honaine, Tlemcen, Western Algeria

Authors: I. Benmehdi, O. Hasnaoui, N. Hachemi, M. Bouazza

Abstract:

The Understanding of the mechanisms structuring of plant diversity in the region of Tlemcen (western Algeria) is a related problem. The current floristic composition of different groups in Pistacia lentiscus L. resulting from the combination of human and climate action. This study is devoted to biodiversity inventory and phytogeographic characterization of Pistacia lentiscus groups in the Honaine coastal (western Algeria). The floristic inventory (150 levels) made in three stations of the study area allowed to count a 109 species belonging to 44 families of vascular plants. The biogeographical analysis of the Pistacia lentiscus groups reveals the most representative elements. The Mediterranean elements are numerically the most dominant with 39.45% represented by: Pistacia lentiscus, Cistus monspeliensis, Plantago lagopus, Linum strictum, Echium vulgare; followed by the western Mediterranean elements with 10.09% and are represented by: Chamaerops humilis, Lavandula dentata, Ampelodesma mauritanicum and Iris xyphium. However, this phytotaxonomic wealth is exposed to anthropogenic impact causing its disruption see its decline.

Keywords: Pistacia lentiscus L., phytodiversity, phytogeography, honaine, western Algeria

Procedia PDF Downloads 398
1297 Using Bamboo Structures for Protecting Mangrove Ecosystems: A Nature-Based Approach

Authors: Sourabh Harihar, Henk Jan Verhagen

Abstract:

The nurturing of a mangrove ecosystem requires a protected coastal environment with adequate drainage of the soil substratum. In a conceptual design undertaken for a mangrove rejuvenation project along the eastern coast of Mumbai (India), various engineering alternatives have been thought of as a protective coastal structure and drainage system. One such design uses bamboo-pile walls in creating shielded compartments in the form of various layouts, coupled with bamboo drains. The bamboo-based design is found to be environmentally and economically advantageous over other designs like sand-dikes which are multiple times more expensive. Moreover, employing a natural material such as bamboo helps the structure naturally blend with the developing mangrove habitat, allaying concerns about dismantling the structure post mangrove growth. A cost-minimising and eco-friendly bamboo structure, therefore, promises to pave the way for large rehabilitation projects in future. As mangrove ecosystems in many parts of the world increasingly face the threat of destruction due to urban development and climate change, protective nature-based designs that can be built in a short duration are the need of the hour.

Keywords: bamboo, environment, mangrove, rehabilitation

Procedia PDF Downloads 282
1296 Combating Islamophobia in Australia: An Analysis of Six Legal and Holistic Strategies to Help Address Discrimination towards Muslims

Authors: F. Zamani Ashni, P. Gerber

Abstract:

In today's religious and political climate, Muslims find themselves the focus of much attention, often in the form of discrimination and vilification. There is a widely held belief that Islam and terrorism are inextricably intertwined. An anti-Muslim narrative has been shaping policy around the world for some time now. This study, which focuses on the experience of Muslims in Australia, provides guidance on legislative and other steps that can be taken by Australia to help address Islamophobia. This study provides a doctrinal analysis of the state, territory, and federal anti-discrimination laws in Australia. Using principles of statutory interpretation along aside an analysis of relevant jurisprudence, this study concludes that Australian anti-discrimination laws are ill-equipped to address modern-day Islamophobia. The study also finds that laws alone are insufficient to combat Islamophobia, and a more holistic approach is required. Six strategies are identified, which can, in combination, help to successfully respond to Islamophobia. In addition to legislative initiatives, combating Islamophobia requires Australia to promote inclusive human rights education, fair media coverage, strong leadership, integration of the Islamic community, and comprehensive documentation of anti-Muslim attacks.

Keywords: Australia, discrimination, Islamophobia, Muslim

Procedia PDF Downloads 133
1295 Investigation of Diseases and Enemies of Bees of Breeding Apis mellifera intermissa (Buttel-Reepen, 1906)

Authors: S. Zenia, L. Bitta, O. Bouhamam, H. Brines, M. Boudriaa, F. Haddadj, F. Marniche, A. Milla, H. Saadi, A. Smai

Abstract:

The bee Apis mellifera intermissa is a major social insect, in addition to its honey production, it is a pillar of our biodiversity. Several living organisms can come into contact with it: bacteria, viruses, protozoa, fungi, mites, and insects. In Algeria, many beekeepers have reported unusual mortality of local bees, loss of foragers and significant losses of their livestock. Despite the presence of a varied honey-bearing flora and a favourable Mediterranean climate, honey production remains low. This phenomenon can be attributed to the excess winter mortality, but also to the increasing difficulties that beekeepers face in maintaining healthy bee colonies, particularly bee diseases and their transmission facilitated by trade and beekeeping practices. Our survey is based on a questionnaire composed of several parts. The results obtained show that the disease that most affects bees according to beekeepers is varroa mite with 93% followed by fungi with 26%. The most replied enemy of bees is the false ringworm with 73%, followed by the bee-eater with 63%. Our goal is to determine the causes of this low production in two areas: Bejaia and Tizi-Ouzou.

Keywords: diseases, Apis mellifera L., varroa, European foulbrood

Procedia PDF Downloads 161
1294 Electrical Geophysical and Physiochemical Assessment of the Impact of Environmental Pollution on the Groundwater Potential of a Waste Land fill at Tudun Murtala in Nassarawa Local Government Area, Kano State, Nigeria

Authors: Abubakar Maitama Yusuf Hotoro, Olokpo Israel Olofu, Yusuf U. Tarauni, Mudassir A. Umar, Aliyu A, Dahiru Garba Diso, Usman H. Jamoh, M. Sale

Abstract:

The study assessed the impact of environmental pollution on groundwater potential at Tudun Murtala waste land fill using electrical resistivity, induced polarization and Physiochemical methods. The study area is located between latitude 12.023678N and longitude 8.573676 E. Geophysical data were collected at maximum length of 140m along twelve profiles using ABEM Terrameter SAS 1000. Results from the Geophysical analysis showed that the profiles were underlain by three lithological layers; the top layer consisting of Loamy and Sand soils, alluvium, granite, shale and sandstone. The second and third layers were predominantly made of weathered and fractured basements respectively. The potential groundwater water bearing zones of the study area occurred at VES2, VES4, VES5, VES6 and VES7. The thicknesses of the sounding points were found to be 20.8m at VES2; 25.2m at VES4; 13.2m at VES5; 50.8m at VES6 and 13.3m at VES7. The corresponding depths for the sounding points were 20.8m at VES2; 27.9m at VES4; 26.7m at VES5; 51.6m at VES6 and 24.9m at VES7 respectively. The Physiochemical study of selected groundwater samples assessed parameters such as the Electrical Conductivity, EC (288dS/m to 1365dS/m), TDS (170.8mg/L to 820mg/L) Pb (0.546mg/l to 0.629mg/l), Cu (-0.001mg/l to 0.004mg/l), and Cd (0.031mg/l to 0.092mg/l). The physiochemical results showed that the groundwater around the dumpsite may have been contaminated, especially in Dumpsite Hole 1 and Hole 2 at VES4 and VES6 respectively. There are indications for suspected leachate mitigation around the two VES points. Even though, the pH values of 6.4 and 6.2 at the two sounding points were considered to be within the permissible pH range (6.5 to 6.8). The values of other elements present in the groundwater for the samples at other VES points were found to be above permissible WHO and Nigerian Standards for Drinking Water.

Keywords: resistivity induced polarization, chargeability, landfill, leachate, contamination

Procedia PDF Downloads 62
1293 Disidentification of Historical City Centers: A Comparative Study of the Old and New Settlements of Mardin, Turkey

Authors: Fatma Kürüm Varolgüneş, Fatih Canan

Abstract:

Mardin is one of the unique cities in Turkey with its rich cultural and historical heritage. Mardin’s traditional dwellings have been affected both by natural data such as climate and topography and by cultural data like lifestyle and belief. However, in the new settlements, housing is formed with modern approaches and unsuitable forms clashing with Mardin’s culture and environment. While the city is expanding, traditional textures are ignored. Thus, traditional settlements are losing their identity and are vanishing because of the rapid change and transformation. The main aim of this paper is to determine the physical and social data needed to define the characteristic features of Mardin’s old and new settlements. In this context, based on social and cultural data, old and new settlement formations of Mardin have been investigated from various aspects. During this research, the following methods have been utilized: observations, interviews, public surveys, literature review, as well as site examination via maps, photographs and questionnaire methodology. In conclusion, this paper focuses on how changes in the physical forms of cities affect the typology and the identity of cities, as in the case of Mardin.

Keywords: urban and local identity, historical city center, traditional settlements, Mardin

Procedia PDF Downloads 328
1292 Geospatial Multi-Criteria Evaluation to Predict Landslide Hazard Potential in the Catchment of Lake Naivasha, Kenya

Authors: Abdel Rahman Khider Hassan

Abstract:

This paper describes a multi-criteria geospatial model for prediction of landslide hazard zonation (LHZ) for Lake Naivasha catchment (Kenya), based on spatial analysis of integrated datasets of location intrinsic parameters (slope stability factors) and external landslides triggering factors (natural and man-made factors). The intrinsic dataset included: lithology, geometry of slope (slope inclination, aspect, elevation, and curvature) and land use/land cover. The landslides triggering factors included: rainfall as the climatic factor, in addition to the destructive effects reflected by proximity of roads and drainage network to areas that are susceptible to landslides. No published study on landslides has been obtained for this area. Thus, digital datasets of the above spatial parameters were conveniently acquired, stored, manipulated and analyzed in a Geographical Information System (GIS) using a multi-criteria grid overlay technique (in ArcGIS 10.2.2 environment). Deduction of landslide hazard zonation is done by applying weights based on relative contribution of each parameter to the slope instability, and finally, the weighted parameters grids were overlaid together to generate a map of the potential landslide hazard zonation (LHZ) for the lake catchment. From the total surface of 3200 km² of the lake catchment, most of the region (78.7 %; 2518.4 km²) is susceptible to moderate landslide hazards, whilst about 13% (416 km²) is occurring under high hazards. Only 1.0% (32 km²) of the catchment is displaying very high landslide hazards, and the remaining area (7.3 %; 233.6 km²) displays low probability of landslide hazards. This result confirms the importance of steep slope angles, lithology, vegetation land cover and slope orientation (aspect) as the major determining factors of slope failures. The information provided by the produced map of landslide hazard zonation (LHZ) could lay the basis for decision making as well as mitigation and applications in avoiding potential losses caused by landslides in the Lake Naivasha catchment in the Kenya Highlands.

Keywords: decision making, geospatial, landslide, multi-criteria, Naivasha

Procedia PDF Downloads 206
1291 Relationships Between the Petrophysical and Mechanical Properties of Rocks and Shear Wave Velocity

Authors: Anamika Sahu

Abstract:

The Himalayas, like many mountainous regions, is susceptible to multiple hazards. In recent times, the frequency of such disasters is continuously increasing due to extreme weather phenomena. These natural hazards are responsible for irreparable human and economic loss. The Indian Himalayas has repeatedly been ruptured by great earthquakes in the past and has the potential for a future large seismic event as it falls under the seismic gap. Damages caused by earthquakes are different in different localities. It is well known that, during earthquakes, damage to the structure is associated with the subsurface conditions and the quality of construction materials. So, for sustainable mountain development, prior estimation of site characterization will be valuable for designing and constructing the space area and for efficient mitigation of the seismic risk. Both geotechnical and geophysical investigation of the subsurface is required to describe the subsurface complexity. In mountainous regions, geophysical methods are gaining popularity as areas can be studied without disturbing the ground surface, and also these methods are time and cost-effective. The MASW method is used to calculate the Vs30. Vs30 is the average shear wave velocity for the top 30m of soil. Shear wave velocity is considered the best stiffness indicator, and the average of shear wave velocity up to 30 m is used in National Earthquake Hazards Reduction Program (NEHRP) provisions (BSSC,1994) and Uniform Building Code (UBC), 1997 classification. Parameters obtained through geotechnical investigation have been integrated with findings obtained through the subsurface geophysical survey. Joint interpretation has been used to establish inter-relationships among mineral constituents, various textural parameters, and unconfined compressive strength (UCS) with shear wave velocity. It is found that results obtained through the MASW method fitted well with the laboratory test. In both conditions, mineral constituents and textural parameters (grain size, grain shape, grain orientation, and degree of interlocking) control the petrophysical and mechanical properties of rocks and the behavior of shear wave velocity.

Keywords: MASW, mechanical, petrophysical, site characterization

Procedia PDF Downloads 86
1290 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition

Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can

Abstract:

To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.

Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning

Procedia PDF Downloads 85
1289 A Comparative Analysis of Green Buildings Rating Systems

Authors: Shadi Motamedighazvini, Roohollah Taherkhani, Mahdi Mahdikhani, Najme Hashempour

Abstract:

Nowadays, green building rating systems are an inevitable necessity for managing environmental considerations to achieve green buildings. The aim of this paper is to deliver a detailed recognition of what has been the focus of green building policymakers around the world; It is important to conduct this study in a way that can provide a context for researchers who intend to establish or upgrade existing rating systems. In this paper, fifteen rating systems including four worldwide well-known plus eleven local rating systems which have been selected based on the answers to the questionnaires were examined. Their similarities and differences in mandatory and prerequisite clauses, highest and lowest scores for each criterion, the most frequent criteria, and most frequent sub-criteria are determined. The research findings indicated that although the criteria of energy, water, indoor quality (except Homestar), site and materials (except GRIHA) were common core criteria for all rating systems, their sub-criteria were different. This research, as a roadmap, eliminates the lack of a comprehensive reference that encompasses the key criteria of different rating systems. It shows the local systems need to be revised to be more comprehensive and adaptable to their own country’s conditions such as climate.

Keywords: environmental assessment, green buildings, green building criteria, green building rating systems, sustainability, rating tools

Procedia PDF Downloads 242
1288 Seedling Emergence and Initial Growth of Different Plants after Trichoderma sp. Inoculation

Authors: Simonida S. Djuric, Timea I. Hajnal Jafari, Dragana R. Stamenov

Abstract:

The use of plant growth promoting fungi (PGPF) has significantly increased in the last decade mostly due to their multi-level properties, and their expected success as biofertilizers in agriculture. Beneficial fungi with broad-host range undergo long-term interactions with a large variety of plants thereby playing a significant role in managed ecosystems and in the adaptation of crops to global climate changes. Trichoderma spp. are promising fungi toward the development of sustainable agriculture. The aim of our experiment was to investigate the effect of seed inoculation of sunflower, maize, soybean, paprika, melon, and watermelon seeds with Trichoderma sp. on early seed germination energy and initial growth of the plant. The seed inoculation with Trichoderma sp. increased the seedling emergence from 7, 85% in melon to 156,70% in watermelon. The inoculation had the best effect on initial growth of maize shoot (+23,80%) and soybean root (+106,30%). The different response of seed and young plants on Trichoderma sp. inoculation implicate the need for future investigations of successful inoculation systems and modes of their integration in sustainable agriculture production systems.

Keywords: initial growth, inoculation, seedling, Trichoderma sp.

Procedia PDF Downloads 240
1287 The Role of Waqf Forestry for Sustainable Economic Development: A Panel Logit Analysis

Authors: Patria Yunita

Abstract:

Kuznets’ environmental curve analysis suggests sacrificing economic development to reduce environmental problems. However, we hope to achieve sustainable economic development. In this case, Islamic social finance, especially that of waqf in Indonesia, can be used as a solution to bridge the problem of environmental damage to the sustainability of economic development. The Panel Logit Regression method was used to analyze the probability of increasing economic growth and the role of waqf in the environmental impact of CO₂ emissions. This study uses panel data from 33 Indonesian provinces. The data used were the National Waqf Index, Forest Area, Waqf Land Area, Growth Rate of Regional Gross Domestic Product (YoY), and CO₂ Emissions for 2018-2022. Data were obtained from the Indonesian Waqf Board, Climate World Data, the Ministry of the Environment, and the Bank of Indonesia. The results prove that CO₂ emissions have a negative effect on regional economic growth and that waqf governance in the waqf index has a positive effect on regional economic growth in 33 provinces.

Keywords: waqf, CO₂ emissions, panel logit analysis, sustainable economic development

Procedia PDF Downloads 41
1286 Multidisciplinary Approach to the Effects of Generator Exhaust Fumes on Air: Case Study of Onitsha

Authors: U. V. Okpala, C. C. Okpala

Abstract:

The effect of generator exhaust fumes on air, a case study of Onitsha was considered in this work. A sample of 400 respondents was randomly chosen in the study area based on the population. Questionnaire was designed and administered to inhabitants of the study area to enable the researchers ascertain information on the effect of generator exhaust fumes on air and possible remedies. The issue of the types of generators owned by residents, quantity of fuel products purchased per day and the number of years of generator ownership were discussed. The Pearson’s product moment analysis correlation and Chi-square test were applied in the hypothesis testing. The result shows that huge amount of effluents are discharged on the environment thereby polluting the air. This leads to radiative forcing, depletion of ozone layer and precipitation of acid rain. This has untold effect on the climate system. To ensure proper recovery, the study recommends that government makes available alternative energy sources in addition to the conventional power to save the environment; with this, waste becomes wealth towards a sustainable economy in Nigeria.

Keywords: Onitsha, generator, fuel products, exhaust fumes and remedies, energy systems

Procedia PDF Downloads 215
1285 Cost-Effective and Optimal Control Analysis for Mitigation Strategy to Chocolate Spot Disease of Faba Bean

Authors: Haileyesus Tessema Alemneh, Abiyu Enyew Molla, Oluwole Daniel Makinde

Abstract:

Introduction: Faba bean is one of the most important grown plants worldwide for humans and animals. Several biotic and abiotic elements have limited the output of faba beans, irrespective of their diverse significance. Many faba bean pathogens have been reported so far, of which the most important yield-limiting disease is chocolate spot disease (Botrytis fabae). The dynamics of disease transmission and decision-making processes for intervention programs for disease control are now better understood through the use of mathematical modeling. Currently, a lot of mathematical modeling researchers are interested in plant disease modeling. Objective: In this paper, a deterministic mathematical model for chocolate spot disease (CSD) on faba bean plant with an optimal control model was developed and analyzed to examine the best strategy for controlling CSD. Methodology: Three control interventions, quarantine (u2), chemical control (u3), and prevention (u1), are employed that would establish the optimal control model. The optimality system, characterization of controls, the adjoint variables, and the Hamiltonian are all generated employing Pontryagin’s maximum principle. A cost-effective approach is chosen from a set of possible integrated strategies using the incremental cost-effectiveness ratio (ICER). The forward-backward sweep iterative approach is used to run numerical simulations. Results: The Hamiltonian, the optimality system, the characterization of the controls, and the adjoint variables were established. The numerical results demonstrate that each integrated strategy can reduce the diseases within the specified period. However, due to limited resources, an integrated strategy of prevention and uprooting was found to be the best cost-effective strategy to combat CSD. Conclusion: Therefore, attention should be given to the integrated cost-effective and environmentally eco-friendly strategy by stakeholders and policymakers to control CSD and disseminate the integrated intervention to the farmers in order to fight the spread of CSD in the Faba bean population and produce the expected yield from the field.

Keywords: CSD, optimal control theory, Pontryagin’s maximum principle, numerical simulation, cost-effectiveness analysis

Procedia PDF Downloads 87
1284 Improving Depression, Anxiety and Distress Symptoms in Type 2 Diabetes Patients

Authors: Seyed Reza Alvani, Norzarina Mohd Zaharim

Abstract:

Diabetes mellitus is one of the chronic, progressive illnesses that has reached a widespread level all over the world and considered an extreme life-threatening condition in South East Asian countries region include Malaysia. Co-morbid psychological factors like diabetes-related distress and low level of psychological well-being are related to high levels of blood sugar and hypo/hyperglycemia complications. As a result, the implementation of any effective psychological interventions among diabetes patients is necessary. One such intervention is cognitive behavioural therapy (CBT) that is approved and suggested by many professionals as an empirically-supported technique of treatment for people how are suffering from diabetes around the world where there is no clear evidence of using this technique in Malaysia. The target of this study was to see whether or not participation in group CBT would end in an improvement of psychological well-being (by decreasing the levels of depression and anxiety) and diabetes-related distress followed by lower level of blood sugar level. The sample of the present study was 60 type 2 diabetes adults (ages 20-65) with HbA1c ≥ 7 from Universiti Sains Malaysia (USM) clinic. All participants were selected by the convenience sampling technique. Participants completed Well-Being Questionaire (W-BQ) and Distress Scale (DDS-17) after signing written consent form. Those participants who were interested to join CBT groups were placed to the experimental groups, and people who were not interested were assigned to the control group. The experimental groups (n = 30) received group CBT, whereas participants in the control group (n = 30) did not receive any kind of psychological intervention. For testing the effect of intervention, mixed between-within ANOVA used. The entire intervention program took three months, and a significant improvement in the level of psychological well-being and decline in the level of diabetes distress observed among participants from experimental group, but not for those in the control group. Additionally, the result of the study suggested that group CBT could help participants in experimental group achieve more acceptable HbA1c levels in comparison with those in the control group. Malaysian Ministry of Health, researcher and governors should give due interest and commitment to psychological care as a pathway to diabetes mitigation among Malaysian adults.

Keywords: cognitive behavioral therapy, diabetes related distress, diabetes type 2, Malaysia, well-being

Procedia PDF Downloads 131
1283 Localized Variabilities in Traffic-related Air Pollutant Concentrations Revealed Using Compact Sensor Networks

Authors: Eric A. Morris, Xia Liu, Yee Ka Wong, Greg J. Evans, Jeff R. Brook

Abstract:

Air quality monitoring stations tend to be widely distributed and are often located far from major roadways, thus, determining where, when, and which traffic-related air pollutants (TRAPs) have the greatest impact on public health becomes a matter of extrapolation. Compact, multipollutant sensor systems are an effective solution as they enable several TRAPs to be monitored in a geospatially dense network, thus filling in the gaps between conventional monitoring stations. This work describes two applications of one such system named AirSENCE for gathering actionable air quality data relevant to smart city infrastructures. In the first application, four AirSENCE devices were co-located with traffic monitors around the perimeter of a city block in Oshawa, Ontario. This study, which coincided with the COVID-19 outbreak of 2020 and subsequent lockdown measures, demonstrated a direct relationship between decreased traffic volumes and TRAP concentrations. Conversely, road construction was observed to cause elevated TRAP levels while reducing traffic volumes, illustrating that conventional smart city sensors such as traffic counters provide inadequate data for inferring air quality conditions. The second application used two AirSENCE sensors on opposite sides of a major 2-way commuter road in Toronto. Clear correlations of TRAP concentrations with wind direction were observed, which shows that impacted areas are not necessarily static and may exhibit high day-to-day variability in air quality conditions despite consistent traffic volumes. Both of these applications provide compelling evidence favouring the inclusion of air quality sensors in current and future smart city infrastructure planning. Such sensors provide direct measurements that are useful for public health alerting as well as decision-making for projects involving traffic mitigation, heavy construction, and urban renewal efforts.

Keywords: distributed sensor network, continuous ambient air quality monitoring, Smart city sensors, Internet of Things, traffic-related air pollutants

Procedia PDF Downloads 72
1282 Towards an Effective Approach for Modelling near Surface Air Temperature Combining Weather and Satellite Data

Authors: Nicola Colaninno, Eugenio Morello

Abstract:

The urban environment affects local-to-global climate and, in turn, suffers global warming phenomena, with worrying impacts on human well-being, health, social and economic activities. Physic-morphological features of the built-up space affect urban air temperature, locally, causing the urban environment to be warmer compared to surrounding rural. This occurrence, typically known as the Urban Heat Island (UHI), is normally assessed by means of air temperature from fixed weather stations and/or traverse observations or based on remotely sensed Land Surface Temperatures (LST). The information provided by ground weather stations is key for assessing local air temperature. However, the spatial coverage is normally limited due to low density and uneven distribution of the stations. Although different interpolation techniques such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), or Multiple Linear Regression (MLR) are used to estimate air temperature from observed points, such an approach may not effectively reflect the real climatic conditions of an interpolated point. Quantifying local UHI for extensive areas based on weather stations’ observations only is not practicable. Alternatively, the use of thermal remote sensing has been widely investigated based on LST. Data from Landsat, ASTER, or MODIS have been extensively used. Indeed, LST has an indirect but significant influence on air temperatures. However, high-resolution near-surface air temperature (NSAT) is currently difficult to retrieve. Here we have experimented Geographically Weighted Regression (GWR) as an effective approach to enable NSAT estimation by accounting for spatial non-stationarity of the phenomenon. The model combines on-site measurements of air temperature, from fixed weather stations and satellite-derived LST. The approach is structured upon two main steps. First, a GWR model has been set to estimate NSAT at low resolution, by combining air temperature from discrete observations retrieved by weather stations (dependent variable) and the LST from satellite observations (predictor). At this step, MODIS data, from Terra satellite, at 1 kilometer of spatial resolution have been employed. Two time periods are considered according to satellite revisit period, i.e. 10:30 am and 9:30 pm. Afterward, the results have been downscaled at 30 meters of spatial resolution by setting a GWR model between the previously retrieved near-surface air temperature (dependent variable), the multispectral information as provided by the Landsat mission, in particular the albedo, and Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM), both at 30 meters. Albedo and DEM are now the predictors. The area under investigation is the Metropolitan City of Milan, which covers an area of approximately 1,575 km2 and encompasses a population of over 3 million inhabitants. Both models, low- (1 km) and high-resolution (30 meters), have been validated according to a cross-validation that relies on indicators such as R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). All the employed indicators give evidence of highly efficient models. In addition, an alternative network of weather stations, available for the City of Milano only, has been employed for testing the accuracy of the predicted temperatures, giving and RMSE of 0.6 and 0.7 for daytime and night-time, respectively.

Keywords: urban climate, urban heat island, geographically weighted regression, remote sensing

Procedia PDF Downloads 195
1281 Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint

Authors: Melike Yaylacı, Tuğba Bilgin

Abstract:

Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint.

Keywords: life cycle assessment, carbon emission, laser cutting machine, cutting parameters

Procedia PDF Downloads 99
1280 The Role of the Basel Accords in Mitigating Systemic Risk

Authors: Wassamon Kun-Amornpong

Abstract:

When a financial crisis occurs, there will be a law and regulatory reform in order to manage the turmoil and prevent a future crisis. One of the most important regulatory efforts to help cope with systemic risk and a financial crisis is the third version of the Basel Accord. Basel III has introduced some measures and tools (e.g., systemic risk buffer, countercyclical buffer, capital conservation buffer and liquidity risk) in order to mitigate systemic risk. Nevertheless, the effectiveness of these measures in Basel III in adequately addressing the problem of contagious runs that can quickly spread throughout the financial system is questionable. This paper seeks to contribute to the knowledge regarding the role of the Basel Accords in mitigating systemic risk. The research question is to what extent the Basel Accords can help control systemic risk in the financial markets? The paper tackles this question by analysing the concept of systemic risk. It will then examine the weaknesses of the Basel Accords before and after the Global financial crisis in 2008. Finally, it will suggest some possible solutions in order to improve the Basel Accord. The rationale of the study is the fact that academic works on systemic risk and financial crises are largely studied from economic or financial perspective. There is comparatively little research from the legal and regulatory perspective. The finding of the paper is that there are some problems in all of the three pillars of the Basel Accords. With regards to Pillar I, the risk model is excessively complex while the benefits of its complexity are doubtful. Concerning Pillar II, the effectiveness of the risk-based supervision in preventing systemic risk still depends largely upon its design and implementation. Factors such as organizational culture of the regulator and the political context within which the risk-based supervision operates might be a barrier against the success of Pillar II. Meanwhile, Pillar III could not provide adequate market discipline as market participants do not always act in a rational way. In addition, the too-big-to-fail perception reduced the incentives of the market participants to monitor risks. There has been some development in resolution measure (e.g. TLAC and MREL) which might potentially help strengthen the incentive of the market participants to monitor risks. However, those measures have some weaknesses. The paper argues that if the weaknesses in the three pillars are resolved, it can be expected that the Basel Accord could contribute to the mitigation of systemic risk in a more significant way in the future.

Keywords: Basel accords, financial regulation, risk-based supervision, systemic risk

Procedia PDF Downloads 128
1279 Modelling the Photovoltaic Pump Output Using Empirical Data from Local Conditions in the Vhembe District

Authors: C. Matasane, C. Dwarika, R. Naidoo

Abstract:

The mathematical analysis on radiation obtained and the development of the solar photovoltaic (PV) array groundwater pumping is needed in the rural areas of Thohoyandou, Limpopo Province for sizing and power performance subject to the climate conditions within the area. A simple methodology approach is developed for the directed coupled solar, controller and submersible ground water pump system. The system consists of a PV array, pump controller and submerged pump, battery backup and charger controller. For this reason, the theoretical solar radiation obtained for optimal predictions and system performance in order to achieve different design and operating parameters. Here the examination of the PV schematic module in a Direct Current (DC) application is used for obtainable maximum solar power energy for water pumping. In this paper, a simple efficient photovoltaic water pumping system is presented with its theoretical studies and mathematical modeling of photovoltaics (PV) system.

Keywords: renewable energy sources, solar groundwater pumping, theoretical and mathematical analysis of photovoltaic (PV) system, theoretical solar radiation

Procedia PDF Downloads 376
1278 The Jordanian Traditional Dress of Women as a Form of Cultural Heritage

Authors: Sarah Alkhateeb

Abstract:

This research explores the Jordanian traditional dress of women as a form of cultural heritage. The dress of the Jordanian woman expresses her social and cultural functions and reflects the local environment in its social and cultural frameworks and the determinants of the natural formation of climate and terrain, in addition to what is expressed by the person’s social status and position in the social ladder of any society. Therefore, the traditional dress of Jordanian women is distinguished by its abundance and diversity. Few studies have been conducted on the Jordanian traditional dress of women, the lack of studies about the Jordanian traditional dress of women needs highlighting and the characteristics of this dress have to be featured and documented as a part of cultural heritage. The main aim of this research is to contribute or to develop a conservation strategy to save this part of cultural heritage from loss. In this research, the qualitative method approach will be used and will follow the ethnographic method. The data will be gathered from a primary source which is the single focus group discussion with the TIRAZ museum team; the Jordanian traditional dress will be explored across three regions: The North, Middle and South of Jordan, investigating the regional differences and focusing on the details of the individual garment.

Keywords: Jordanian traditional dress, cultural heritage, tiraz museum, ethnographic method

Procedia PDF Downloads 166
1277 Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture

Authors: Zakia Hbellaq

Abstract:

The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers.

Keywords: water scarcity, food security, irrigation, agricultural water footprint, reuse, emerging contaminants

Procedia PDF Downloads 161
1276 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia

Authors: Yenni Anggrayni

Abstract:

The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.

Keywords: bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement

Procedia PDF Downloads 70
1275 Assessing the Effects of Community Informatics on Livelihoods Sustainability in Nigeria: a Model for Rural Communities

Authors: Adebayo J. Julius, Oluremi N. Iluyomade

Abstract:

Livelihood in Nigeria is a paradox of poverty amidst plenty. The Country is endowed with a good climate for agriculture, naturally growing fruit trees and vegetables, and undomesticated water resources. In spite of all its endowment, Nigeria continues to live in poverty year in year out. This thus raises a very important question as to how can there be so much poverty in Nigeria with all its natural endowments. This study focused comparative analysis of the utilization of community informatics for sustainable livelihoods through agriculture. The idea projected in this study is that small strategic changes in the modus operandi of social informatics can have a significant impact on sustainability of livelihoods. This paper carefully explored the theories of community informatics and its efficacies in dealing with sustainability issues. This study identified, described and evaluates the roles of community informatics in some sectors of the economy, different analytical tools to benchmark the influence of social informatics in agriculture against what is obtainable in agricultural sectors of the economy were used. It further employed comparative analysis to build a case model for sustainable livelihood in agriculture through community informatics.

Keywords: informatics , model, rural community, livelihoods sustainability, Nigeria

Procedia PDF Downloads 151
1274 Climate Change and the Role of Foreign-Invested Enterprises

Authors: Xuemei Jiang, Kunfu Zhu, Shouyang Wang

Abstract:

In this paper, we selected China as a case and employ a time-series of unique input-output tables distinguishing firm ownership and processing exports, to evaluate the role of foreign-invested enterprises (FIEs) in China’s rapid carbon dioxide emission growth. The results suggested that FIEs contributed to 11.55% of the economic outputs’ growth in China between 1992-2010, but accounted for only 9.65% of the growth of carbon dioxide emissions. In relative term, until 2010 FIEs still emitted much less than Chinese-owned enterprises (COEs) when producing the same amount of outputs, although COEs experienced much faster technology upgrades. In an ideal scenario where we assume the final demands remain unchanged and COEs completely mirror the advanced technologies of FIEs, more than 2000 Mt of carbon dioxide emissions would be reduced for China in 2010. From a policy perspective, the widespread FIEs are very effective and efficient channel to encourage technology transfer from developed to developing countries.

Keywords: carbon dioxide emissions, foreign-invested enterprises, technology transfer, input–output analysis, China

Procedia PDF Downloads 398
1273 Critical Review of Oceanic and Geological Storage of Carbon Sequestration

Authors: Milad Nooshadi, Alessandro Manzardo

Abstract:

CO₂ emissions in the atmosphere continue to rise, mostly as a result of the combustion of fossil fuels. CO₂ injection into the oceans and geological formation as a process of physical carbon capture are two of the most promising emerging strategies for mitigating climate change and global warming. The purpose of this research is to evaluate the two mentioned methods of CO₂ sequestration and to assess information on previous and current advancements, limitations, and uncertainties associated with carbon sequestration in order to identify possible prospects for ensuring the timely implementation of the technology, such as determining how governments and companies can gain a better understanding of CO₂ storage in terms of which media have the most applicable capacity, which type of injection has the fewer environmental impact, and how much carbon sequestration and storage will cost. The behavior of several forms is characterized as a near field, a far field, and a see-floor in ocean storage, and three medias in geological formations as an oil and gas reservoir, a saline aquifer, and a coal bed. To determine the capacity of various forms of media, an analysis of some models and practical experiments are necessary. Additionally, as a major component of sequestration, the various injection methods into diverse media and their monitoring are associated with a variety of environmental impacts and financial consequences.

Keywords: carbon sequestration, ocean storage, geologic storage, carbon transportation

Procedia PDF Downloads 102
1272 Strategy to Evaluate Health Risks of Short-Term Exposure of Air Pollution in Vulnerable Individuals

Authors: Sarah Nauwelaerts, Koen De Cremer, Alfred Bernard, Meredith Verlooy, Kristel Heremans, Natalia Bustos Sierra, Katrien Tersago, Tim Nawrot, Jordy Vercauteren, Christophe Stroobants, Sigrid C. J. De Keersmaecker, Nancy Roosens

Abstract:

Projected climate changes could lead to exacerbation of respiratory disorders associated with reduced air quality. Air pollution and climate changes influence each other through complex interactions. The poor air quality in urban and rural areas includes high levels of particulate matter (PM), ozone (O3) and nitrogen oxides (NOx), representing a major threat to public health and especially for the most vulnerable population strata, and especially young children. In this study, we aim to develop generic standardized policy supporting tools and methods that allow evaluating in future follow-up larger scale epidemiological studies the risks of the combined short-term effects of O3 and PM on the cardiorespiratory system of children. We will use non-invasive indicators of airway damage/inflammation and of genetic or epigenetic variations by using urine or saliva as alternative to blood samples. Therefore, a multi-phase field study will be organized in order to assess the sensitivity and applicability of these tests in large cohorts of children during episodes of air pollution. A first test phase was planned in March 2018, not yet taking into account ‘critical’ pollution periods. Working with non-invasive samples, choosing the right set-up for the field work and the volunteer selection were parameters to consider, as they significantly influence the feasibility of this type of study. During this test phase, the selection of the volunteers was done in collaboration with medical doctors from the Centre for Student Assistance (CLB), by choosing a class of pre-pubertal children of 9-11 years old in a primary school in Flemish Brabant, Belgium. A questionnaire, collecting information on the health and background of children and an informed consent document were drawn up for the parents as well as a simplified cartoon-version of this document for the children. A detailed study protocol was established, giving clear information on the study objectives, the recruitment, the sample types, the medical examinations to be performed, the strategy to ensure anonymity, and finally on the sample processing. Furthermore, the protocol describes how this field study will be conducted in relation with the prevision and monitoring of air pollutants for the future phases. Potential protein, genetic and epigenetic biomarkers reflecting the respiratory function and the levels of air pollution will be measured in the collected samples using unconventional technologies. The test phase results will be used to address the most important bottlenecks before proceeding to the following phases of the study where the combined effect of O3 and PM during pollution peaks will be examined. This feasibility study will allow identifying possible bottlenecks and providing missing scientific knowledge, necessary for the preparation, implementation and evaluation of federal policies/strategies, based on the most appropriate epidemiological studies on the health effects of air pollution. The research leading to these results has been funded by the Belgian Science Policy Office through contract No.: BR/165/PI/PMOLLUGENIX-V2.

Keywords: air pollution, biomarkers, children, field study, feasibility study, non-invasive

Procedia PDF Downloads 178
1271 Creating a Quasi-Folklore as a Tool for Knowledge Sharing in a Family-Based Business

Authors: Chico A. E. Hindarto

Abstract:

Knowledge management practices are more contextual when they combine with the corporate culture. Each entity has a specific cultural climate that enables knowledge sharing in both functional and individual levels. The interactions between people within organization can be influenced by the culture and how the knowledge is transmitted. On the other hand, these interactions have impacts in culture modification as well. Storytelling is one of the methods in delivering the knowledge throughout the organization. This paper aims to explore the possibility in using a quasi-folklore in the family-based business. Folklore is defined as informal tradition culture that spreading through a word-of-mouth, without knowing the source of the story. In this paper, the quasi-folklore term is used to differentiate it with the original term of folklore. The story is created by somebody in the organization, not like the folklore with unknown source. However, the source is not disclosed, in order to avoid the predicted interest from the story origin. The setting of family-based business is deliberately chosen, since the kinship is considerably strong in this type of entity. Through a thorough literature review that relates to knowledge management, storytelling, and folklore, this paper determines how folklore can be an option for knowledge sharing within the organization.

Keywords: folklore, family business, organizational culture, knowledge management, storytelling

Procedia PDF Downloads 286